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We observe monopole oscillations in a mixture of Bose-Einstein condensates, where the usually
dominant mean-field interactions are canceled. In this case, the system is governed by the next-order Lee-
Huang-Yang (LHY) correction to the ground state energy, which describes the effect of quantum
fluctuations. Experimentally such a LHY fluid is realized by controlling the atom numbers and interaction
strengths in a 39K spin mixture confined in a spherical trap potential. We measure the monopole oscillation
frequency as a function of the LHY interaction strength as proposed recently by Jrgensen et al. [Phys. Rev.
Lett. 121, 173403 (2018)] and find excellent agreement with simulations of the complete experiment
including the excitation procedure and inelastic losses. This confirms that the system and its collective
behavior are initially dominated by LHY interactions. Moreover, the monopole oscillation frequency is
found to be stable against variations of the involved scattering lengths in a broad region around the ideal
values, confirming the stabilizing effect of the LHY interaction. These results pave the way for using the
nonlinearity provided by the LHY term in quantum simulation experiments and for investigations beyond
the LHY regime.
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The advent of well-controlled mixtures of quantum
gases with tunable interaction strengths has enabled
fascinating insights beyond the mean-field description
of such systems. This is particularly important for strongly
interacting systems of current interest, where the mean-
field description typically breaks down as higher-order
effects become important. Most prominently, the next-
order Lee-Huang-Yang (LHY) correction describes the
effect of quantum fluctuations on the ground state energy
of a bosonic quantum gas [1], and its effect has been
observed in several experiments [2–6], emphasizing its
importance in describing systems beyond the mean-field
regime.
The ability to tune the interaction strength is especially

useful in cases with competing interactions, such as two-
component quantum mixtures in which both inter- and
intracomponent interactions are relevant. Here, the LHY
contribution to the energy functional has been extended to
the case of homonuclear bosonic mixtures [7] and recently
an effective expression was derived for the heteronuclear
case [8]. In particular, the influence of LHY physics can be
observed more readily by tuning the interactions such that
other contributions to the energy density are suppressed.
This approach enables the formation of self-bound droplets
stabilized by the repulsive LHY energy contribution [9],
which have been observed and investigated in homonuclear
[10–13] and heteronuclear [14] bosonic mixtures. Similar
observations have been made in dipolar quantum gases
[15–18], culminating in the observation of supersolid
behavior in these systems [19–21].

Here, we consider a quantum mixture in which the
mean-field interactions cancel exactly such that inter-
actions in the mixture are governed primarily by the
LHY correction [22]. In practice, this can be achieved
utilizing a two-component Bose-Einstein condensate
(BEC) characterized by scattering lengths aij between
components i and j. For scattering lengths δa ¼ a12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p ¼ 0 and densities n2=n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11=a22
p

, the mean-
field contributions to the energy functional vanish, and the
resulting LHY fluid can be characterized by measuring its
monopole oscillation frequency, which differs significantly
from that of a single-component BEC [22].
In this Letter we experimentally investigate the collective

excitations of such a LHY fluid in a 39K spin mixture. We
measure the monopole oscillation frequency depending on
the strength of the LHY interaction and its magnetic field
dependence in the vicinity of the δa ¼ 0. To evaluate the
results, we perform detailed simulations of the system
including the effect of inelastic losses and the preparation
sequence of the mixture. Throughout the investigated
region we find good agreement between experimental
observations and theory, demonstrating a detailed under-
standing of the LHY fluid.
To realize a LHY fluid experimentally, we employ

the jF ¼ 1; mF ¼ −1i≡ j1i and jF ¼ 1; mF ¼ 0i≡ j2i
states of the lowest hyperfine manifold of 39K, which
offer favorable Feshbach resonances for realizing δa ¼ 0

[9–11,22]. Based on models for the scattering lengths
presented in Refs. [12,23,24] we find that the system
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fulfills δa ¼ 0.0ð3Þ a0 at 56.83(2) G with a11 ¼ 33.3ð3Þ
a0, a22 ¼ 84.2ð3Þ a0, and a12 ¼ −52.97ð1Þ a0, where a0 is
the Bohr radius. Given these scattering lengths, the require-
ment for the relative densities is n2=n1 ¼ 0.629ð3Þ corre-
sponding to ∼40% of the total atom number in the j2i state.
In practice, the experiment starts from a nearly pure BEC

