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A still widely debated question in the field of relativistic quantum information is whether entanglement
and the degree of violation of Bell’s inequalities for massive relativistic particles are frame independent or
not. At the core of this question is the effect that spin gets entangled with the momentum degree of freedom
at relativistic velocities. Here, we show that Bell’s inequalities for a pair of particles can be maximally
violated in a special-relativistic regime, even without any postselection of the momentum of the particles.
To this end, we use the methodology of quantum reference frames, which allows us to transform the
problem to the rest frame of a particle, whose state can be in a superposition of relativistic momenta from
the viewpoint of the laboratory frame. We show that, when the relative motion of two particles is
noncollinear, the optimal measurements for violation of Bell’s inequalities in the laboratory frame involve
“coherent Wigner rotations.” Moreover, the degree of violation of Bell’s inequalities is independent of the
choice of the quantum reference frame. Our results open up the possibility of extending entanglement-
based quantum communication protocols to relativistic regimes.
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Introduction.—Since its formulation in 1964, Bell’s
theorem has played a crucial role in quantum theory, both
for its role in understanding the foundations of the theory,
and for its ubiquitous applications in quantum technolo-
gies. In 2015, the first experimental loophole-free violation
of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequal-
ity was achieved [1–3], thereby showing that any locally
causal description of nature can be ruled out.
So far, Bell’s theorem has been verified for massive

quantum particles only in the nonrelativistic regime [4–10].
In the relativistic regime, entanglement and the violation of
Bell’s inequalities are still largely discussed in the liter-
ature, because of the fact that the spin degrees of freedom
lose their coherence due to entanglement with the momen-
tum degree of freedom [11]. If coherence were reduced in
the special-relativistic regime, protocols involving the
violation of Bell’s inequalities would break down for high
velocities of the particles, and the special-relativistic
corrections in the motion of the particles would result in
the introduction of noise. Related to this, there is still
ongoing discussion on whether the violation of Bell’s
inequalities depends on the reference frame: while some
authors claim that it is frame independent [12–19], others
found it to be frame dependent [20–31]. In fact, Lorentz
boosts of the full (spin and momentum) state lead in general
to a loss of coherence in the reduced spin states of two
particles such that different inertial observers seemingly do
not agree on the violation of the CHSH-Bell inequality.

Moreover, the theoretical tools to address it in full general-
ity are still to be developed since, with the notable
exception of Ref. [28], only quantum particles having a
sharp state in momentum have been considered. In
Ref. [28], the authors conclude that no maximal violation
of Bell’s inequalities is possible without postselecting on
the momenta of the two particles.
The core of the problem in addressing the question on the

violation of Bell’s inequalities in the relativistic regime lies
in the correct identification of a relativistic spin operator.
Several proposals for a relativistic spin operator have been
used in the literature to test the violation of Bell’s inequal-
ities [12–30]. As a result, it is unknown if one can devise a
Bell test for two Dirac particles moving in an arbitrary
superposition of relativistic momenta, which would result
in a frame-independent statement on the violation of the
CHSH-Bell inequality.
Here, we show that the CHSH-Bell inequality for

massive particles in the special-relativistic regime can be
maximally violated without postselecting on the momen-
tum of the particles, thereby solving the open problem. The
key to this result is the definition of a quantum reference
frame (QRF) transformation to the rest frame of a particle
moving in a quantum superposition of velocities
(momenta). Here, by QRF we mean a coordinate system
associated to a quantum (physical) system, whose state can
be in a superposition or entangled with other surrounding
systems. We show that the violation of the CHSH-Bell
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inequality is independent of the QRF chosen and that, in
particular, it can be maximally violated with a specific
choice of the initial state and by transforming appropriately
the observables from the rest frame to the laboratory frame.
Thanks to the operational identification of the observables
that maximally violate Bell’s inequalities in the relativistic
regime, the range of application of the technologies
utilizing tools from the field of Bell nonlocality, among
which quantum key distribution, quantum communication
complexity, and device-independent protocols (see
Ref. [32] for a comprehensive review) can be extended
to special-relativistic quantum particles. This paves the way
for future applications of these techniques in relativistic
quantum information.
In Ref. [33] a formalism was introduced to generalize

