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Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics.
A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while
the transition points in between, the so-called exceptional points, give rise to a host of critical behaviors that
holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are
commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling
in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of
exceptional points beyond this common wisdom. These “non-Bloch exceptional points” originate from the
accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a
generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework,
and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.
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While Hermiticity of Hamiltonians is a fundamental
axiom in the standard quantum mechanics for closed
systems, non-Hermitian Hamiltonians arise in open sys-
tems and possess unique features. Particularly, a wide range
of non-Hermitian Hamiltonians, protected by the parity-
time (PT) symmetry, can have entirely real eigenvalues
[1–4]. A PT-symmetric Hamiltonian generally has two
phases, the exact PT phase and the broken PT one, with
real and complex eigenenergies, respectively. The transition
points between these phases are called exceptional points,
on which eigenstates and eigenenergies coalesce while the
Hamiltonian becomes nondiagonalizable. PT symmetry and
exceptional points are ubiquitous in non-Hermitian systems,
and lead to dramatic consequences and promising applica-
tions such as unidirectional invisibility [5], single-mode
lasers [6,7], enhanced sensing [8,9], topological energy
transfer [10], and nonreciprocal wave propagation [11,12],
to name just a few. In practice, physical systems with PT
symmetry are often based on spatially periodic structures
(e.g., photonic lattices or microwave arrays) [2,13], where
the notion of Bloch band greatly simplifies their characteri-
zation as each Bloch wave is treated independently.
Here we uncover a novel class of exceptional points

beyond this Bloch-band picture in periodic systems. This
work is partially stimulated by recent discoveries of non-
Hermitian topological systems whose topological proper-
ties are highly sensitive to boundary conditions, in sharp
contrast to their Hermitian counterparts. Specifically, for a
generic family of non-Hermitian systems under the open-
boundary condition (OBC), all eigenstates accumulate near
the boundaries, whereas they always behave as extended

Bloch waves under a periodic boundary condition (PBC).
This phenomenon, known as the non-Hermitian skin effect,
invalidates the conventional bulk-boundary correspon-
dence and necessitates a redefinition of topological invar-
iants [14–18]. Whereas topological physics has been the
focus in previous studies [19–25], a fundamental question
remains whether the non-Hermitian skin effect has signifi-
cant consequences beyond topology, among which the
interplay of non-Hermitian skin effect and PT symmetry is
arguably the most intriguing [26,27]. In this work, we
experimentally observe exceptional points generated by the
non-Hermitian skin effect. Despite a translationally invari-
ant bulk, the observed exceptional points exist in a
“generalized Brillouin zone” (GBZ) [19,20,22,26,27]
(rather than the standard Brillioun zone), thus representing
an unexplored class of exceptional points beyond the
conventional Bloch-band framework. Just as the framework
with conventional Bloch bands has been commonly
adopted to describe periodic lattices in physical systems
ranging from condensed matter to photonics, the general-
ized mechanism of PT symmetry, confirmed by our
observation of “non-Bloch exceptional points,” is relevant
to a broad class of non-Hermitian platforms with periodic
structures.
In general, a discrete-time, nonunitary quantum walk can

be characterized by jψðtÞi ¼ Utjψð0Þi (t ¼ 0; 1; 2;…),
which amounts to a stroboscopic simulation of the
time evolution with initial state jψð0Þi, and generated by
the non-Hermitian effective Hamiltonian Heff with
U ≔ e−iHeff . To be concrete, we take the following one-
dimensional Floquet operator
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where the shift operators, S1 ¼
P

x jxihxj ⊗ j0ih0j þ jxþ
1ihxj ⊗ j1ih1j and S2¼

P
x jx−1ihxj⊗ j0ih0jþjxihxj⊗

j1ih1j, selectively shift the walker along a one-dimensional
lattice (with lattice sites labeled by x) in a direction that
depends on its internal coin state j0iðj1iÞ, the þ1 (−1)
eigenstate of the Pauli matrix σz. The coin operator
RðθÞ ¼ 1w ⊗ e−iθσy , with 1w ¼ P

x jxihxj, rotates coin
states without shifting the walker position. The gain and
loss is implemented by M ¼ 1w ⊗ eγσz.
We implement the quantum walk using a single-photon

interferometric network [Fig. 1(a)], where coin states j0i
and j1i are encoded in the horizontal and vertical photon
polarizations, respectively. Rotations of the coin states (R)
are implemented by HWPs. Shift operators S1;2 are realized
by beam displacers that allow the transmission of vertically
polarized photons while displacing horizontally polarized
ones into neighboring positions. Finally, the gain/loss
is implemented by a PPBS, which reflects state j1i with
a probability p, and directly transmits state j0i. Thus,
the PPBS realizes ME ¼ 1w ⊗ ðj0ih0j þ ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p j1ih1jÞ,

which is related to M as M ¼ eγME, with γ ¼
−ð1=4Þ lnð1 − pÞ. We therefore readout jψðtÞi from our
experiment with ME by adding a factor eγt. More details of
our experimental setup can be found in [28].
Under the Floquet operator U, the directional hopping in