in the j1i state [25] trapped in a spherically symmetric
harmonic potential. The employed optical dipole trap
(ODT) is composed of a beam along each Cartesian axis
[Fig. 1(a)], allowing the realization of almost identical trap
frequencies ω0 in all directions. The initial BEC in the j1i
state is prepared at the target magnetic field in the vicinity
of δa ¼ 0. Subsequently, the measurement is initialized by
transferring part of the atoms to the j2i state using a radio-
frequency (rf) pulse tuned to the bare atomic transition.
Because of the sudden change in the interaction strengths,
the system starts to contract and strong monopole oscil-
lations are initialized. This preparation method is necessary
because inelastic losses of atoms in the j2i state limit the
lifetime of the mixture [10–13]. Afterwards, the mixture is
held for a variable evolution time before release from the
trap and subsequent absorption imaging. During time of
flight (TOF), the states are separated by applying a
magnetic field gradient, which enables the resulting cloud
profiles to be evaluated separately [Fig. 1(b)]. Note that

imaging the clouds after TOF results in a phase shift of π
compared to the in-trap oscillations since the momentum
distribution is observed.
For each evolution time, the cloud profiles are fitted

using a Thomas-Fermi profile and the cloud radii along the
y and z directions are extracted. An example of such a
measurement is shown in Figs. 1(c) and 1(d), where the
cloud radii feature large amplitude oscillations as a con-
sequence of the experimental preparation method. For both
states, the y and z radii oscillate in phase, confirming that
the oscillations are monopolar. Moreover, the two clouds
initially oscillate jointly as expected for a LHY fluid, which
can be described in a one-component framework [22]. With
increasing evolution time, however, inelastic losses of
atoms in the j2i state result in the appearance of small
phase differences and deviations from pure sinusoidal
behavior. Because of these losses, we use the radius of
the cloud in the j1i state for the further evaluation because it
provides more reliable results.
The large oscillation amplitude and inelastic losses

require a detailed theoretical analysis, and we simulate
the experiment [26,27] using two coupled Gross-Pitaevskii
equations including the LHY contributions [7,9]. We first
calculate the ground state of a pure BEC in the j1i state at
the target magnetic field. The fast transfer is then modeled
by assuming that both components start in the calculated
ground state wave function, but with properly adjusted
atom numbers and scattering lengths. In agreement with
experiment, this results in monopole oscillations of large
amplitude. Inelastic losses due to three-body recombination
are included using imaginary terms corresponding to the
relevant loss channels (Supplemental Material [28]).
This simulation allows us to quantify the monopole

oscillation frequency as a function of the dimensionless
parameterU ¼ N3=2ja12=ahoj5=2 with total atom numberN,
harmonic oscillator length aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω0

p

, and mass m.
This parameter corresponds to the ratio of the LHY inter-
action energy to the kinetic energy and thus characterizes
the interaction strength of the LHY fluid [22]. Figure 2(a)
shows simulated cloud radii forU ¼ 1.2 including inelastic
losses based on the three-body loss coefficients given in
Refs. [11,12]. Similar to the experiment, the two compo-
nents initially contract and start to oscillate jointly. As the
density increases, the losses in the j2i state set in, resulting
in a cascading loss of atoms coinciding with the minima of
the radii [Fig. 2(b)], leading to a decay of the oscillations.
Because the losses primarily affect atoms in the j2i state,
the system is displaced away from the ideal density ratio
n2=n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11=a22
p

, resulting in increasing mean-field
interactions. This leads to an additional repulsion of atoms
in the j1i state, which explains the increasing offset and
amplitude visible in their cloud radius. As a consequence,
the resulting oscillation is determined both by the initial
evolution, governed by the dominant LHY correction, and
the later evolution, where the mean-field contributions

(a) (c)

(b) (d)

FIG. 1. (a) Schematic representation of the experiment showing
a LHY fluid undergoing monopole oscillations in a spherical
potential composed of three red-detuned laser beams. (b) Typical
absorption image after time of flight (TOF) during which atoms in
states j1i and j2i are separated by a magnetic field gradient. (c),
(d) Extracted BEC radii of atoms in states j1i (c) and j2i (d) after
28 ms TOF as a function of evolution time. The radii along the y
and z directions are shown as blue dots and red triangles,
respectively, and the gray lines are fits of Eq. (1) to the mean
radius. The data were recorded for ω0 ¼ 2π × 113.1ð6Þ Hz and
N ¼ 2.3ð3Þ × 104 corresponding to U ¼ 0.5ð1Þ.
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become relevant and the system deviates from a pure
LHY fluid.
To capture these effects, we fit a model function to the

