
 

Scheme for Universal High-Dimensional Quantum Computation with Linear Optics

Stefano Paesani ,1,2,* Jacob F. F. Bulmer ,1 Alex E. Jones ,1 Raffaele Santagati,1,3 and Anthony Laing1
1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering,

University of Bristol, Bristol BS8 1FD, United Kingdom
2Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen,

Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga 4715-330 Braga, Portugal
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Photons are natural carriers of high-dimensional quantum information, and, in principle, can benefit
from higher quantum information capacity and noise resilience. However, schemes to generate the
resources required for high-dimensional quantum computing have so far been lacking in linear optics. Here,
we show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical
circuits described by Fourier transform matrices. Combining our results with recent schemes for qudit Bell
measurements, we show that universal linear optical quantum computing can be performed in arbitrary
dimensions.
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Photonics is a sophisticated platform for the development
of quantum technologies, from quantum processors to
distributed quantum communication [1–5]. Until now, linear
optical architectures have focused on encoding photons as
qubits (two-level systems). Yet using higher dimensional
systems—qudits—can in principle improve the information
capacity and noise tolerance of computational resources,
and potentially unlock new routes to fault-tolerant quantum
computing and distributed quantum networks [6]. Qudits
can naturally be encoded in photons using d orthogonal
optical modes and in a variety of degrees of freedom, e.g.,
spatial modes [7–9], orbital angular-momentum [10–14],
optical frequencies [15,16], and time bins [17,18]. High-
precision control and arbitrary operations of single qudits
have been demonstrated using programmable interferome-
ters [7,8,19,20]. However, architectures for universal quan-
tum photonic processors based on higher-dimensional
systems have, so far, been absent. While there has been
significant experimental progress in photonic qudit entan-
glement generation [7–16,18], the postselected schemes
used so far can only generate a limited set of high-
dimensional entangled states and present no clear route to
scalability [21,22]. In fact, in contrast to the qubit case
[23,24], even determining which high-dimensional
entangled states can be generated with single photons and
linear optics has so far remained an open problem [6].

Here, we answer this question by showing that all high-
dimensional entangled states with fixed numbers of pho-
tons can be generated with linear optics and, in principle,
with a scalable architecture. That is, we show that universal
linear optical quantum computing (LOQC) is possible in
arbitrary dimensions. Key to this result are linear optical
schemes for the generation of heralded N-photon GHZ
entanglement in arbitrary dimension d. Combining these
schemes with previous results on Bell measurements with
photonic qudits to fuse d-dimensional GHZ states, and
techniques from qubit LOQC architectures, we obtain a
scheme for universal measurement-based quantum com-
puting with photonic qudits.
Heralded high-dimensional GHZ entanglement.—

The GHZ states for N photons, each encoding a
qudit of dimension d, are defined as jGHZðN; dÞi ¼P

d−1
k¼0 jki⊗N=

ffiffiffi
d

p
, and represent the initial resource states

in an architecture that builds cluster states of qudits for
universal quantum computing. Our scheme to generate
these states, shown schematically in Fig. 1(a), consists of
single photon sources, linear optical elements, and photon-
number resolving detectors. Our scheme exploits the zero-
transmission law (ZTL) in discrete Fourier transform (DFT)
interferometers (previously investigated, e.g., for the veri-
fication of boson sampling protocols [19,25,26]). This law
is a generalization of the Hong-Ou-Mandel interference
that suppresses output coincidences from a balanced beam
splitter (two-mode DFT). The ZTL result states that,
if m single photons are sent in the m individual input
modes of an m-mode DFT, described by the unitary
Uj;k ¼ exp½jkð2πi=mÞ�= ffiffiffiffi

m
p

, then the output configura-
tions c⃗ with nonzero amplitude must satisfy
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Xm
i¼1

ci mod m ¼ 0: ð1Þ

The vector c⃗ has a number of elements given by the number
of photons, here m. Each element ci labels the ith photon’s
output mode, with modes indexed from 0 to m − 1. For
example, c⃗ ¼ ð0; 1; 1; 4Þ represents the configuration with
one photon in each of modes 0 and 4, two photons in mode
1, and zero photons in all remaining modes. The ZTL
condition is valid for any value of m.
To describe how the ZTL can be used to generate

