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We present a study of the IR behavior of a three-dimensional superrenormalizable quantum field theory
consisting of a scalar field in the adjoint of SUðNÞ with a φ4 interaction. A bare mass is required for the
theory to be massless at the quantum level. In perturbation theory, the critical mass is ambiguous due to IR
divergences, and we indeed find that at two loops in lattice perturbation theory the critical mass diverges
logarithmically. It was conjectured long ago in [R. Jackiw et al., Phys. Rev. D 23, 2291 (1981),
T. Appelquist et al., Phys. Rev. D 23, 2305 (1981)] that superrenormalizable theories are nonperturbatively
IR finite, with the coupling constant playing the role of an IR regulator. Using a combination of Markov
ChainMonte Carlo simulations of the lattice-regularized theory, frequentist and Bayesian data analysis, and
considerations of a corresponding effective theory, we gather evidence that this is indeed the case.
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Introduction.—Massless superrenormalizable quantum
field theories suffer from severe IR divergences in perturba-
tion theory: the same power counting argument that implies
good UV behavior also implies bad IR behavior. Explicit
perturbative computations (with an IR regulator) lead to IR
logarithms that make the perturbative results ambiguous.
The fate of the IR singularities was discussed in [1,2], where
it was argued that such theories are nonperturbatively IR
finite. In the examples analyzed in [1,2], the nonperturbative
answer, when expanded with a small coupling constant,
reduced to the perturbative result but with the IR regulator
replaced by the (dimensionful) coupling constant.
One motivation for the original studies was that in the

high-temperature limit of four-dimensional Yang-Mills
theory there is an effective dimensional reduction to three
dimensions, and the dimensionally reduced theory is
superrenormalizable (see, for example, [2–4]). Here our
motivation comes from a new application of massless

superrenormalizable theories: such theories appear in holo-
graphic models for the very early Universe [5].
The models introduced in [5] are based on three-

dimensional SUðNÞ Yang-Mills theory coupled to mass-
less scalars φ in the adjoint of SUðNÞ with a φ4

interaction. To compute the predictions of these models
for cosmological observables, one needs a nonperturba-
tive evaluation of the relevant quantum field theory (QFT)
correlators. This is the case even in the regime where the
effective expansion parameter is small because of the IR
singularities discussed above. Moreover, understanding
the IR behavior of this QFT is important for another
reason: in holographic cosmology cosmic evolution
corresponds to inverse RG flow, and the initial singularity
in the bulk is mapped to the IR behavior of the dual QFT.
Thus, a mechanism for curing the IR singularities would
also provide a holographic resolution of the initial bulk
singularity.
In this Letter, we initiate the study of such a theory using

lattice methods. Wewill focus on the simplest theory within
this class: a three-dimensional massless scalar QFT with φ
in the adjoint of SUðNÞ and a φ4 interaction regularized on
a Euclidean space-time lattice [6,7]. It turns out this theory
still provides an interesting holographic model. Irrespective
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of the holographic motivation, we believe that understand-
ing the fate of IR singularities in this QFT is an interesting
problem in its own right, and this model provides the
possibility to explicitly test the hypothesis in [1,2].
We address two central questions in this Letter: Is the

theory nonperturbatively IR finite, and what is the critical
mass, i.e., what is the value of the bare mass such that the
renormalized theory is massless? The latter question is
crucial for future simulations at the massless limit where
the holographic duality is defined [5]. Through two loops the
critical mass is both linearly UV divergent and logarithmi-
cally IR divergent. We proceed to a nonperturbative deter-
mination of the critical mass in Markov Chain Monte Carlo
simulations of the discretized Euclidean path integral, where
naively the inverse of the finite extent of the lattice L acts as
the only IR regulator. By studying the finite-size scaling
(FSS) nonperturbatively, within the effective theory and on
the lattice, we find evidence for the absence of the IR
divergence beyond perturbation theory.
TheN ¼ 2model is equivalent to theOð3Þ vector model,

and the N ¼ 3model is in the same universality class as the
Oð8Þ vector model [8]. These models have been studied
widely in the literature [9], including studies of their critical
mass and other values of N [10–12]. For N > 3, such an
equivalence is not obvious, and little is known about the
theories’ phase structure (see, for example, [13]).
Lattice perturbation theory.—We consider the three-

dimensional Euclidean scalar SUðNÞ valued φ4 theory

S¼
Z

d3xTrf½∂μφðxÞ�2þðm2−m2
cÞφðxÞ2þλφðxÞ4g ð1Þ

with fields φ ¼ φaðxÞTa, where φaðxÞ is real and Ta are the
generators of SUðNÞ (Tr½TaTb� ¼ 1