reference frame transformations to when reference frames
are in a quantum relationship with each other, i.e., one QRF
is associated to a quantum state from the point of another
QRF. In addition, this method enables one to “jump” into
the rest frame of a system moving in a superposition of
velocities. The formalism of Ref. [33] was generalized in
Ref. [34] to when the particle constituting the reference
frame moves in a superposition of relativistic velocities. By
introducing a transformation corresponding to the “super-
position of Lorentz boosts,” it was possible to define the

spin operationally in the special-relativistic regime [34], via
a relativistic Stern-Gerlach experiment. A review of the
results obtained when one relativistic particle with spin is
considered is given in Appendix A in Supplemental
Material [35]. The present work extends the methodology
of QRFs to more than one particle to solve the open
problem on the violation of Bell’s inequalities for a pair of
Dirac particles. We note that using the theory of steering
and entanglement for qubit states, as well as our repre-
sentation of the relativistic spin particle as a qubit [34], one
may extend the present schemes to the tasks of steering and
entanglement tests for relativistic quantum Dirac particles.
We consider two entangled particles, A and B, with spin

and moving at relativistic velocities. We indicate with A (B)
the external momentum degree of freedom (d.o.f.) of the
particle, and with sA (sB) the spin d.o.f. of the particle. For
simplicity, we consider the motion of each particle to be
one dimensional, but assume that the two particles, in
general, move on a plane, i.e., the velocities need not be
collinear. In general, this involves a Wigner rotation under
change of QRF.
Collinear motion.—The simplest situation is when the

two particles A and B move along the same spatial
direction, either parallel or antiparallel, from the point of
view of the laboratory frame C. In an arbitrary frame, in
which particles of a multiparticle system can have different
states of momenta, there is the problem of finding a spin
operator which can describe operationally the spin of each
particle. Using techniques from QRFs, we build a trans-
formation to the rest frame of one of the two particles, say
A. In this frame, the operators describing the spin of A
coincide with the usual Pauli operators, and the spin of
particle B can be described relative to them using a suitable
transformation from the rest frame of B to the one of A
using the results of Ref. [34].
We consider a momentum space representation of the

total Hilbert space, where the basis in the rest frame of
A is jaisA jπB;ΣðbÞiBsB jπCiC, with a referring to the spin
state of A, πB being the spatial part of the four-momentum
of particle B as seen from A, jπB;ΣðbÞiBsB≡
ÛBsBðLπB=mB

Þj0; biBsB , and b referring to the spin of the
Dirac particle B in its rest frame, as well as the relative
momentum πC between the laboratory C and the rest frame
of A. Notice that ÛBsBðLπB=mB

Þ is a unitary representation of
a pure Lorentz boost acting on particle B and the Lorentz
boost matrix is explicitly given in Appendix B in
Supplemental Material [35].
From the point of view of particle A, the total state is

described by

jψijAsABsBC ¼ jηisABsB jϕiC; ð1Þ

where

FIG. 1. In A’s perspective (above), the spin sB of the Dirac
particle B depends on its momentum since B is moving in a
superposition of two sharp relativistic velocities vB;1 and vB;2.
Moreover, the state of the laboratory C is in a superposition of
two relativistic velocities −v1 and −v2 relative to A. In the initial
QRF A, the spin sA and the Dirac particle B are entangled
(similarly to the singlet state jΨ−i ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