S1;2 and the gain/loss in M conspire to generate

non-Hermitian skin effect [15]. When a domain wall is
created between two regions with different parameters, e.g.,
θL1;2 and θ

R
1;2 for the left and right regions in Fig. 1(b), all the

eigenstates of U are localized at the domain wall [15].
While the non-Hermitian skin effect dramatically affects
topological properties, here we focus on the impact of non-
Hermitian skin effect on the emergence of PT symmetry
and exceptional points.
The exact (broken) PT phase corresponds to the absence

(presence) of nonzero imaginary parts in the eigen spec-
trum (quasienergies) of Heff . Note that we use these terms
in a general sense, including pseudo-Hermiticity whose
role is, regarding spectral reality, similar to the original PT
symmetry [29,30]. In Figs. 2(a), 2(b), we show in blue the
calculated imaginary parts of quasienergies, Im(E), for the
domain-wall geometry with OBC at the two ends [see
Fig. 1(b)]. For both Figs. 2(a), 2(b), an exceptional point is
found as θR2 is varied while fixing other parameters.
Remarkably, the exceptional point cannot be deduced from
the Bloch band theory. The Bloch theory suggests that
the continuous bulk spectra of U under the domain-wall
geometry are the union of the spectra corresponding to the
left and right bulks, which are respectively obtained from
the Bloch Floquet operator UðkÞ (k ∈ ½0; 2π�, i.e., within
the standard Brillioun zone) associated with the left (with
parameters θL1;2) and right (with θR1;2) bulk. These spectra
are shown in gray in Figs. 2(a), 2(b), which dramatically
differ from the actual (non-Bloch) spectra under the
domain-wall geometry.
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FIG. 1. Experimental implementation. (a) A pair of photons is generated via the spontaneous parametric down conversion in the
periodically poled potassium titanyl phosphate crystal (PPKTP), with one serving as a trigger and the other (walker) projected into
the quantum-walk network as the walker photon. After passing through a polarizing beam splitter (PBS) and a half-wave plate (HWP),
the polarization of the walker photon is initialized as j0i. It then undergoes a quantum walk through an interferometric network,
composed of HWPs, beam displacers (BDs), and partially polarizing beam splitter (PPBS), and is finally detected by avalanche
photodiodes (APDs), in coincidence with the trigger photon. (b) The domain-wall geometry of non-Hermitian quantum walks. Upper
panel (scheme I): the walker starts near the domain wall at x ¼ 0. Lower panel (scheme II): the walker starts from the bulk (i.e., far away
from the domain wall) position x ¼ 6.
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This discrepancy is due to the aforementioned non-
Hermitian skin effect. The exponential decay of eigenstates
in the real space means that the Bloch phase factor eik,
which corresponds to extended plane waves, should be
replaced by a factor β (jβj ≠ 1 in general) in order to
generate the eigenspectra under the OBC. Furthermore,
β must belong to a closed loop in the complex plane,
dubbed the GBZ [19,22], which typically deviates from the
unit circle [Fig. 2(c)]. For β ∈ GBZ, eigenenergies under
the OBC are recovered by performing the analytic con-
tinuation UðkÞjeik→β, and taking the logarithm of eigenval-
ues of UðβÞ. Crucially, we find that UðβÞ satisfies the
η-pseudo-unitarity

ηU−1ðβÞη−1 ¼ U†ðβÞjβ∈GBZ; ð2Þ

when j cos θLðRÞ2 j > j tanh γj [28]. Here η ¼ P
n jχnihχnj,

where fjχnig is the collection of left eigenstates of UðβÞ.
Equation (2) corresponds to the η-pseudo-Hermiticity of
the non-Hermitian effective Hamiltonian: ηHeffðβÞη−1 ¼
H†

effðβÞ [29,30], which is a generalization of the PT
symmetry, and guarantees the reality of quasienergies as

long as the relation holds. As such, the GBZ theory predicts
non-Bloch exceptional points at