GHZ states, we introduce a notation for the encoding of
individual qudits in the output modes of the DFT. Each
qudit of dimension d is encoded in a single photon
propagating through d optical modes (see, e.g.,
Refs. [7,8]). We will denote as X ⊂ f0;…; m − 1g the
set of Nd modes used to encode the N qudits, while its
complement X̄ ¼ f0;…; m − 1gnX (the remaining set of
m − Nd modes) represents all the auxiliary modes used for
heralding the desired state. Each of the N qudits is defined

via a set of d distinct modesQi ¼ fxðiÞ0 ; xðiÞ1 ;…; xðiÞd−1g ⊂ X ,

with xðiÞk ≠ xðiÞk0 if k ≠ k0, so that all the qudits fQig form a
partition of X . We say that the ith qudit is in the logical

state jkii if a single photon is present in mode xðiÞk , while all
other modes in the set Qi are vacuum.
For simplicity, we will focus on heralding configurations

where all the m − N auxiliary photons are detected in the
zeroth mode, and vacuum in the remaining heralding
modes X̄nf0g, as shown in Fig. 1(a). In this way, all
auxiliary photons give zero contributions to the sum in
Eq. (1), and only contributions from the N encoding
photons remain. Under this condition, we can write the
set of all possible remaining N-photon output states
induced by the heralding on X̄ and the ZTL as

BX ¼
�
b⃗k ¼ ðyk;1; yk;2;…; yk;NÞj

XN
i¼1

yk;i mod m ¼ 0; yk;i ∈ X
�
: ð2Þ

Here b⃗k are the output configurations allowed by the ZTL,
indexed by k, and yk;i represent each photon’s output port
for that configuration, as in Eq. (1).
We will now show that the following conditions

for the set BX are sufficient (but not necessary) to obtain
a GHZ state at the output: (1) BX contains exactly d
configurations, i.e., jBX j ¼ d. (2) BX forms a partition of
X . (3) For all b⃗k ∈ BX ,

P
N
i¼1 yk;i ¼ m. This is a slightly

more restrictive form of the ZTL. The first step is to
show that, if these three conditions are satisfied, we
can specify N well-defined photonic qudits, given by

FIG. 1. (a) General schematic for the heralded generation of
N-photon d-dimensional GHZ states via a DFT interferometer.
The scheme uses the set of Nd modes X to encode the qudits and
the complementary set of m − Nd modes X̄ are detected for
heralding. It requires a single number resolving detector for
heralding in the zero-th output mode, while the rest of modes in X̄
use threshold detectors heralding the vacuum. (b) Optimized
solution for the heralded generation of Bell states (N ¼ 2) in
arbitrary dimension, requiring m ¼ 2dþ 1. The correspondence
between the optimal modes and the associated computational
states of each qudit is shown. (c) Optimized solution for the
heralded generation of three-photon three-dimensional GHZ
states using the DFT scheme, requiring m ¼ 25. Output modes
associated to the three different qudits are highlighted with
different colors, and the associated qudit computational states
are labeled.
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Qi ¼ fxðiÞk ¼ yk;igk¼0;…;d−1. Note that, because the sets
fQig are given by a simple transposition of indices of
BX , condition 2 immediately implies that fQig also forms a
partition of X . Moreover, conditions 1 and 2 imply that all
yk;i are different, i.e., yk;i ≠ yk0;i0 if k ≠ k0 or i ≠ i0. In fact,
because BX contains exactly d configurations of N ele-
ments, if any two yk;i were identical then necessarily

j ∪k b⃗kj < Nd, and thus BX could not form a partition
of X , given that jX j ¼ Nd. Finally, from their definition
and the fact that the elements yk;i are all different, it
immediately follows that each set Qi contains exactly one
output photon. Our specification for the sets fQig therefore
defines N disjoint sets of d different modes, each set
containing exactly one photon, and thus provides a valid
encoding for the N qudits. We are now left to verify that the
state of the N qudits is in fact a GHZ state.
Note that, with the definition used for the Qi’s, the d

elements b⃗k of BX correspond to the logical N-qudit states
b⃗k ↦ jk; k;…; ki, k ∈ 0;…; d − 1. Because of the ZTL,
the total output state is therefore a superposition of the
states jk; k;…; ki. As shown in Supplemental Material 1
[27], condition 3 ensures that all amplitudes in such
superposition are uniform and nonzero, thus providing
the desired N-photon GHZ state in d dimensions.
General and optimized schemes.— The task of generat-

ing GHZ states for a given photon number N and
dimension d can now be reduced to a combinatorial number
theory problem: finding an integer number m and a set
X ⊆ f1; 2;…; m − 1g (0 is occupied for the heralding) so
that BX satisfies conditions 1-3. Solutions can be found for
any N and d. An example of such general solutions is given
by the set