) which
is illustrated by the correlation between the dashed and between
the solid arrows. The QRF transformation Ŝ2 from A to C
coherently boosts the two Dirac particles by the velocity of C and
outputs the perspective of the laboratory (below). In the labo-
ratory frame C, the two Dirac particles A and B are entangled and
both spin sA and sB depend on the corresponding momentum
d.o.f. A and B.
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jηisABsB ¼
X
a;b

cab

Z
dμBðπBÞηðπBÞjaisA jπB;ΣðbÞiBsB ð2Þ

is an arbitrary state of spin sA and particle B and

jϕiC ¼
Z

dμCðπCÞϕðπCÞjπCiC ð3Þ

is an arbitrary state of laboratory C. Here, the

(1þ 1) momentum is πμk ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kc
2 þ π2k

q
; πkÞ and the

Lorentz-invariant integration measure is dμkðπkÞ ¼
dπk=ð4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kc
2 þ π2k

q
Þ, with k ¼ B;C. Hence, in A’s per-

spective the Dirac particle B moves in a superposition of
momenta and it can be entangled with the state of spin sA.
This situation is graphically illustrated in Fig. 1.
The QRF transformation Ŝ2: HjA

sA ⊗ HjA
BsB

⊗ HjA
C ↦

HjC
AsA

⊗ HjC
BsB

to the laboratory frame is a Lorentz boost
of particle B, controlled on the velocity of the laboratory
from the perspective of A, composed with the QRF trans-
formation ŜL introduced in Ref. [34] and reviewed in
Appendix A in Supplemental Material [35]. Specifically, it
is given by

Ŝ2 ¼ ŜLÛBsBðL−π̂C=mC
Þ; ð4Þ

where ŜL (defined in Appendix A in Supplemental Material
[35]) corresponds to the QRF transformation from the rest
frame of A to the laboratory frame C acting on the spin sA
and the momentum d.o.f. of the laboratory C. Specifically,
ŜL acts on an arbitrary element of the basis of the total
Hilbert space of the spin sA and on the momentum of
C as ŜLjaisA jπiC ¼ j−ðmA=mCÞπ;ΣðaÞiAsA . In addition,

ÛBsBðL−π̂C=mC
Þ is a unitary representation of a pure Lorentz

boost acting on the Dirac particle B, where the boost
parameter is promoted to an operator. Since two successive
collinear Lorentz boosts are a pure Lorentz boost, the action
of the QRF transformation Ŝ2 on the basis is

Ŝ2jaisA jπB;ΣðbÞiBsB jπCiC
¼

����−mA

mC
πC;ΣðaÞ

�
AsA

jLπB;Σ0ðbÞiBsB; ð5Þ

where in C’s perspective the spin of A is entangled with its
momentum d.o.f. and B propagates with the boosted
momentum LπB. LπB refers to the spatial part of
ðL−πC=mC

ÞμνπνB ≡ pμ
B, where πνB ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bc
2 þ π2B

p
; πBÞ.

Notice that the transformation acts nontrivially on the spin
state sB, and that, as a result, Σ0 depends on the momentum.
Furthermore, after the transformation to the laboratory
frame, the relative state of the laboratory from the per-
spective of A is transformed to the relative state of A from

the perspective of the laboratory C, in line with the
formalism for QRFs [33,34] (see also Appendix A in
Supplemental Material [35]).
The state of A and B in the laboratory frame is found by

transforming the state in Eq. (1) with the transformation in

Eq. (4), i.e., jψijCAsABsB ¼ Ŝ2jψijAsABsBC, where

jψijCAsABsB ¼
X
a;b

cab

Z
dμAðpAÞdμBðpBÞηðL−1pBÞ

ϕ

�
−
mC

mA
pA

�
jpA;ΣðaÞiAsA jpB;Σ0ðbÞiBsB; ð6Þ

pA ≡ −ðmA=mCÞπC, pB refers to the spatial part of pμ
B ≡

ðL−πC=mC
ÞμνπνB and L−1pB refers to the spatial part of

πμB ≡ ðL−1
pA=mA

Þμνpν
B, and dμkðpkÞ, k ¼ A, B is the

Lorentz-invariant integration measure previously intro-
duced. Thus, in C’s perspective the two Dirac particles
A and B are entangled and their spin d.o.f., sA and sB, are
momentum dependent, see Fig. 1.
In the rest frame of the Dirac particle A a proper spin

observable for its spin state sA is given (as in nonrelativistic
quantum mechanics) by the Pauli operators σ̂isA . In
analogy to the one particle case [34], the observable
Ξ̂j
π̂B