2
δab). In the following,

we prefer to work with a rescaled version of the action
where the ’t Hooft scaling is explicit:

S ¼ N
g

Z
d3xTrf½∂μϕðxÞ�2 þ ðm2 −m2

cÞϕðxÞ2 þ ϕðxÞ4g;

ð2Þ

which we obtain from Eq. (1) by identifying ϕ ¼ ffiffiffiffiffiffiffiffiffi
N=g

p
φ

and λ ¼ g=N, where g is the ’t Hooft coupling, which
should be kept fixed in the large N limit. The field ϕ and
coupling constant g have mass dimension 1.
To discretize the theory on a 3D space-time lattice with

lattice spacing a, we replace partial derivatives by finite
differences, ∂μϕðxÞ→δμϕðxÞ¼ ½ϕðxþ μ̂aÞ−ϕðxÞ�=a, and
integrals by sums

R
d3x → a3

P
x∈Λ3 , where a is the lattice

constant, μ̂ a unit vector in the μ direction, and Λ3 is the set
of all lattice sites. We use periodic boundary conditions.
The diagrams that contribute to the critical mass m2

c at
the two-loop level are shown in Fig. 1. The IR-finite but
linearly UV-divergent one-loop integral is

Z
π=a

−π=a

d3k
ð2πÞ3

1

k̂2
¼ Z0

a
with Z0 ¼ 0.252731… ð3Þ

for lattice momenta k̂ ¼ ð2=aÞ sinðka=2Þ. The integral to
be evaluated at two loops with vanishing external momen-
tum p ¼ 0 is

DðpÞ ¼
Z

π=a

−π=a

d3k
ð2πÞ3

d3q
ð2πÞ3

1

k̂2q̂2r̂2
; ð4Þ

where r ¼ −k − q − p, and hatted quantities are defined
as above. By naive dimensional counting, confirmed by
repeating the analysis of the IR properties of this diagram in
[14] for d ¼ 3, we find that the integral diverges logarithmi-
cally in the IR as follows:

DðpÞ ¼p→0
DIRðpÞ ¼ −

logðjpajÞ
ð4πÞ2 ð5Þ

(see the derivation in Sec. I of the Supplemental
Material [15]).
Following [1,2], we choose to introduce an IR regulator

by setting the external momentum to g=ð4πNÞ≡ Λ. (While
the expression for the logarithmic cut-off dependence for
a given UV regulator can be computed in perturbation
theory [16,17], the precise form for the IR regulator is
unknown.) The two-loop expression for the critical mass
then evaluates to

m2
cðgÞ ¼ −g

Z0

a

�
2 −

3

N2

�
þ g2DðΛÞN ðNÞ; ð6Þ

where N ðNÞ ¼ 1–6=N2 þ 18=N4 (see also [17]).
Representative values for DðΛÞ and m2

cðgÞ at one and
two loops for N ¼ 2 are listed in Table I. (We evaluate the
two-loop lattice momentum integral using the Markov
Chain Monte Carlo integrations implemented in VEGAS

[18]. The error estimates we provide together with the
results are statistical only.) For the range of couplings
presented in the table, the change from one to two loops
corresponds to a relative change in the range 1% to 6%.
Note that the n loop (n > 2) contribution to the critical
mass is power-law IR divergent: ∼g2ðg=ΛÞn−2. If Λ ∼ g,
as in the mechanism of [1,2], such terms are finite and

FIG. 1. One- and two-loop diagrams contributing to the mass
renormalization in double-line representation representing matrix
indices of the scalar propagator.
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proportional to g2. On the other hand, if the theory is truly
IR divergent, such terms would dominate in the IR.
Finite-size scaling for m2

c.—In this section, we provide
details and results of our nonperturbative studies toward
the determination of the critical mass. Our strategy is to
compute the critical mass as a function of the IR cut-off
given in terms of the inverse lattice size 1=L by means of
FSS. The observable we consider is the Binder cumulant

B ¼ 1 −
N
3

hTr½M4�i
hTr½M2�i2 ; ð7Þ

whereM is the magnetization matrix defined below, and h·i
indicates the expectation value under the Euclidean path
integral.
For each choice of simulation parameters, we determine

the bare input mass m̄2ðB̄; g; LÞ in the critical region for
which the Binder cumulant takes some suitably chosen
value B̄. The Binder cumulant in a finite volume of extent L
in the critical scaling region is described by a scaling
function f:

