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We describe an efficient and scalable framework for modeling crosstalk effects on quantum information
processors. By applying optimal control techniques, we show how to tune-up arbitrary high-fidelity parallel
operations on systems with substantial local and nonlocal crosstalk. As an example, we simulate a 2D
square array of 100 superconducting transmon qubits. These results suggest that rather than striving to
engineer away undesirable interactions during fabrication, we can largely mitigate such effects with
software through careful characterization and control optimization.
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Introduction.—The foremost obstacle to realizing prac-
tical quantum computing is its innate sensitivity to errors
and noise. One facet of the problem is the dichotomy
between the implementation of high-fidelity simultaneous
one-qubit and high-fidelity two-qubit gates. Fast two-qubit
gates require spatially or spectrally nearby qubits, which
reduces the constituent subsystems’ addressability because
a resonant pulse intended for one qubit can induce rotations
on the others [1,2]. Proposed architectures have typically
dealt with this crosstalk by attempting to maximize the gap
between qubits or by executing local operations asynchro-
nously [3–5]. The former solution requires the ability to
tune couplings or extra engineering, but the added com-
plexity can adversely impact coherence times and requires
additional control wires. In the latter approach, depending
on the extent to which the control fields affect neighboring
subsystems, the time overhead can be significant.
Crosstalk describes a broad range of effects that violate

one of two assumptions: spatial locality and independence
of operations [6–8]. Gates and other operations are
supposed to act on disjoint subsets of qubits. However,
unintended interactions can couple the qubits, producing
nonlocal correlated noise. Even if an operation has a
well-defined action on a particular subset of qubits, the
effective noise might depend on its context—what oper-
ations affect other qubits.
In this Letter, we introduce a scalable framework for

accurately modeling idle and operation crosstalk on experi-
mental devices. Our technique exploits the tensor product
structure of local (classical) crosstalk to efficiently express
its impact on gates. Through a perturbative expansion, we
extend our ideas to nonlocal (quantum) crosstalk and
capture its effects to arbitrary order. Provided there is a
sufficient degree of control, we can try to minimize the
effect of these errors. We illustrate our framework’s novel

applications through a series of simulations of parallel gates
on a square array of 100 superconducting transmon qubits.
In our first experiment, we apply gradient-based optimi-
zation to the experimentally significant problem of imple-
menting arbitrary elements of SUð2Þ⊗n on superconducting
transmon qubits. Despite substantial local crosstalk, we
show that error rates near the crosstalk-free limit are
possible with modern control hardware. We further show
how to tune-up simultaneous cross-resonance gates and,
again, obtain dramatically lower error rates. Our results
suggest that contrary to prevailing opinions [9–12], cross-
talk need not be a prohibitive limitation on noisy inter-
mediate-scale quantum (NISQ) era devices [13]. Higher
quality quantum information processors may be made
possible by using our techniques to better balance the
trade-offs in device fabrication and pulse design.
Background.—Prior work has often approached the

problem of implementing several operations on a collection
of qubits by breaking it into a temporally disjoint sequence
of gates. In contrast, Ref. [14] analyzed the problem of
driving two spins with a homogenous field in the setting of
NMR. However, it is unclear how to apply the method to
multilevel systems such as transmons or trapped ions.
Reference [15] studied how to drive two transmons coupled
to the same cavity suffering from spectral crowding with
simultaneous X or Y gates with rotation angles π and π=2
(X, Y, Z denote Pauli matrices). In either case, these
methods do not directly apply to many-qubit systems,
nor do they handle nonlocal correlations. It is our objective
to develop an efficient and systematic method for optimiz-
ing the implementation of nontrivial parallel operations
under general crosstalk.
What crosstalk acts on physical qubits during idling or

the implementation of gates (as opposed to preparation or
measurement crosstalk), and how can we efficiently
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simulate and consequently, try to mitigate it? It is natural to
classify crosstalk as either local or nonlocal [7]. Local
crosstalk can arise when a semiclassical drive field interacts
with several qubits, causing unitary errors on supposedly
idle qubits, but not entangling independent subsystems.
Nonlocal crosstalk creates correlations that are nonfactor-
izable over system qubits and may originate from, for
example, the residual static coupling between two qubits or
miscalibration.
Quantifying and reducing crosstalk requires a figure of