j cos θLðRÞ2 j ¼ j tanh γj: ð3Þ

We observe exceptional points by probing probabilities
of the photon surviving in the quantum walk after each time
step t, which are constructed from photon-number mea-
surements up to t [28]. They are then multiplied by a factor
e2γt (due to the aforementioned difference betweenME and
M) to yield the corrected probability PðtÞ that corresponds
to the wave function norm, whose long-time behavior is
PðtÞ ¼ hψðtÞjψðtÞi ∼ e2max½ImðEÞ�t. Therefore, an exponen-
tial growth of PðtÞ indicates the broken PT phase. By
contrast, PðtÞ in the exact PT phase typically approaches
a steady-state value of order of unity. Such a feature
enables us to extract the location of exceptional points
by tracking the time evolution of the corrected probability.
Experimentally, this is achieved through two schemes: (I)
the domain wall scheme and (II) the bulk scheme.
In the first scheme, we initiate the photon walker near the

domain wall, as illustrated in the upper panel of Fig. 1(b),
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FIG. 2. Non-Bloch exceptional points from domain-wall measurements. (a), (b) Imaginary part of quasienergies, ImðEÞ versus θR2 .
Other coin parameters are fixed at θR1 ¼ 0.5625π and θL1 ¼ −0.0625π. We take θL2 ¼ 0.75π and −0.9735π for (a) and (b), respectively.
Blue and gray lines represent the OBC (non-Bloch) and PBC (Bloch) spectra, respectively. The blue non-Bloch spectra feature an
exceptional point at jθR2 j ¼ 0.413π, while the gray Bloch spectra remain complex-valued throughout. (c) Brillouin zone and GBZ for
θR1 ¼ 0.5625π, θL1 ¼ −0.0625π, θR2 ¼ −0.44π, and θL2 ¼ −0.9375π. (d) Numerically calculated max½ImðEÞ� for θR1 ¼ 0.5625π and
θL1 ¼ −0.0625π. The yellow (blue) region is the broken (exact) PT phase. The red and black cuts correspond to (a), (e), (f) and (b), (g),
(h), respectively. (e) Experimentally measured PðtÞ (symbols) with an initial state jψðt ¼ 0Þi ¼ j0ix ⊗ j0icoin up to seven steps for eight
different values of θR2 , together with the theoretical predictions (curves). Other coin parameters are the same as in (a), e.g., θL2 ¼ 0.75π.
(f) Pðt ¼ 7Þ under the same parameters as those in (c). Error bars indicate the statistical uncertainty obtained by assuming Poissonian
statistics. The red line is plotted from numerical simulations of seven-step evolutions, from which the exceptional point is predicted to be
θR2 ¼ 0.413π [by requiring Pð7Þ ¼ 1], consistent with the theoretical prediction from Eq. (3). (g), (h) The same as (e), (f) except that
θL2 ¼ −0.9735π. From the numerical simulations (red line), the exceptional point in (h) is at θR2 ¼ −0.412π. The loss parameter is fixed
at γ ¼ 0.2746 throughout our experiment.
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with the initial state jψðt ¼ 0Þi ¼ j0ix ⊗ j0icoin. We then
measure the corrected probability along the red and black
cuts in the numerically simulated phase diagram [Fig. 2(d)],
where the blue and yellow regions correspond to the exact
and broken PT phase, respectively. In Fig. 2(e) (red cut),
PðtÞ grows with t for θR2 ≥ 0.42π and decreases for
θR2 ≤ 0.41π. Therefore, we infer the presence of an excep-
tional point between θR2 ¼ 0.41π and 0.42π. This is con-
sistent with Eq. (3), which predicts an exceptional point at
θR2 ¼ �0.413π. We arrive at the same conclusion by
measuring corrected probabilities at the time step t ¼ 7
[Fig. 2(f)], which become prominently larger than 1 in
the broken PT phase. Similarly, Figs. 2(g), 2(h) (blue
cut) indicate an exceptional point in the region
θR2 ∈ ½−0.42π;−0.41π�, again consistent with Eq. (3).
The second scheme is based on local measurements in

the bulk. The walker starts from a position x ¼ x0 far from
the domain wall [Fig. 1(b), lower panel], and the sub-
sequent corrected probability at x ¼ x0, i.e., Px0ðtÞ ¼
jh0j ⊗ hx0jψðtÞij2 þ jh1j ⊗ hx0jψðtÞij2, is measured. In
the broken PT phase, the corrected probability grows as
Px0ðtÞ ∝ eαt, where α > 0 is given by the imaginary part of
quasienergies at certain special points of the GBZ [26,27].
In the exact PT phase, by contrast, Px0ðtÞ features an
oscillatory behavior at short times, enveloped by an overall

