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We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-
vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the
electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential
(Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for
nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as
elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we
demonstrate the magnitude of this topological effect by performing nonadiabatic first principles
calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon
angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.
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Several experiments have demonstrated the non-
negligible interaction between vibrational modes and mag-
netic fields or optical probes. The phonon Hall effect [1–3]
and the phonon contribution to the gyromagnetic ratio
detected in the Einstein–de Haas effect [4,5] are eminent
examples. Moreover, it has been demonstrated that valley
selective infrared optical absorption in transition metal
dichalcogenides breaks time-reversal symmetry for the
phonon field and can be used to probe the chirality of
phononmodes at particular points in theBrillouin zone [6,7].
In the absence of external probes, phonons are usually

understood in terms of springs and as such they are
considered as linearly polarized, so they do not break
time-reversal symmetry and they are not supposed to carry
a finite angular momentum. An intrinsic phonon angular
momentum can be obtained from a twofold degenerate
vibrational mode, as a linear combination of two linear
phonon eigenvectors can lead to a circularly polarized
mode in the same way as circularly polarized light can arise
from two linear polarizations. This case has been inves-
tigated in the literature extensively [7–11], particularly for
hexagonal crystal lattices [12]. For each circularly polar-
ized phonon carrying an angular momentum l, there exists
another linearly independent combination of linear polar-
izations leading to an angular momentum −l, so that the
total phonon angular momentum for the degenerate modes
is zero. An external time-reversal symmetry breaking
probe, such as optical absorption or an external magnetic
field, is then needed to break the degeneracy.
The question of whether a nondegenerate phonon

mode can host an intrinsic angular momentum without
external probes is still open. Specifically, can an intrinsic

mechanism lead to a time-reversal symmetry breaking in
the phonon field?
In this Letter, we demonstrate that nonadiabatic (dynami-

cal) effects due to the electron-vibron interaction generate
synthetic gauge fields in insulating noncollinear magnetic
molecules. We provide the microscopic link between top-
ology and the electron-vibron interaction by showing that
in these molecules a nonzero Berry curvature leads to a
finite intrinsic vibrational angular momentum even for
nondegenerate modes and in the absence of external
magnetic fields. As a proof of concept, we demonstrate
the effect by performing nonadiabatic first principles
calculations on platinum clusters.
We introduce a cumulative index λ ¼ ðI; αÞ for the

Cartesian coordinates α ¼ x, y, z of the Ith atom in a
molecule. The atomic position in a molecule is
Rλ ¼ Req

λ þ uλ, where R
eq
λ are the coordinates of the atomic

equilibrium positions and uλ is the Cartesian component of
the ionic displacement of the Ith atom. In the Born-
Oppenheimer approximation, the quantum-mechanical
Hamiltonian for the ionic motion reads [13]

H ¼ 1

2M

X
λ

½pλ − ℏAλðuÞ�2 þ EðuÞ; ð1Þ

where pλ ¼ −iℏ∇uλ ≡ −iℏ∇λ is the ionic momentum,
AλðuÞ ¼ ihΨðuÞj∇λΨðuÞi is a geometric vector potential
(the so-called Berry potential or Berry connection), EðuÞ is
the potential energy felt by the ions due to the electrons,
and jΨðuÞi is the ground-state electronic wave function that
depends parametrically on the nuclear displacements u. For
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ease of notation, we consider equal masses for all the
atoms, as this also corresponds to the case treated in this
Letter.
In the absence of external magnetic fields and non-

collinear magnetic order, the electronic wave function
jΨðuÞi can be taken as real, and the geometric vector
potential in Eq. (1) is zero [14]. On the other hand, in the
absence of an external magnetic field but for a noncollinear
magnetic molecule, the electronic wave function is com-
plex and cannot be chosen as real, so that AλðuÞ is nonzero
and nontrivial geometric effects may occur.
The Berry curvature is defined as Ωλη ¼ ∂λAη − ∂ηAλ,

where ∂λ ≡ ∂=∂uλ. In linear response theory, Ωλη does not
depend on the parameter u as the derivatives are evaluated
at u ¼ 0. In the Heisenberg representation, the equation of
motion for the nuclear displacement reads [15]

Müλ þ ℏ
X
η

Ωλη _uη þ ∂λE ¼ 0: ð2Þ

In the harmonic approximation, we expand the potential
energy up to the second order in the ionic displacement.
Using monochromatic solutions in ω, the equation of
motion can thus be written as