merit. Depending on the application, it makes sense to
evaluate the average fidelity of one-qubit or two-qubit gates
rather than the fidelity per clock cycle. Our ideas work in
either case, but we focus on the former situation. Local
error measures relate directly to fault-tolerance thresholds,
are easier to estimate experimentally, and are more
common in the literature. We show that the average local
fidelity is especially simple to approximate.
Local crosstalk.—Although local crosstalk (typically)

produces correlated noise, it can be factorized and simu-
lated efficiently on a digital computer. The induced
correlations are classical and do not entangle the individual
subsystems. We model local crosstalk via the Hamiltonian

Hðt; x⃗Þ ¼
X
k

Hkðt; x⃗Þ: ð1Þ

Each termHk acts exclusively on subsystem k, and x⃗ denotes
shared classical parameters that result in crosstalk. The
vector x⃗ may, for example, contain the phases and ampli-
tudes that specify drive fields. The average process fidelityΦ
[16,17] between a target operationU ¼ U1 ⊗ … ⊗ Un and
the noisy implementation Ũ ¼ Ũ1 ⊗ … ⊗ Ũn, where
Ũk ¼ T exp½−i R dτHkðτ; x⃗Þ�, can be expressed as

ΦðU; ŨÞ ¼
Y
k

ΦðUk; ŨkÞ: ð2Þ

The equation holds more generally when fŨkg are com-
pletely positive trace-preserving maps, for example, when a
dissipative process also affects the system or the control
parameters fluctuate over time.
Nonlocal crosstalk.—Unlike local crosstalk, a digital

computer cannot usually exactly simulate a large system
affected by nonlocal crosstalk. Thus, we develop a pertur-
bative technique for simulating nonlocal crosstalk. Our
approximation scheme characterizes a noise channel E by
estimating some of the associated Pauli error rates fpPg.
The Pauli-twirled noise channel is

EPðρÞ ¼ 1

jPnj
X
P∈Pn

P†EðPρP†ÞP ð3Þ

¼
X
P∈Pn

pPPρP†; ð4Þ

where Pn is the Pauli group on n qubits. These error rates
provide a partial description of the noise affecting a
quantum system. On large experimental devices, we can
scalably estimate the parameters in a way that is robust to
state preparation and measurement errors [18]. We might
also combine the quantities to calculate holistic measures of
device performance, such as the average two-qubit fidelity
or global fidelity.
It is helpful to sketch our approach using a graphical

model of the noise (see, e.g., Ref. [19] for basic graph
theory definitions and Supplemental Material [20] for more
details). We construct a graph G where each node is a
strongly interacting subsystem during an operation of
interest, such as a qubit during a single-qubit gate or a
two-qubit pair entangled by a cross-resonance interaction
(see Supplemental Material [20] for concrete examples
using our approach). The entire target operation is factor-
izable over the tensor product space partitioning defined by
the nodes. Edges denote nonlocal crosstalk that couples
subsystems, and we only allow two-body coupling. We
impose the constraint that the graph has limited connec-
tivity (in a spatial spectral sense) since our approach relies
on simulating subsystems. The constraint is satisfied in
contemporary architectures where a majority of nodes have
a degree of at most four.
A pair of positive integers ðd; oÞ specifies the expansion

order of the noise approximation; d designates the “envi-
ronment” distance and o the maximum component order.
We consider the set Go of all components of all induced
subgraphs of G such that the order of every component is
less than or equal to o, and any component with an order
less than o has the same edges as in G. I.e., we do not look
at induced components with order less than o. The idea of
the simulation scheme is to calculate the Pauli errors that
occur on each component.
We approximate the behavior of a component C ∈ Go by