¼ ŜLð1B ⊗ σ̂jsBÞŜ†L, where the ŜL operator acts on
B, is used as relativistic spin observable for B in the rest
frame of A. Consequently, the joint spin measurement in
A’s rest frame is described by

x · σ̂sA ⊗ y · Ξ̂π̂B ⊗ 1C ¼
X
i;j

xiyjσ̂isA ⊗ Ξ̂j
π̂B

⊗ 1C; ð7Þ

where the vectors x and y denote the measurement settings.
Evaluating Eq. (7) for the general state of Eq. (1) requires
the calculation of the corresponding entries of the corre-
lation tensor, which is detailed in Appendix C in
Supplemental Material [35]. For the CHSH-Bell inequality
and the general definition, see Appendix D in Supplemental
Material [35]. With this result, it is easy to show that the
CHSH-Bell inequality is maximally violated for the state

jψ−ijAsABsBC ¼ jη−isABsB jϕiC; ð8Þ

where jη−isABsB ¼ P
λ¼�z cλ

R
dμBðπBÞηðπBÞjλisA

jπB; Σð−λÞiBsB and c�z ¼ �1=
ffiffiffi
2

p
.

The Bell observable in the laboratory frame is
(see Appendix E in Supplemental Material [35] for
details)

Ŝ2ðx · σ̂sA ⊗ y · Ξ̂π̂B ⊗ 1CÞŜ†2 ¼ x · Ξ̂p̂A
⊗ y · Ξ̂p̂B

: ð9Þ

Note that the observables on A and B are factorized, and
that the two spin measurements on the two Dirac particles A
and B can be performed independently in spacelike
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separated regions; thus, we have shown that it is possible to
extend the Bell test to the special-relativistic domain in the
laboratory C. Because of the unitarity of the QRF trans-
formation Ŝ2, the amount of the violation of the CHSH-Bell
inequality is QRF independent. In addition, we find that, in
this configuration, the measurement settings x as well as y
do not change after the QRF transformation (albeit the
observables measured are changed and involve spin and
momenta degrees of freedom on both sides).
Noncollinear relative motion.—The previous treatment

can be generalized to scenarios where the Dirac particle B
and the laboratory Cmove along different spatial directions
from the QRF of particle A. For simplicity, we demand the
motion of each particle to be one dimensional, so that the
angle ξ between the momentum of the Dirac particle πB and
the laboratory πC is fixed, i.e., the two systems do not move
in a superposition of directions. Without loss of generality,
we replace the previously considered one-dimensional
momenta by three-dimensional vectors according
to πB → πB ¼ ðπB; 0; 0Þ ¼ πBex and πC → πC ¼ πCu,
where u ¼ ðux; uy; 0Þ and juj ¼ 1. Since ξ is fixed, we
can treat the motion of each particle as one dimensional by
introducing the projections πB ≡ πB · ex and πC ≡ πC · u.
Thanks to this condition, the state in the QRF of particle A
is formally written in the same way as in the previous case,

i.e., jψijAsABsBC ¼ jηisABsB jϕiC, where state vectors are now
printed in bold to differentiate between the collinear case.
Crucially, this allows us to conclude immediately that the
CHSH-Bell inequality is violated in the rest frame of
particle A if we consider the quantum state in Eq. (8)
and the observable x · σ̂sA ⊗ y · Ξ̂π̂B ⊗ 1C with proper
measurement settings x and y.
However, the description in the laboratory frame

is different now due to an additional Wigner rotation
[36,37] of the spin d.o.f. sB. The Wigner rotation
appears, in contrast to the previous discussion, because
the laboratory C and the Dirac particle B do not move
along the same spatial direction from the viewpoint
of the rest frame of A. Specifically, with the (1þ 3)-
dimensional extension of the previous QRF transformation
Ŝ2 ≡ ŜLÛBsBðL−π̂C=mC