1

M

X
η

½Cλη − iℏωΩλη�eη ¼ ω2eλ; ð3Þ

where Cλη ¼ ∂λ∂ηE is the static harmonic force-constant
matrix, and eλ are the vibrational polarization vectors. The
term in Ωλη is an effective Lorentz force exerted by the
geometrical magnetic field (note that Ωλη is a real anti-
symmetric matrix). The formal solution of the nonlinear
eigenvalue equation (3), can be found in the supplemental
material of Ref. [5].
At zero temperature, the expectation value of the

quantum vibrational angular momentum L ¼ P
I uI × _uI

over the quantum vibron ground state reads [5] hLi ¼P
ν lν, where ν labels the vibrational modes and lν can be

expressed in terms of (the Cartesian components of) the
vibrational polarization vectors eIν as

lν ¼ −iℏ
X
I

e�Iν × eIν: ð4Þ

We underline that the expectation value of the cartesian
components of L over the vibron ground state, i.e.,
hLαi ¼

P
ν lν;α, where α ¼ x, y, z, is not a quantized

object and can assume any value. Indeed, while in the
absence of noncollinear magnetism and in the presence of
an external magnetic field along the z direction, Lz
commutes with H in Eq. (1), in the case of noncollinear
magnetism treated here, the components of the phonon
angular momentum Lα do not commute with H. Thus, in

our case, the ground state of Eq. (1) is not an eigenstate of
Lα and neither

P
ν lν;α nor lν;α are quantized.

If the Berry curvature Ωλη in Eq. (3) vanishes (i.e., for
real wave functions), the polarization vectors are eigen-
functions of the static and real force constant matrix Cλη

and therefore they themselves are real (up to an irrelevant
global phase factor) and the angular momentum lν is equal
to zero (since e� ¼ e). On the contrary, in molecules with
noncollinear magnetism, the electronic wave functions are
necessarily complex and the Berry curvature does not
vanish. The polarization vectors of Eq. (3) are therefore
intrinsically complex and give rise to a nonzero vibrational
angular momentum. Thus, the occurrence of a vibrational
mode with a finite angular momentum is intimately con-
nected with the existence of a geometrical or physical
gauge field.
We now show that, in the independent electron approxi-

mation, both Eq. (3) and the existence of a nonzero intrinsic
angular momentum for a molecular vibrational mode
naturally arise from the theory of nonadiabatic (dynamical)
effects developed in Ref. [16], providing the link between
the electron-vibron interaction, topological effects, and the
existence of a nonzero intrinsic vibrational angular momen-
tum. Within time dependent density functional theory and
in the adiabatic local density approximation, the dynamical
force constant matrix for frequencies ω smaller than the
HOMO-LUMO gap (Δ) reads

CληðωÞ ¼ Cλη þ ΠληðωÞ; ð5Þ

whereCλη is the static force constant matrix andΠληðωÞ can
be written in perturbation theory as

ΠληðωÞ ¼ 2
X
m;n

�
fm − fn

ϵm − ϵn þ ℏω
−
fm − fn
ϵm − ϵn

�

×hψnj∂λHKSjψmihψmj∂ηHKSjψni: ð6Þ

Here jψmi, ϵm, and fm are the Kohn-Sham wave functions,
energy levels, and Fermi occupations at equilibrium posi-
tions (i.e., u ¼ 0), respectively, and HKS is the electronic
Kohn-ShamHamiltonian. The deformation potential matrix
element hψmj∂ηHKSjψni is related to the electron-vibron
interaction. The nonadiabatic (dynamical) vibrational
frequencies (ω̃ν) and polarization vectors (ẽην), which will
be marked hereinafter with a tilde, are obtained from the
nonlinear eigenvalue equation

1

M

X
η

Cληðω̃νÞẽην ¼ ω̃2
νẽλν: ð7Þ

When ℏω ≪ Δ, Eq. (5) can be expanded at first order to
obtain

CληðωÞ ¼ Cλη − iℏωΩKS
λη þOðω2Þ; ð8Þ
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whereΩKS
λη ¼ P

m fmΩKS
λη;m andΩKS

λη;m is the Berry curvature
of the mth Kohn-Sham state [14] with respect to the atomic
displacement, namely

ΩKS
λη;m ¼ −2Im

X
n≠m

1

ðϵm − ϵnÞ2

× hψmj∂λHKSjψnihψnj∂ηHKSjψmi: ð9Þ

The matrix ΩKS
λη is a real antisymmetric matrix that plays

the role of Ωλη in the case of Kohn-Sham independent
electrons. The nonadiabatic (dynamical) vibrational
frequencies ω̃ν and polarization vectors ẽIν can then be
obtained as solutions of the nonlinear eigenvalue equation
(7), and used to calculate the quantum angular momentum
via Eq. (4).
Equations (8) and (9) are the microscopic link between