evolving it along with all vertices of distance at most d,
generating a map EC;d. Next, we compute the diagonal fC;d
of the Pauli-Liouville representation of the channel. A
Walsh-Hadamard transformationW relates fc;d to the Pauli
probability vector p̃C;d, with fC;d ¼ Wp̃C;d [18]. The
vector p̃C;d is the error probability distribution for a
Pauli-twirled copy of EC;d. Marginalizing the error distri-
bution over the environment produces an estimate of the
local error distribution p̃C on the target component. After
calculating the marginal distributions for all of the compo-
nents in Go, we can use the theory of probabilistic graphical
models [22] to construct an estimate of the entire Pauli error
distribution up to some specified error weight. By truncat-
ing the distribution at some error weight, the size of the
distribution scales polynomially in the number of qubits.
In practice, including the nearest environmental nodes is

sufficient to compute the local error distribution with high
relative precision (see Supplemental Material [20] for more
details).
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Single-qubit gate engineering.—We review a typical
implementation of single-qubit operations on transmons
(see, e.g., [23,24] for more details.) A local oscillator acts
as a single tone microwave source outputting a constant
signal cosðω0tÞ that is shaped by an arbitrary waveform
generator via an in-phase and quadrature (IQ) mixer. A
good description of a transmon qubit is an anharmonic
oscillator driven by microwave pulses. In the lab frame, the
relevant Hamiltonian is

H ¼ ωn̂þ α

2
ðn̂ − 1Þn̂þ ΩðtÞ cosðω0t − γÞðâþ â†Þ; ð5Þ

where â is the annihilation operator of the oscillator,
n̂ ¼ â†â, α is the anharmonicity, γ is the drive phase, ω
is the oscillator’s resonant frequency, ΩðtÞ specifies the
drive envelope, and we set ℏ ¼ 1.
The lowest two energy levels form the qubit sub-

space. After making a rotating wave approximation
(RWA) and moving into the rotating frame of the qubit,
the Hamiltonian projected into the qubit subspace is [25]

H ¼ 1

2
ΩðtÞe−i½γþðω0−ωÞt�j0ih1j þ H:c: ð6Þ

To see how the control induces single-qubit gates, consider
a resonant pulse (ω ¼ ω0). We also set the relative strength
of the 0-1 transition to the 1-2 transition to 0, which
corresponds to an ideal sufficiently long pulse. The control
generates X and Y gates by modulating the coupling
between the zero and one states, while the drive phase
fixes the rotation axis in the XY plane, and the pulse area
sets the rotation angle. Rotations about the remaining Z
axis correspond to a change in the relative phase between
the states. Rather than manipulating the transmon’s state, it
is equivalent to rotate the control with respect to the state,
realizing a virtual Z gate [26–28]. We accomplish this
physically by adding a phase offset to all subsequent gates.
A pulse with an area

R
dtΩðtÞ ¼ π=2 and a relative phase

offset γ generates the unitary VðγÞ ¼ Z−γXπ=2Zγ with the
notation Aθ ¼ expð−iθA=2Þ. Combining two of these
phase-offset π=2 pulses and a final virtual Z realizes any
element of SU(2) [28].
Consider the problem of implementing an arbitrary

element of SUð2Þ⊗n concurrently on an ensemble of qubits
where their respective drive fields weakly interact with
other qubits. The semiclassical Hamiltonian governing
transmon k with local drive crosstalk is

Hk ¼ ωkn̂þ αk
2
ðn̂ − 1Þn̂

þ
X
j

βjkΩjðtÞ cosðω0
jtþ ϕj þ θjkÞðâþ â†Þ: ð7Þ

The parameters β and θ characterize the crosstalk affecting
the system. We focus on the case where each transmon has
a local drive. The crosstalk parameters are n × n matrices,

and we can set βkk ¼ 1 and θkk ¼ 0 without loss of
generality by modifying Ωk and ϕk. These constraints lead
us to interpret β as the relative drive strength, and θ as the
phase lag. Experimental data support the model [29–31],
and one can efficiently estimate the parameters with
standard Rabi and Ramsey experiments.
For example, we simulate a system of n ¼ 100 trans-