X ¼ fNi−1gi∈½1;ðN−1Þd� ∪
�
m −

XN−2

j¼0

Njdþk

�
k∈½0;d−1�

; ð3Þ

with m ¼ ðNNd − 1Þ=ðNd − 1Þ, with details in
Supplemental Material 2 [27]. While this particular sol-
ution is highly suboptimal in the number of resources and
success probability, and likely not suitable for practical
implementations, it is general and shows that arbitrary N-
photon d-dimensional GHZ states can, in principle, be
generated with linear optics.
More efficient solutions can be found on a case-by-case

basis. For example, in the simple case with N ¼ 2, i.e.,
heralded generation of qudit Bell pairs, a solution for any d
can easily be found by taking m ¼ 2dþ 1 and
X ¼ f1; 2;…; 2dg. This gives BX ¼ fð1; 2dÞ; ð2; 2d −
1Þ;…; ðd; dþ 1Þg and qudit modes Q1 ¼ f1; 2…; dg,
Q2 ¼ f2d; 2d − 1…; dþ 1g, as shown in Fig. 1(b). The
success probability for the state generation is given by
dð2d − 1Þ!=ð2dþ 1Þ2d−1 (see Supplemental Material 1
and 6 for additional schemes for qudit Bell states [27]).

For small values of N and d, optimized solutions for
our heralded GHZ generation scheme can be found
numerically. For example, in Fig. 1(c) we report the
optimized solution for the case of heralded GHZ gene-
ration for ðN; dÞ ¼ ð3; 3Þ, which requires m ¼ 25. The list
of modes used for the encoding in this case is
X ¼ f1; 2; 3; 4; 5; 9; 13; 16; 22g, and the only three-
element combinations (including repetitions) that sum
up to multiples of m, given by BX ¼ fð1; 2; 22Þ;
ð3; 9; 13Þ; ð4; 5; 16Þg, satisfy conditions 1-3. This therefore
provides heralded GHZ generation for the three qudits
defined in the modes Q1 ¼ f1; 3; 4g, Q2 ¼ f2; 9; 5g,
Q3 ¼ f22; 13; 16g. Note that, at the output of the DFT,
adjacent modes associated to different qudits can be
interleaved; in such cases, a network of swaps is required
to separate the different qudits and address them individu-
ally. However, without further optimization, the three-
dimensional GHZ generation success probability remains
very small, approximately 10−10.
The main reason for low success probabilities is the use

of a single heralding pattern among exponentially many
possible outcomes. While the choice of a single heralding
pattern was done to simplify the treatment in the general
case of arbitrary N and d, for a given N and d many more
heralding patterns are likely to generate GHZ entangle-
ment. We show in Supplemental Material 3 [27] that these
(combinatorially many) valid heralding patterns can be
used, in conjunction with feed-forward operations and
balancing circuitry, to significantly improve the success
probability. For example, Monte Carlo simulations of the
ðN; dÞ ¼ ð3; 3Þ GHZ generation scheme of Fig. 1(c) show
that the success probability is boosted to approximately
10−4. This indicates that many orders of magnitude
improvements can be found through solution-specific
optimizations. We estimate that, with this optimization,
heralded (3,3) GHZ generation could be achieved at
0.7 kHz rates with state-of-the-art quantum photonic
hardware. Furthermore, in Supplemental Material 2 [27]
we report an algorithm to estimate optimized solutions for
larger values of N and d.
Constructing universal cluster states of qudits.—The

DFT-based schemes described above can be generalized to
generate a large class of N-photon states with dimension-
ality d, but at the cost of exponentially large resources when
increasing N (see Appendix 4 in the Supplemental Material
[27]). However, due to the heralded nature of the generated
high-dimensional entanglement, we can use these schemes
to adapt qubit-based LOQC techniques (e.g., multiplexing
and fusion operations [5,46]) to construct a high-
dimensional architecture that is scalable. Measurement-
based quantum computing (MBQC) [47] in linear optics
typically proceeds by connecting small entangled resource
states using probabilistic fusion gates [24], to build large
cluster states. Similarly, high-dimensional photonic GHZ
states can be used as building blocks to construct large
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high-dimensional cluster states for MBQC. Two recent
protocols for type-II fusion (destructive Bell state mea-
surements) of arbitrary dimensional qudits have been
proposed independently: Luo et al. [13] use unentangled
single photons and d − 2 ancillary photons; Zhang et al.
[48] use d − 1 Bell states. The success probability of both
fusion gates scales ≈1=d2.
As shown in Fig. 2, we can combine type-II high-

dimensional fusion operations with three-photon high-
dimensional GHZ generators in a modular approach to
build up universal cluster states of qudits. The square lattice
of qudits shown in Fig. 2(b) is an example of a cluster state
universal for high-dimensional MBQC [49,50]. Figure 2(a)
shows a module for the architecture, where multiple GHZ
states are fused together to link a single computational
photonic qudit to the rest of the lattice. Once such states are
built, universal measurement-based high-dimensional
quantum computing can be performed [47,49,50]: oper-
ations on the logical qudits encoded in the rows of the
lattice are performed via measurement and feed-forward,
with the output state encoded in the qudits of the last layer
of the lattice. Because the resource is universal, any pure
high-dimensional multiphoton state can be prepared as a
result of the computation up to arbitrary precision.
On the other hand, because both the GHZ generation and