the electron-vibron interaction, nonadiabatic (dynamical)
effects, and the occurrence of a finite angular momentum in
molecules. Furthermore, they provide a practical computa-
tional scheme of the vibrational quantum angular momen-
tum using the theory proposed in Ref. [16]. Since Ωλη is
proportional to the square of the deformation potential and
inversely proportional to the HOMO-LUMO gap, Eq. (9)
suggests that large nonadiabatic (dynamical) effects and
vibrational angular momenta could be found in noncol-
linear magnetic molecules with a small gap and a large
electron-vibron interaction.
We demonstrate the occurrence of an intrinsic total

vibrational angular momentum due to nonadiabatic
(dynamical) effects by considering platinum clusters,
namely a trimer Pt3 and a pentamer Pt5. These systems
are ideal as (i) they are magnetic, (ii) the large spin-orbit
coupling leads to noncollinear magnetic structures, and
(iii) the HOMO-LUMO gap is very small.
We calculate the electronic structure and the vibrational

properties (adiabatic and nonadiabatic) of Pt3 and Pt5 by
performing fully relativistic calculations using version
6.4.1 of the QUANTUM-ESPRESSO suite [17] and the
compatible version of THERMO_PW[18] for the noncol-
linear treatment of the magnetization densities. We used
version 3.3.0 of the fully relativistic ONCV pseudopotential
[19,20] with the Perdew-Burke-Ernzerhof exchange-corre-
lation functional [21] and a kinetic energy cutoff of 120 Ry.
A simple cubic Bravais lattice structure with a parameter of
10.6 Å was used in order to minimize the interaction
between the molecules and their copies. The binding
energy per atom of each cluster is obtained as
ðnE1 − EnÞ=n, where n is the number of atoms in the
cluster and E1 is the energy of the isolated atom.
We find that the lowest-energy structure of Pt3 is an

isosceles triangle with interatomic distances of 2.489 Å and
2.501 Å, as shown in Fig. 1. The binding energy per atom is
2.177 eV. The HOMO-LUMO gap is Δ ¼ 137 meV in
agreement with [22,23]. The total magnetization is 1.58 μB.

For Pt5, we obtain as the lowest energy structure a
noncollinear magnetic trigonal bipyramid with the vertex
atoms slightly shifted toward one side of the basis triangle.
The interatomic distances and the noncollinear magnetic
atomic momenta are shown in Fig. 1. The calculated
binding energy per atom is 2.835 eV in agreement with
[24]. The HOMO-LUMO gap isΔ ¼ 92 meV, and the total
magnetization is 3.63 μB in agreement with [23]. The
smallness of Δ suggests the occurrence of large non-
adiabatic effects in Pt3 and Pt5.
Once the magnetic ground state is converged, we study

the vibrational properties of the Pt clusters using linear
response theory. The adiabatic (static) optical frequencies
of Pt3 and Pt5 are shown in the second column of Table I.
Then the nonlinear eigenvalue equation (7), is solved by

simply evaluating the force-constant matrix CληðωÞ at
different frequencies and by diagonalizing it. For each
mode, the nonadiabatic (dynamical) vibrational frequency
and polarization vectors can be found when the square root
of the eigenvalue is equal to the value of the frequency input
into the dynamical force constant matrix. The optical
frequencies thus obtained are shown in the fourth column
of Table I for Pt3 and Pt5. We find that in Pt3 and Pt5, the
nonadiabatic effects are small and do not modify the
frequency of the optical modes substantially. The vibra-
tional frequencies ω̃0

ν obtained by solving the nonlinear
eigenvalue equation (7), having replaced Cληðω̃νÞ with the
low-energy expansion of the dynamical matrix, Eq. (8), are
shown in column 5 of Table I.
Nonadiabatic (dynamical) effects modify the oscillatory

motion of the ions around their equilibrium positions. The
phonon ionic displacements are related to the polarization
vectors through uI ¼ Re½ẽIνe−iω̃νt�. In the adiabatic case,
the polarization vectors eIν are real, and the ionic motion
reduces to a one-dimensional oscillation. Instead, in the
nonadiabatic case, the polarization vectors ẽIν are complex,
and therefore the ions perform elliptical trajectories around
their equilibrium positions. Consequently, each ion gives
rise to an orbital angular momentum perpendicular to the
plane of the orbit. For each mode, the angular momentum
of the molecule is equal to the sum of the angular momenta
of the rotating ions. It can be evaluated by replacing the
nonadiabatic phonon polarization vectors ẽIν into Eq. (4).

FIG. 1. Noncollinear magnetic ground state of Pt3 and Pt5:
structure, interatomic distances, and magnetic momenta.