Þ, we get

Ŝ2jaisA jπB;ΣðbÞiBsB jπCiC ¼
����−mA

mC
πC;ΣðaÞ

�
AsA

ÛBsBðL−πC=mC
ÞÛBsBðLπB=mB

Þj0; biBsB: ð10Þ

The two successive noncollinear (πB ∦ πC) Lorentz boosts
on particle B result in a Wigner rotation of its spin
and a pure boost taking its momentum to pB, where
ðL−πC=mC

ÞμνπνB ≡ pμ
B ≡ ðp0

B;pBÞ, according to

ÛBsBðL−πC=mC
ÞÛBsBðLπB=mB

Þj0; biBsB
¼ ÛBsBðLpB=mB

Þ½1B ⊗ R̂sBðΩÞ�j0; biBsB
¼ jpB;ΣðRΩðbÞÞiBsB; ð11Þ

where R̂sBðΩÞ is the Wigner rotation about the axis
orthogonal to the directions of the two boosts
ÛBsBðL−πC=mC

Þ and ÛBsBðLπB=mB
Þ. In general, the spin is

rotated in a superposition of angles, depending on the
eigenvalue of the operators π̂C and π̂B when they act on a
basis of the total Hilbert space.
The rotation is specified throughΩ≡Ωn, jnj ¼ 1. More

specifically, the spin sB is rotated about the axis

n ¼ πB × πC

jπB × πCj
¼ ez ≡ ð0; 0; 1Þ ð12Þ

by the angle Ω which is given by

cosΩ ¼ 1þ γπB þ γπC þ γLπB
ð1þ γπBÞð1þ γπCÞð1þ γLπBÞ

− 1; ð13Þ

where LπB refers to the spatial part of

ðL−πC=mC
ÞμνπνB, γπk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2

k=m
2
kc

2
q

, γLπB ¼ γπBγπCð1−
βπB · βπC

Þ, and βπk ≡ πk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kc
2 þ π2

k

q
with k ¼ B;C.

Consequently, the rotation operator is R̂ðΩÞ ¼
e−iΩ·σ̂=2 ¼ 1 cosðΩ=2Þ − iσ̂z sinðΩ=2Þ. Thus, the axis of
rotation is fixed and the rotation angle Ω depends on the
relative orientation as well as on the magnitude of the two
momenta πB and πC, i.e., Ω ¼ ΩðπB; πCÞ. This implies that
the Wigner rotation is controlled on the momentum of the
two particles.
Starting in A’s rest frame with the state

jψijAsABsBC ¼ jηisABsB jϕiC; ð14Þ

where jηisABsB¼
P

a;bcab
R
dμBðπBÞηðπBÞjaisA jπB;ΣðbÞiBsB

and jϕiC ¼ R
dμCðπCÞϕðπCÞjπCiC we obtain the total state

in the laboratory frame

jψijCAsABsB ¼ Ŝ2jψijAsABsBC ¼
X
a;b

cab

Z
dμAðpAÞdμBðpBÞ

ηðL−1pBÞϕ
�
−
mC

mA
pA

�
jpA;ΣðaÞiAsA jpB;ΣðRΩðbÞÞiBsB

ð15Þ

where pA ≡ −ðmA=mCÞπC and L−1pB refers to the spatial
part of πμB ≡ ðL−1

pA=mA
Þμνpν

B. With this, we find Ω ¼
ΩðpA;pBÞ in the laboratory frame C, where the rotation
is also about the z axis and

PHYSICAL REVIEW LETTERS 126, 230403 (2021)

230403-4



cosΩ ¼ 1þ γpA
þ γpB

þ γLpB

ð1þ γpA
Þð1þ γpB

Þð1þ γLpB
Þ − 1; ð16Þ

where the notation is consistent with the one adopted
in Eq. (13).
The calculation of the Bell observables in the laboratory