B̄ ¼ fð½m̄2ðB̄; g; LÞ −m2
cðgÞ�=g2x1=νÞ; ð8Þ

where x ¼ gL and ν is the critical exponent. Expanding f in
the vicinity of the critical mass, we find the leading FSS
behavior

m̄2ðB̄; g; LÞ ¼ m2
cðgÞ þ g2x−1=ν

B̄ − fð0Þ
f0ð0Þ : ð9Þ

FSS in the continuum effective theory.—Before analyz-
ing and interpreting simulation data for the FSS of the
critical mass, we can gain further analytical understanding
of the critical behavior. To this end, we consider the
effective field theory (EFT) of the zero mode of the field
ϕ, i.e., the magnetization

M ¼ 1

L3

Z
d3xϕðxÞ; ð10Þ

and fluctuations χ around it, i.e., ϕ ¼ M þ χ. In the vicinity
of the critical point, the long-distance contributions

described by M dominate, motivating us to consider the
leading-order effective action

Seff ¼
L3N
g

fðm2 −m2
cÞTr½M2� þ Tr½M4�g: ð11Þ

Following [19], we quantize the theory under the finite-
volume path integral and find integral expressions for the
Binder cumulant (for details see Sec II of the Supplemental
Material). Expanding again in the vicinity of the critical
point, we recover Eq. (9) and compute the leading-
order predictions νjN¼2;4 ¼ 2=3, fð0ÞjN¼2 ≈ 0.5431, and
f0ð0ÞjN¼2 ≈ −0.03586, and fð0ÞN¼4 ≈ 0.4459 and
f0ð0ÞN¼4 ≈ −0.02707, respectively.
Lattice simulation.—We implemented the model in the

GRID library [20,21] with both the hybrid Monte Carlo [22]
and a heat-bath overrelaxation algorithm [23–26]. We
generated ensembles of Oð100 kÞ field configurations
for N ¼ 2, 4, volumes with L=a ¼ 8, 16, 32, 48, 64, 96,
128, couplings ag ¼ 0.1, 0.2, 0.3, 0.5, 0.6, and a number of
bare mass parameters in the vicinity of the perturbative
prediction for m2

cðgÞ in Eq. (6). By using a wide range of
couplings, a large range of lattice volumes was covered
(0.8 ≤ x ≤ 76.8) while keeping simulation costs accept-
able. (The simulation data as well as the PYTHON analysis
code have been made publicly available as [27,28].)
Using multihistogram reweighting [29], we obtained a

continuous representation of the Binder cumulant as a
function of the bare scalar mass. Example results for
BðN; g; LÞ are shown in the top panel of Fig. 2, and the
reweighting is illustrated in the bottom panel. The analysis
was carried out under bootstrap resampling [30]. We deter-
mined the integrated autocorrelation time τint forM2,M4, and
ϕ2 with the method of [31], with the largest values being
O(100). All data was binned into bins of size maxð50; 4τintÞ.
The reweighting allows for a model-independent determi-
nation of m̄2ðB̄; g; LÞ by means of an iterative solution.
Example results for m̄2ðB̄; g; LÞ are listed in Table II.We note
the proximity of these finite-volume results to the two-loop
infinite-volume prediction listed in Table I.
Finite-size scaling analysis.—We now turn to the fitting

of m̄2ðB̄; g; LÞ. Guided by Eq. (9), we chose the fit ansatz

m̄2ðB̄; g; LÞ ¼ m2
cðgÞj1−loop þ g2α

þ g2
�
x−1=ν

B̄ − f0
f1

þ βDIRðΛIRÞN ðNÞ
�
:

ð12Þ

The first term is the one-loop expression for the critical
mass, and it removes the linear UV divergence perturba-
tively [cf. Eq. (6)]. The coefficient α includes potential
residual scheme dependence in the IR or UV regulator, e.g.,
normalization factors in the argument of DIR, as well as the
contribution from higher loops when ΛIR ∼ g. The second

TABLE I. Results for the two-loop integral DðΛÞ and the
critical mass in lattice perturbation theory.

ag DðΛÞ
ðamcÞ2, N ¼ 2

1 loop 2 loop

0.1 0.054 69(19) −0.031 59 −0.031 25
0.2 0.049 53(13) −0.063 18 −0.061 94
0.3 0.047 83(13) −0.094 77 −0.092 08
0.5 0.045 311(92) −0.157 96 −0.150 88
0.6 0.044 134(90) −0.18955 −0.17962
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term in brackets parameterizes the dependence on the
IR cut-off for which we study, respectively, ΛIR ¼
ð1=4πÞðg=NÞ and 1=L. In the case ΛIR ¼ 1=L, the n-loop
IR-divergent contribution yields g2xn−2, which is of the
same form as the finite scaling correction but with effective
scaling dimension that tends to zero as n → ∞. If such
terms are present, their effects would dominate over the
logarithmic or the finite size behavior in the IR. To better