mons that evolve under (7) and include the first three
energy levels. The qubits are on a square grid with βjk
nonzero only for neighboring qubits. Qubits have a random
frequency with ωk=2π ∼N ð3 GHz; 500 MHzÞ, where
N ðμ; σÞ is a normal distribution centered at μ with a
standard deviation of σ. All qubits have random anharmo-
nicities: αk=2π ∼N ð−330 MHz; 50 MHzÞ. In each itera-
tion of the experiment, the target gate is chosen randomly
from SUð2Þ⊗n. The crosstalk phase lag parameter θjk are
sampled randomly from the interval ½0; 2πÞ, and we draw
βjk from a normal distribution centered at zero. There are
two discrete periods of successive evolution, each taking
time tπ=2. It is necessary to pick pulse shapes. On the one
hand, we want pulses that yield error rates near the
decoherence limit for short gate times. On the other hand,
there are experimental realities, such as power-bandwidth
constraints and the degree of calibration needed to
implement complicated pulses accurately. Balancing these
constraints, we pick Gaussian pulses with stdΩðxÞ ¼ tπ=2=4,
and half-derivative derivative removal by adiabatic gate
(DRAG) corrections ΩðyÞ ¼ − _ΩðxÞ=2α [32–34].
Figure 1 shows the average single-qubit process infidelity

ravg ¼ 1 − hΦki as a function of tπ=2. Green diamonds
denote the raw infidelity for a crosstalk-free system
(βjk ¼ δjk, where δjk is the Kronecker delta). The blue
markers are infidelities obtained using the crosstalk-free
control scheme but with various strengths of drive crosstalk.
The red markers are infidelities obtained with optimized
control and the same drive crosstalk as the blue markers. We
optimize control pulses with the method of Ref. [35].
Applying the protocol requires the selection of appropriate
optimization parameters. Sticking to our simple control
ansatz, we tune the overall magnitude of the resonant ΩðxÞ

quadrature, off-resonant ΩðyÞ quadrature, and the carrier
signal phase ϕ, for a total of 7n parameters. We observe
approximately 2 orders of magnitude improvement in the
infidelity with our crosstalk minimization technique.
In real experimental devices, decoherence significantly

reduces the average error rates. Moreover, decoherence
errors grow with time, whereas control errors typically
decrease. These contrasting effects imply that there is an
optimal gate time that minimizes their combined errors.
We repeat the simulation implementing SUð2Þ⊗n with
decoherence added to the model. Table I presents data
showing the potential benefit of our methods.
Two-qubit gate engineering.—We continue our simula-

tions using the ideal system of fixed-frequency transmons
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and the parameter values specified above. Our aim is to
implement parallel cross-resonance (CR) gates [30,36–39],
which are equivalent to CNOTs up to single-qubit oper-
ations. Constant capacitive coupling provides a mechanism

for implementing entangling operations. Assuming equal
coupling between all neighboring qubits in the system, the
corresponding interaction Hamiltonian is

Hint ¼
X

hj;ki¼1

Jjkðaja†k þ a†jakÞ; ð8Þ

where hj; ki ¼ 1 denotes a sum over all adjacent qubit
pairs. The entire system evolves under Hint þ

P
k Hk.

The basic idea of the CR effect is that if we define the
qubits in a dressed basis, local microwave drive fields drive
both single and two-qubit gates. For two ideal coupled
qubits, in the dressed basis, a drive applied to qubit 1 at the
frequency of qubit 2 yields the effective Hamiltonian [37]

Hd ¼ ΩðtÞ
�
X1 −

J
Δ
Z1X2

�
; ð9Þ

where Δ ¼ ω1 − ω2 is the difference of qubit frequencies
and we made an RWA. The subscripts on the Pauli gates
specify the affected qubit. Although we can decouple the
direct qubit coupling, higher levels of the transmon lead to
additional terms in the effective Hamiltonian [30]. We can
use the Z1X2 term to generate a maximally entangling gate.
Again, we simulate a system of n ¼ 100 transmons

on a grid and include the first three energy levels of each.
We group adjacent qubits in pairs and try to implement
50 simultaneous maximally entangling gates using the
CR effect. Our qubits have eight distinct frequencies
3.0; 3.1;…; 3.7 GHz to ensure each CR pair is addressable.
We set the frequencies so that no two neighbors of one
qubit have the same frequency. Unlike in the first example,
if certain qubit frequencies overlap the pair becomes
extremely hard to manipulate independently. The target
CNOT equivalent is determined using Cartan’s KAK decom-
position [40] and is invariant to local operations. The qubit
coupling strength matrix J is symmetric and random with
Jjk=2π ∼N ð3.8 MHz; 1 MHzÞ. We realize qubit control
with the same drives as above but with variable drive
detuning and phase offset. We independently parametrize
the resonant ΩðxÞ and off-resonant ΩðyÞ control envelopes
with the first three Hanning window functions