PHYSICAL REVIEW LETTERS 126, 225703 (2021)

225703-3



As an illustrative example, we represent in Fig. 2 the
adiabatic and nonadiabatic polarization vectors of two
stretching modes of Pt3 and Pt5. In both cases, the
polarization vectors acquire an imaginary part and the
nonadiabatic mode carries nonzero angular momentum.
The angular momentum of the optical modes of Pt3 and

Pt5 is listed in the right-hand side of Table I. Unexpectedly,
we record a sizeable vibrational angular momentum even
where the vibrational frequency is marginally altered by the

nonadiabatic (dynamical) effects. The magnitude of these
vibrational angular momenta is of the same order of the
typical values of the electron orbital momenta in itinerant
ferromagnets [25].
The total phonon angular momentum hLi ¼ P

ν lν is
nonzero because the angular momentum lν is calculated at
a different frequency for each mode ν. Since the angular
momentum of the molecule must be conserved, a non-
adiabatic variation of the electron angular momentum (spin
plus orbital) must also occur in order to compensate the
phonon contribution. The calculation of such variation,
however, requires simulating the nonadiabatic dynamics of
the whole molecule, which goes beyond the purpose of
this work.
In conclusion, we have shown that in noncollinear

magnetic molecules, nonadiabatic (dynamical) effects
due to the electron-vibron coupling are time-reversal
symmetry breaking interactions for the vibrational field.
Because the electronic wave function cannot be chosen as
real in these molecules, a nonzero geometric vector
potential arises. As a result, an intrinsic nonzero phonon
angular momentum occurs even for nondegenerate modes
and in the absence of external time-reversal symmetry
breaking probes. Our work provides the conceptual link
between topology, electron-phonon interaction, and the
existence of a nonzero intrinsic phonon angular momentum
in insulating noncollinear magnetic molecules.
As a proof of concept, we have demonstrated the

magnitude of this topological effect by performing non-
adiabatic first principles calculations on platinum clusters
and by showing that vibrons host sizeable intrinsic angular
momenta with a magnitude comparable to the typical
orbital electronic angular momenta in itinerant ferromag-
nets [25]. As the same conclusions obtained for a molecule
can be easily generalized to an insulating crystal, we
expect that in any noncollinear magnetic system (solid
or molecule) with strong electron-phonon interaction and a

TABLE I. Nonadiabatic effects in the optical modes of Pt3 and Pt5. From left to right, adiabatic mode index ν; adiabatic vibrational
frequencies ων; nonadiabatic frequencies ω̃ν; nonadiabatic frequencies ω̃0

ν obtained from the low-energy expansion of the dynamical
matrix, Eq. (8); Cartesian components of the angular momentum lν in units of ℏ=2.

ν ων (cm−1) ω̃ν (cm−1) ω̃0
ν (cm−1) lνx (ℏ=2Þ lνy (ℏ=2Þ lνz (ℏ=2Þ

Pt3
1 102.4 100.6 102.5 −0.048 0.000 0.000
2 121.7 121.2 121.7 0.000 0.000 0.000
3 217.7 217.7 217.7 0.001 0.000 0.000

Pt5

1 54.0 53.6 54.0 0.000 0.000 −0.064
2 71.1 71.1 71.1 0.000 0.000 −0.094
3 97.0 96.6 96.7 0.001 0.000 −0.089
4 103.3 103.5 103.5 0.002 0.000 −0.086
5 119.6 119.5 119.6 0.002 0.000 0.000
6 134.8 134.7 134.7 −0.003 0.000 0.071
7 138.6 138.6 138.6 0.000 0.000 0.093
8 169.4 169.4 169.5 0.000 0.000 0.001
9 210.4 209.9 210.5 0.000 0.000 −0.003

(a)

(b)

(a)

(b)

FIG. 2. From left to right, top (x-y) and side (y-z) representation
of the adiabatic (static) polarization vectors eν, of the real and
imaginary parts of the nonadiabatic (dynamical) polarization
vectors ẽν and of the vibrational angular momentum lν.
(a) Asymmetric stretching mode of Pt3 (ν ¼ 1). (b) Asymmetric
stretching mode of Pt5 (ν ¼ 6).
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sufficiently small gap, the nonadiabatic effects break time-
reversal symmetry and generate sizeable intrinsic phonon
angular momenta.
Finally, a question arises as to whether the angular

momenta of phonons can be observable in experiments.
There are two cases in which it can be detected. The first is
the case in which a twofold degenerate mode at zone center
occurs in the adiabatic phonon frequencies of the non-
collinear magnetic system. As the time-reversal symmetry
breaking nonadiabatic term related to the Berry connection
in Eqs. (1) and (3) lowers the crystal symmetry, then the
twofold degenerate mode could split in two different modes
hosting different angular momenta. In this case, even if the
angular momentum itself was not observed, its effects on
the phonon spectrum would be. The second case is infrared
absorption from left and right circularly polarized modes.
As the vibrational angular momentum affects the atomic
dipoles, the infrared intensities could be different for
different circular polarizations.
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