frame Ĝxy
jC ≡ Ŝ2ðx · σ̂sA ⊗ y · Ξ̂π̂B ⊗ 1CÞŜ†2, carried out in

detail in Appendix F in Supplemental Material [35], yields

Ĝxy
jC ¼ ðx · Ξ̂p̂A

⊗ 1BsBÞX
j

ðyRj ðp̂A; p̂BÞ ⊗ 1sA ⊗ 1sBÞð1AsA ⊗ Ξ̂j
p̂B
Þ; ð17Þ

where yRj ðp̂A; p̂BÞ refers to the jth component of
yRðp̂A; p̂BÞ ¼ y cos½Ωðp̂A; p̂BÞ� þ nðn · yÞð1 − cos½Ωðp̂A;
p̂BÞ�Þ þ ðn × yÞ sin½Ωðp̂A; p̂BÞ�. Notice that in the case of
sharpmomentapA andpB the rotation is specified by a single
angle, however, if the particles move in a superposition of
momenta, the measurement setting yR is “coherently
rotated” with respect to its initial setting y. In order to
measure the observable of Eq. (17), one observer (Alice)
measures a local observable on particleA, but another (Bob)
measures the spin sB along a direction depending on A’s

momentum, because Ĝxy
jC ≠ Ĝx

AsA ⊗ ĜyR

BsB
. Instead, the

measurement setting yRðp̂A; p̂BÞ depends on both momenta
of the particles A and B. Nonetheless, the fact that the
operators no longer factorize does not violate the locality
assumption of Bell’s theorem: it is possible to devise a Bell
experiment in which the events, consisting of choosing the
settings for the spin and observing spin outcome in the two
laboratories, are spacelike separated. Specifically, Alice
could entangle an auxiliary system M with the momentum
of her particle before choosing the settings, and then sendM
to Bob. In that case, the observable becomes

Ĝxy
jC ¼ ½x · Ξ̂p̂A

⊗ 1BsB �½1AsA ⊗ yRðp̂M; p̂BÞ · Ξ̂p̂B
�

¼ Ĝx
AsA ⊗ ĜyR

BsBM
; ð18Þ

where x · Ξ̂p̂A
and yRðp̂M; p̂BÞ · Ξ̂p̂B

are the scalar products
between the measurement settings in the reference frame of
C and the spin operators of the two particles. In the rest
frame of A, we consider the measurement settings
x1 ¼ ð0; 1; 1Þ= ffiffiffi

2
p

, x2 ¼ ð0; 1;−1Þ= ffiffiffi
2

p
, y1 ¼ ð0; 1; 0Þ

and y2 ¼ ð0; 0; 1Þ. Hence, the rotated measurement settings
in the laboratory frame yRðp̂M; p̂BÞ are

yR1 ¼

0
B@

− sin ½Ωðp̂M; p̂BÞ�
cos½Ωðp̂M; p̂BÞ�

0

1
CA and yR2 ¼

0
B@

0

0

1

1
CA≡ y2:

ð19Þ

This rotated setting is obtained simply by inserting y1
and y2 in yRðp̂M; p̂BÞ ¼ y cos½Ωðp̂M; p̂BÞ� þ nðn · yÞ×
ð1 − cos½Ωðp̂M; p̂BÞ�Þ þ ðn × yÞ sin½Ωðp̂M; p̂BÞ� where
n ¼ ez.
Conclusions.—We have shown how to devise a relativ-

istic Bell test with Dirac particles, by introducing opera-
tionally well-defined spin operators. Key to the result is the
introduction of a transformation to “jump” to the rest frame
of a general quantum system, in the case where two Dirac
particles are moving in a superposition of relativistic
velocities. This transformation is built by making use of
a formalism to describe physics from the perspective of a
quantum reference frame introduced in Refs. [33,34]. We
hence settle the controversy on the violation of Bell’s
inequalities in different (quantum) reference frames, and by
providing an operational identification of the observables
that maximally violate Bell’s inequalities in a special
relativistic setting, we show that, regardless of what the
state of the external degrees of freedom of the particle is,
such a maximal violation can be always achieved for
particles moving in a superposition of relativistic velocities.
This paves the way for the extension of known quantum
information technologies, such as quantum communi-
cation complexity, quantum key distribution, and device-
independent protocols, to massive relativistic spin-1=2
particles moving in a superposition of velocities.