decay characterized by α < 0 (which approaches zero as
the evolution time increases) [27,28]. In our experiment, we
fix x0 ¼ 6 in the right region, leaving the left region idle.
The imaginary parts of quasienergy spectra under OBC are
plotted in Figs. 3(a), 3(b), along the red and black cuts in
Fig. 3(d), respectively. The spectra are calculated by
diagonalizing UðβÞjβ∈GBZ for the right region, with GBZ
shown in Fig. 3(c). Along the red cut (θR1 ¼ 0.5625π), the
measured Px¼6ðtÞ exhibits growth for θR2 ≥ 0.42π, and
decreases for θR2 ≤ 0.41π as illustrated in Fig. 3(e), indicat-
ing an exceptional point within ½0.41π; 0.42π�. This is
consistent with Fig. 3(a). Moreover, we fit Px¼6ðtÞ expo-
nentially in Fig. 3(f). While the accuracy in α is limited by
the small number of experimentally feasible steps [28], the
fitted α does yield qualitatively consistent results: the sign
of α is positive (negative) in the broken (exact) PT phase.
A similar exceptional point is observed along the black cut
(θR1 ¼ −0.5π) in Figs. 3(g), 3(h).
Notably, under the bulk scheme, we are able to establish

non-Bloch PT symmetry and detect non-Bloch exceptional
points from dynamics purely in the bulk, i.e., essentially
under PBC. This highlights the observed non-Bloch excep-
tional points as intrinsic properties of our system, rather
than mere finite-size effects. While we have revealed the
non-Bloch PT transition using a seven-step quantum walk,
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FIG. 3. Non-Bloch exceptional points from bulk measurements. (a) ImðEÞ versus θR2 , with θR1 ¼ 0.5625π fixed. (b) ImðEÞ versus θR2 ,
with θR1 ¼ −0.4688π fixed. (c) GBZ of the right region, for θR1 ¼ −0.4688π and θR2 ¼ −0.44π. (d) Numerically calculated max[Im(E)].
The blue and yellow regions correspond to the exact and broken PT phase, respectively. (e) Experimentally measured Px¼6ðtÞ (symbols)
with an initial state jψð0Þi ¼ j6ix ⊗ j0icoin for eight values of θR2 , compared to the theoretical predictions (curves). Here we fix
θR1 ¼ 0.5625π. (f) Exponent α versus θR2 extracted from the data in (e). The red line is plotted from numerical simulations of seven-step
evolutions, from which the exceptional point is predicted to be θR2 ¼ 0.414π (by requiring α ¼ 0), consistent with the theoretical
prediction from Eq. (3). (g), (h) The same as (e), (f), except that θR1 ¼ −0.5π. (e), (f) and (g), (h) correspond to the red and black cuts
in the phase diagram (d), respectively. From the numerical simulation (red line), the exceptional point in (h) is at θR2 ¼ −0.414π. The
left region is idle throughout measurements, which are performed in the right region only. Without loss of generality, we take
θL1 ¼ −0.0625π and θL2 ¼ 0.75π for (e), (f), and θL1 ¼ −0.0625π and θL2 ¼ −0.9375π for (g), (h).

PHYSICAL REVIEW LETTERS 126, 230402 (2021)

230402-4



alternative designs (such as the time-multiplexed frame-
work [31]) with the potential of achieving a longer
evolution time would enable a more precise probe of the
transition, including accurate determination of the
Lyapunov exponent [26,27].
The significance of the observed non-BlochPT symmetry

and exceptional points is further enhanced by the following
generic finding: in the presence of non-Hermitian skin effect,
the Bloch energy spectra (calculated from the Brillouin zone)
can never have PT symmetry. In fact, recent theoretical
works prove that, if a system features non-Hermitian skin
effect under the OBC, the associated Bloch spectra must
form loops in the complex plane [32–34]. However, looplike
spectra cannot lie in the real axis, thus forbidding entirely
real spectrum. In sharp contrast, the non-Bloch spectra
calculated from the GBZ, which correctly reflect eigenener-
gies under the experimentally relevant OBC, form arcs or
lines enclosing no area. Real spectra and PT symmetry are
henceforth enabled. Therefore, non-Bloch PT symmetry is
the only general mechanism for achieving PT symmetry in
the presence of non-Hermitian skin effect.
The observed interplay between non-Hermitian skin effect

and PT symmetry underlines a fundamentally new mecha-
nism for PT symmetry and exceptional points in periodic
systems, and demonstrates the power of non-Bloch band
theory beyond topology. Since both the non-Hermitian skin
effect and PT symmetry are generic features of a large class
of non-Hermitian systems, the mechanism is general and
applies to a variety of non-Hermitian platforms ranging from
photonic lattices to cold atoms. In view of the potential
utilities of exceptional points, the non-Bloch exceptional
points observed here would inspire novel designs and
applications such as enhanced sensing with interface-sensi-
tive, ultrahigh spatial resolutions [8,9,16], or robust wireless
power transfer that are tunable by the interface geom-
etry [35].
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