simulated radius r as a function of evolution time t,

rðtÞ ¼ r0 þ stþ A sinðωtþ ϕÞ expð−t=τÞ: ð1Þ

Here, r0 is an offset radius, s is the slope, A is the oscillation
amplitude, ω is the angular frequency, ϕ is a phase offset,
and τ is the time constant describing the growth or decay of
the oscillations. Note that a small frequency chirp could
arise during the evolution time due to the increasing mean
field interactions. In our simulations, however, we do not
observe a significant chirp and therefore neglect it. As a
result, the extracted frequency ω describes the average
oscillation frequency within the data range. Even though
the simulated radius deviates from a regular sinusoidal
in its extrema as shown in Fig. 2(a), Eq. (1) captures the
oscillation frequency well.
Figure 2(c) shows the simulated monopole oscillation

frequency of atoms in the j1i state as a function of the LHY
interaction strength, with and without inelastic losses. For
comparison, the oscillation frequency of the LHY fluid in
the low-amplitude limit [22] and the noninteracting limit
are shown. For low interaction strengths, all results includ-
ing the LHY correction follow a common rising trend;
however, our simulations quickly deviate from the low-
amplitude result showing a pronounced reduction in
frequency as a consequence of the large oscillation

amplitudes. Furthermore, the effect of inelastic losses
becomes apparent as an additional decrease of the oscil-
lation frequency, settling at ω=ω0 ∼ 2.18 for the inves-
tigated trap [35]. Comparing the simulated results to the
noninteracting limit, it is clear that the LHY correction has
considerable influence on the oscillatory behavior, even
under the influence of inelastic losses. Based on this
thorough theoretical analysis, a comparison with our
experimental results is now possible.
In a first set of experiments, we investigate the depend-

ence of the monopole frequency on the LHY interaction
strength. We follow the experimental procedure outlined
above, preparing the initial BEC at the magnetic field
corresponding to δa ¼ 0 and initialize the mixture using a
rf pulse of 1.3 μs duration, which realizes the required
density ratio. This pulse length was chosen based on Rabi
oscillation measurements using cold thermal clouds. To
scan the LHY interaction strength, we adjust the total
number of initial BEC atoms by varying the loading
time of 39K in the dual-species magneto-optical trap [25].
The resulting oscillations yield measurements similar to
Figs. 1(c) and 1(d) and we extract the oscillation frequency
by fitting Eq. (1) to the mean of the cloud radii in the y and
z directions as a function of evolution time (Supplemental
Material [28]).
Figure 3 shows experimental results for a range of

trap frequencies together with the simulated results for
ω0 ¼ 2π × 113.6 Hz also shown in Fig. 2. Because the

(a)

(b)

(c)

FIG. 2. Results of the dynamical two-component simulations.
(a),(b) Simulated radii and atom numbers for a LHY fluid
including inelastic losses for ω0 ¼ 2π × 113.6 Hz and N ¼ 4 ×
104 corresponding to U ¼ 1.2. Results for atoms in states j1i and
j2i are shown as solid orange and dashed purple lines, respec-
tively. (c) Extracted oscillation frequencies of atoms in the j1i
state as a function of LHY interaction strength. Results with and
without inelastic losses are shown as blue circles and green
squares, respectively. The low-amplitude limit is shown as a red
line and the noninteracting limit is shown as a dashed black line.

FIG. 3. Observed monopole oscillation frequency depending
on interaction strength of the LHY fluid for spherical traps with
ω0 ¼ 2π × 113.1ð6Þ Hz (circles), 113.7(1) Hz (squares), 115.3
(4) Hz (diamonds), 111.1(3) Hz (pentagons), and 110.9(5) Hz
(triangles). Simulated results calculated for ω0 ¼ 2π × 113.6 Hz
including inelastic losses are shown as a blue line. The dash-
dotted and dotted lines correspond to simulations without losses
and a doubled loss coefficient for the channel involving three
atoms in the j2i state, respectively. The red line shows the
monopole frequency of an ideal LHY fluid in the low-amplitude
limit and the dashed black line shows the noninteracting limit.
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exact loss coefficients are not well known, we include two
limiting cases in our simulations: The upper limit of the
light blue area shows simulated results neglecting losses
entirely and the lower limit doubles the loss coefficient for
the channel involving three atoms in the j2i state, corre-
sponding to the upper limit given in Refs. [11,12]. For
comparison, we again show the low-amplitude limit of a
LHY fluid and the noninteracting limit. The experimentally
obtained oscillation frequencies display a clear upward
trend for U ≲ 1.5 and for increasing interaction strengths,
the oscillation frequency settles at a value determined by
the LHY interactions, the large oscillation amplitudes, and
inelastic losses. The overall agreement between theory and
experiment is very good and we conclude that the mixture
is indeed initially dominated by the LHY correction.
In a second set of experiments, we investigate the