F. G. acknowledges support from Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is
supported in part by the Government of Canada through
the Department of Innovation, Science and Economic
Development and by the Province of Ontario through
the Ministry of Colleges and Universities. Č. B. acknowl-
edges the support from the research platform TURIS, from
the European Commission via Testing the Large-Scale
Limit of Quantum Mechanics (TEQ) (No. 766900) project,
and from the Austrian-Serbian Bilateral Scientific
Cooperation No. 451-03-02141/2017-09/02, and by the
Austrian Science Fund (FWF) through the SFB project
BeyondC (F7103-N48) and the project No. I-2906, as well
as a grant from the Foundational Questions Institute (FQXi)
Fund. This publication was made possible through the
support of the ID 61466 grant from the John Templeton
Foundation, as part of the Quantum Information Structure
of Spacetime (QISS) Project (qiss.fr). The opinions
expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the John
Templeton Foundation.

*l.streiter@posteo.org
†fgiacomini@perimeterinstitute.ca
‡caslav.brukner@univie.ac.at
§These authors contributed equally to this work.

[1] B. Hensen, H. Bernien, A. E. Dreaú, A. Reiserer, N. Kalb,
M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten,

PHYSICAL REVIEW LETTERS 126, 230403 (2021)

230403-5



C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M.
Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H.
Taminiau, and R. Hanson, Nature (London) 526, 682
(2015).

[2] M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015).
[3] L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015).
[4] M. Lamehi-Rachti and W. Mittig, Phys. Rev. D 14, 2543

(1976).
[5] H. Sakai, T. Saito, T. Ikeda, K. Itoh, T. Kawabata, H.

Kuboki, Y. Maeda, N. Matsui, C. Rangacharyulu, M.
Sasano et al., Phys. Rev. Lett. 97, 150405 (2006).

[6] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge,
D. N. Matsukevich, L.-M. Duan, and C. Monroe, Nature
(London) 449, 68 (2007).

[7] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M.
Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G.
Rempe, Nature (London) 484, 195 (2012).

[8] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W.
Rosenfeld, and H. Weinfurter, Science 337, 72 (2012).

[9] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N.
Ortegel, M. Rau, and H. Weinfurter, Phys. Rev. Lett. 119,
010402 (2017).

[10] D. Shin, B. Henson, S. Hodgman, T. Wasak, J. Chwedeńczuk,
and A. Truscott, Nat. Commun. 10, 1 (2019).

[11] A. Peres, P. F. Scudo, and D. R. Terno, Phys. Rev. Lett. 88,
230402 (2002).

[12] H. Terashima and M. Ueda, Quantum Inf. Comput. 3, 224
(2003).

[13] H. Terashima and M. Ueda, Int. J. Quantum. Inform. 01, 93
(2003).

[14] D. Lee and E. Chang-Young, New J. Phys. 6, 67 (2004).
[15] W. T. Kim and E. J. Son, Phys. Rev. A 71, 014102 (2005).
[16] S. Moradi, JETP Lett. 89, 50 (2009).
[17] N. Friis, R. A. Bertlmann, M. Huber, and B. C. Hiesmayr,

Phys. Rev. A 81, 042114 (2010).
[18] E. Castro-Ruiz and E. Nahmad-Achar, Phys. Rev. A 86,

052331 (2012).
[19] E. Castro-Ruiz and E. Nahmad-Achar, Phys. Scr. 90,

068018 (2015).
[20] M. Czachor, Phys. Rev. A 55, 72 (1997).

[21] D. R. Terno, Phys. Rev. A 67, 014102 (2003).
[22] D. Ahn, H.-j. Lee, and S.W. Hwang, arXiv:quant-ph/

0207018v2.
[23] D. Ahn, H.-j. Lee, Y. H. Moon, and S. W. Hwang, Phys.

Rev. A 67, 012103 (2003).
[24] Y. H. Moon, S. W. Hwang, and D. Ahn, Prog. Theor. Phys.

112, 219 (2004).
[25] P. Caban and J. Rembieliński, Phys. Rev. A 72, 012103

(2005).
[26] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev.