ΩHðtÞ ¼
X3
k¼1

ck

�
1 − cos

�
2πkt
tCR

��
: ð10Þ

There are a total of 8n parameters that determine the n drive
fields.
Figure 2 shows the average two-qubit process infidelity

of each entangling gate as a function of the gate duration
tCR. We compute all points with optimized pulse para-
meters [35] but under different system models. Red
diamonds denote the infidelity obtained using a drive-
crosstalk-free model and no undesirable J coupling. The
blue squares are infidelities calculated using the crosstalk-
free optimal control but with added drive crosstalk

TABLE I. Data highlighting a dramatic reduction in the average
single-qubit process infidelity for a simulation with realistic
decoherence on a square array of 100 qubits and various levels of
cross talk (stdβjk). We model the same system considered in
Fig. 1, but with T1 ∼N ð40 μs; 5 μsÞ for each qubit, and
T2 ¼ 3T1=2. Naturally, there is an optimal gate time that
minimizes the combined incoherent (increasing) and coherent
(approximately decreasing) effects. We optimize the controls for
tπ=2 ¼ 1; 2;…; 50 ns. The “Original” column corresponds to the
optimal tπ=2 without control tune-up. For all values of stdβj;k, ravg
is minimized at tπ=2 ¼ 2 ns. On contemporary experimental
devices, tπ=2 ¼ 2 ns may exceed accessible bandwidths, so we
also report ravg for tπ=2 ¼ 5 ns.

Crosstalk Original Opt., tπ=2 ¼ 2 ns Opt., tπ=2 ¼ 5 ns
stdβjk ravg ravg ravg

0.05 6.02 × 10−4 1.00 × 10−4 1.86 × 10−4

0.1 7.13 × 10−4 1.03 × 10−4 1.91 × 10−4

0.25 2.13 × 10−3 1.15 × 10−4 1.84 × 10−4

0.5 1.77 × 10−2 1.07 × 10−4 1.81 × 10−4

FIG. 1. Plots illustrating a significant improvement in the
average single-qubit process infidelity as a function of the time
for a π=2 gate (the total simulation time is 2tπ=2). There are 100
qubits in a square 2D array, and each qubit implements a random
element of SU(2) via two π=2 pulses with intermediate phase
offsets. The red diamonds denote the infidelity of the qubits with
half-derivative DRAG corrections and no crosstalk. The blue
points are infidelities obtained under the same control with
crosstalk. Circles, squares, and triangles denote several relative
crosstalk strengths βij, that are sampled from a normal distribu-
tion N ð0; σÞ with standard deviations σ ¼ 0.05, σ ¼ 0.1, and
σ ¼ 0.25, respectively. The green markers have identical cross-
talk as their blue counterpart, but with optimized control
parameters.
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(σ ¼ 0.1) and nonlocal coupling. The green triangles are
infidelities obtained with controls tuned up under the
crosstalk model. We approximate the nonlocal crosstalk
effects with d ¼ 1. The deviation caused by including
additional neighbors is unresolvable on the plot.
Conclusion.—We have described techniques to efficiently

model and minimize crosstalk that occurs during qubit idling
and gates. Compared to other quantum control methods such
as dynamical decoupling [41], which attempts to echo out
undesirable interactions, we change parameters so the effects
do not appear in the first place. Our results show how to
mitigate such effects on transmons using a fast control tune-
up procedure on a digital computer. We hope that these
methods aid in understanding the role of crosstalk on NISQ
devices and validate improved pulse shapes. We plan to
extend our simulation capabilities to other platforms such as
trapped ions and apply our methods to improve the perfor-
mance of experimental platforms.
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