stability of the monopole frequency of the system against
variations of the scattering lengths in the vicinity of δa ¼ 0.
The experiment is performed using a trap frequency ω0 ¼
2π × 110.9ð5Þ Hz and atom number N ¼ 9.4ð6Þ × 104

corresponding to U ¼ 4.1ð4Þ for δa ¼ 0. We vary the
magnetic field at which the mixture is prepared, effectively
varying δa, which is primarily influenced by a22, as a11 and
a12 are approximately constant within the investigated
magnetic field range. Note that we keep the length of
the rf pulse, which initializes the experiment, constant and
hence the ideal density ratio, n2=n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11=a22
p

is only
fulfilled initially at exactly δa ¼ 0. Within the range of
magnetic fields investigated, this corresponds to a minor
relative deviation from the ideal ratio by �10%, which is
included in the simulations.
Figure 4 shows experimentally observed and simulated

monopole oscillation frequencies as a function of magnetic
field and δa. When including the LHY correction, the
simulated oscillation frequency decreases slowly with
decreasing magnetic field. On the contrary, omitting the
LHY correction results in a rapid decrease of the oscillation
frequency toward the noninteracting limit of ω=ω0 ¼ 2
when approaching δa ¼ 0. Beyond this point, the system
collapses without the repulsive energy contribution from
the LHY correction.
For δa≳ 0 the experimental results agree very well with

the simulation including the LHY correction. For negative
δa the agreement is less good, which we attribute to the
sensitivity of the simulation to the exact loss coefficients for
increasingly attractive mean-field interactions. Here, the
losses almost completely remove the population in
state j2i, which reduces the validity of our simulation.
Nonetheless, the experimental data show that the LHY
correction vastly influences the monopole oscillation fre-
quency in a region around δa ¼ 0 and prevents the collapse
of the mixture for attractive mean-field interactions. This
agrees with the theoretical results of Jørgensen et al. [22],
who found that the LHY energy dominates the interactions
within a window around the ideal magnetic field. Note that

droplet formation in the regime δa < 0 is contained in our
theoretical analysis; however, our experimental atom num-
ber ratios are unfavorable for the observation of droplets.
In conclusion, we have experimentally realized a LHY

fluid and investigated its monopole oscillation frequency
depending on the LHY interaction strength, finding excel-
lent agreement with detailed simulations taking the exper-
imental preparation method and inelastic losses into
account. Our experimental results show that the monopole
frequency of the system is stable against variations of the
involved scattering lengths, displaying a large stability
region around δa ¼ 0, where the repulsive LHY interaction
prevents collapse of the mixture.
These results pave theway for further investigations of the

LHY dominated regime with interesting research directions
including higher-order collective modes and different trap
geometries. Furthermore, the LHY fluid provides a pro-
mising platform for observing even higher-order effects
such as the next-order correction to the energy of a Bose gas,
EWHPS [36,37]. On a broader scale, the realization of a LHY
fluid enables new quantum simulation experiments utilizing
the quartic nonlinearity, which governs the interactions of
the system. Such experiments would ideally be realized in a
system suffering less severely from inelastic losses than the
39K spin mixture considered here. Building on the results of
Minardi et al. [8], a promising candidate for such experi-
ments could therefore be the 41K-87Rb mixture, which was
recently found to support the existence of long-lived
quantum droplets [14].

FIG. 4. Monopole frequency of the spin mixture depending on
magnetic field and δa. Experimental results for ω0 ¼
2π × 110.9ð5Þ Hz and N ¼ 9.4ð6Þ × 104 corresponding to U ¼
4.1ð4Þ are shown as gray points. Simulated results using the same
parameters with and without including the LHY correction are
shown as blue circles and orange diamonds, respectively. The
shaded region indicates the magnetic field regime where δa ¼ 0
within 1σ. The horizontal errors on the experimental results are
smaller than the markers.
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