A 79, 014102 (2009).
[27] P. Caban, A. Dziegielewska, A. Karmazyn, and M. Okrasa,

Phys. Rev. A 81, 032112 (2010).
[28] P. L. Saldanha and V. Vedral, Phys. Rev. A 85, 062101

(2012).
[29] A. G. S. Landulfo and G. E. A. Matsas, Phys. Rev. A 79,

044103 (2009).
[30] A. G. S. Landulfo, G. E. A. Matsas, and A. C. Torres, Phys.

Rev. A 81, 044103 (2010).
[31] M. H. Zambianco, A. G. S. Landulfo, and G. E. A. Matsas,

Phys. Rev. A 100, 062126 (2019).
[32] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Rev. Mod. Phys. 86, 419 (2014).
[33] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Nat.

Commun. 10, 494 (2019).
[34] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Phys. Rev.

Lett. 123, 090404 (2019).
[35] See Supplemental Material [35] at http://link.aps.org/

supplemental/10.1103/PhysRevLett.126.230403 for addi-
tional information on: the QRF formalism for one relativ-
istic particle (Appendix A); a review on Lorentz
boosts (Appendix B); a summary on the correlation tensor
(Appendix C); a short introduction to the CHSH Bell
inequality (Appendix D); the explicit derivation of the Bell
observables for collinear motion (Appendix E) and non-
collinear motion (Appendix F) of two quantum relativistic
particles.

[36] E. Wigner, Ann. Math. 40, 149 (1939).
[37] S. Weinberg, The Quantum Theory of Fields (Cambridge

University Press, Cambridge, England, 1995), Vol. 1.

PHYSICAL REVIEW LETTERS 126, 230403 (2021)

230403-6

https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevD.14.2543
https://doi.org/10.1103/PhysRevD.14.2543
https://doi.org/10.1103/PhysRevLett.97.150405
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/nature11023
https://doi.org/10.1126/science.1221856
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevLett.88.230402
https://doi.org/10.1103/PhysRevLett.88.230402
https://doi.org/10.26421/QIC3.3-4
https://doi.org/10.26421/QIC3.3-4
https://doi.org/10.1142/S0219749903000061
https://doi.org/10.1142/S0219749903000061
https://doi.org/10.1088/1367-2630/6/1/067
https://doi.org/10.1103/PhysRevA.71.014102
https://doi.org/10.1134/S0021364009010111
https://doi.org/10.1103/PhysRevA.81.042114
https://doi.org/10.1103/PhysRevA.86.052331
https://doi.org/10.1103/PhysRevA.86.052331
https://doi.org/10.1088/0031-8949/90/6/068018
https://doi.org/10.1088/0031-8949/90/6/068018
https://doi.org/10.1103/PhysRevA.55.72
https://doi.org/10.1103/PhysRevA.67.014102
https://arXiv.org/abs/quant-ph/0207018v2
https://arXiv.org/abs/quant-ph/0207018v2
https://doi.org/10.1103/PhysRevA.67.012103
https://doi.org/10.1103/PhysRevA.67.012103
https://doi.org/10.1143/PTP.112.219
https://doi.org/10.1143/PTP.112.219
https://doi.org/10.1103/PhysRevA.72.012103
https://doi.org/10.1103/PhysRevA.72.012103
https://doi.org/10.1103/PhysRevA.79.014102
https://doi.org/10.1103/PhysRevA.79.014102
https://doi.org/10.1103/PhysRevA.81.032112
https://doi.org/10.1103/PhysRevA.85.062101
https://doi.org/10.1103/PhysRevA.85.062101
https://doi.org/10.1103/PhysRevA.79.044103
https://doi.org/10.1103/PhysRevA.79.044103
https://doi.org/10.1103/PhysRevA.81.044103
https://doi.org/10.1103/PhysRevA.81.044103
https://doi.org/10.1103/PhysRevA.100.062126
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1038/s41467-018-08155-0
https://doi.org/10.1038/s41467-018-08155-0
https://doi.org/10.1103/PhysRevLett.123.090404
https://doi.org/10.1103/PhysRevLett.123.090404
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230403
https://doi.org/10.2307/1968551