the type-II fusion gates have low success probability, the
total probability to successfully generate high-dimensional
qudit cluster states can in general vanish quite rapidly when
increasing the number of qudits or the dimensionality.
Nevertheless, by adapting techniques already developed for
qubit-based loss-tolerant LOQC architectures, the approach
can, in principle, be made scalable and the total success
probability boosted to near unity [24,46,51,52]. For exam-
ple, because the GHZ generation is heralded, gate multi-
plexing can be used to render the production of GHZ states
near deterministic with a resource overhead that scales
approximately linearly with the generation success prob-
ability [46,53]. Repeat-until-success proposals provide a
flexible approach to correct for the limited success prob-
ability of the fusion gates, at the cost of requiring quantum

memories [24]. Moreover, if the fusion success probability
is improved above the percolation threshold of the lattice
used, ballistic architectures can be used to correct the
unsuccessful fusion gates directly on the generated lattice
without the use of quantum memories [46,51]. However,
this approach would likely require the use of lattices with
increased valency to bring the percolation threshold above
the current qudit fusion gate’s success rates [54]. In
addition, it may be possible to increase the success
probability of the qudit fusion gates by using additional
ancilla resources, as has been shown for qubits [55,56].
Robustness against photon distinguishability.—While

requiring additional resources compared to qubit-based
approaches, qudits can provide improved robustness to
noise, with potential benefits for quantum communication
and fault-tolerant quantum technologies [57–60]. Here, we
numerically analyze how distinguishability, an important
source of noise in quantum photonics, affects the multi-
photon high-dimensional entanglement generated using the
schemes proposed in Fig 1. We assume that all photons
have pure internal states such that they all share the same
value of pairwise indistinguishability jhψ ijψ jij2. Thus all
pairs of photons would exhibit the same Hong-Ou-Mandel
interference visibility. To determine the effect of distin-
guishability, we numerically reconstruct the simulated
output heralded state within the qudit space for different
values of indistinguishability jhψ ijψ jij2. The noisy state
generation is simulated using an approach by Tichy
describing multiphoton interference of partially distin-
guishable photons [61] (see Supplemental Material 7 for
details [27]). Because the number of photons involved in
the scheme increases rapidly with N and d, this simulation
quickly becomes intractable when increasing the heralded
state complexity. Nevertheless, for the scheme shown in
Fig. 1(b) with N ¼ 2 and low values of d, the simulation
remains tractable on a standard laptop.
For various levels of distinguishability, we show in

Fig. 3(a) the fidelity of the generated state to the ideal
qudit Bell state, and in Fig. 3(b) the logarithmic negativity
as a figure of merit to assess the generated entanglement.

(a) (b)

FIG. 2. Example of modular architecture for constructing universal cluster states from three-photon GHZ states with linear optics.
Each module, shown in (a), arranges three-photon GHZ state generators and fusion gates such that a single d-dimensional qudit is linked
to the four neighboring qudits in the universal square lattice in (b).
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The logarithmic negativity is an entanglement monotone
that upper bounds the distillable entanglement, which in
turn quantifies the amount of pure state entanglement that
can be extracted under local operations and classical
communication [62,63]. Distinguishability weakens the
interference governing the ZTL, and therefore both the
state fidelity and generated entanglement decrease when
the indistinguishability is reduced. However, while the
fidelity is always lower for higher dimensional states, the
negativity reaches zero at larger values of photon distin-
guishability for higher dimensions, as highlighted in the
inset of Fig. 3(b). This indicates that for increased dimen-
sionality, the generated entanglement can endure higher
levels of photon distinguishability, even if the number of
imperfect input photons is larger.
Discussion.—The large resource overheads of high-

dimensional LOQC could be compensated to some extent
by quantum error correction protocols that are more
efficient due to robustness to noise that increases with
qudit dimension. Furthermore, and similarly to the
improvements made in efficiency for qubit-based LOQC
[23,24,46], we expect our results to provide a first and
important step for developing high-dimensional LOQC
architectures closer to midterm technological capabilities.
For example, as detailed in Supplemental Material 3 [27],
by considering all valid heralding events in our GHZ

generation scheme for the particular case with d ¼ 3
[see Fig. 1(c)], the resource overheads for multiplexing
are reduced from Oð1010Þ to Oð104Þ, showing that enor-
mous improvements are possible via solution-specific
optimization. Crucially, this work proves that such solu-
tions can exist for any dimension.
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