constrain the fit, we simultaneously analyze data from
various pairings of two B̄ values in the vicinity of fð0Þ as
predicted in the EFT. For N ¼ 4, we allowed one value of α
per B̄ value. For N ¼ 2, excellent fit quality was achieved
without this additional freedom.
The central fits are for pairs B̄ ¼ f0.52; 0.53gjN¼2 and

f0.42; 0.43gjN¼4, respectively, for which we found the
largest number of degrees of freedom described simulta-
neously. The ansatz in Eq. (12) provides an excellent
parameterization (p values well above 5%) for the simu-
lation data over the entire range gLmin ≳ 12 to
gLmax ¼ 76.8. The case N ¼ 2 is illustrated in Fig. 3 for
ΛIR ¼ ð1=4πÞðg=NÞ. Table III summarizes the fit results.
The first error is statistical, and, where applicable, the
second error is the maximum shift of the fit result under
variation of gLmin and the choice of B̄ pairs with B̄∈
f0.51;0.52;0.53;0.54;0.55;0.56;0.57;0.58;0.59gjN¼2 and
B̄ ∈ f0.42; 0.43; 0.44; 0.45; 0.46; 0.47gjN¼4, while requir-
ing at least 15 d.o.f. Note that the result for β is compatible
with the prediction from perturbation theory, β ¼ 1
[cf. Eqs. (4) and (12)]. The result for ν for N ¼ 2 agrees
well with a previous lattice determination [32], ν ¼
0.710ð2Þ. The EFT predictions for ν and fð0Þ agree at
the few-percent level. Fits with ΛIR ∝ 1=L are not possible
for similarly small values of gLmin. For N ¼ 2, the first

TABLE II. Results for ðam̄Þ2ðB̄ ¼ 0.53; g; LÞ for N ¼ 2.

ag

L=a 0.1 0.2 0.3 0.5 0.6

8 −0.024 289ð87Þ −0.050 48ð16Þ −0.077 17ð13Þ −0.129 89ð17Þ −0.156 80ð31Þ
16 −0.028 398ð37Þ −0.057 413ð65Þ −0.086 163ð97Þ −0.143 556ð77Þ −0.172 05ð13Þ
32 −0.030 071ð19Þ −0.060 181ð51Þ −0.090 135ð40Þ −0.149 284ð65Þ −0.178 777ð53Þ
48 −0.030 595ð21Þ −0.061 032ð37Þ −0.091 267ð47Þ −0.151 126ð48Þ −0.180 582ð51Þ
64 −0.030 841ð13Þ −0.061 448ð45Þ −0.091 814ð26Þ −0.151 816ð72Þ −0.181 522ð28Þ
96 −0.031 067ð12Þ −0.061 811ð16Þ −0.092 270ð31Þ −0.152 521ð29Þ −0.182 345ð66Þ
128 −0.031 126 6ð93Þ −0.061 962ð43Þ −0.092 486ð29Þ −0.152 808ð33Þ −0.182 680ð29Þ

FIG. 2. Top: N ¼ 2 (left) and N ¼ 4 (right) results for the
Binder cumulant, the EFT prediction for fð0Þ, and the value of
the Binder cumulant in the limits m2 → �∞. The values on the x
axis have been rescaled using the values of the critical exponent ν
and the critical masses m2

c determined in (cf. Table III). The
darker colors correspond to larger values of gL. Bottom: Data
points from simulations, lines from reweighting with width
corresponding to the statistical error. Intersects of N ¼ 4,
g ¼ 0.6 data for, from left to right, L=a ¼ 128, 96, 64, 48,
32, 8, 16 with B̄ ¼ 0.43 indicated with y-error bars. The black
vertical line indicates the two-loop infinite-volume value of the
critical mass.

FIG. 3. Central fit N ¼ 2, B̄ ¼ 0.52, 0.53. Dashed lines
correspond to the two-loop prediction for the effective mass,
solid lines to the fit result including error band. Value of ag
increasing from bottom to top. At each coupling, the top set of
points corresponds to B̄ ¼ 0.52 and the bottom set to B̄ ¼ 0.53.
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acceptable (p ≥ 0.05) fit is possible only after discarding
all data with gL < 32 and for N ¼ 4, gL < 24. The rhs axis
in Fig. 4 shows how the p value varies with the cut in gL.
Generally, larger p values forΛIR ∝ g at a given value of gL
indicate that this ansatz provides a better description of the
data in terms of a χ2 analysis. Inserting the fit parameters in
Table III into Eq. (12) and taking the limit x → ∞, we

obtain predictions for the infinite-volume critical mass. For
instance, for ag ¼ 0.1 we find ðamcÞ2 ¼ −0.031341ð4Þð6Þ
for N ¼ 2 and ðamcÞ2 ¼ −0.045515ð2Þð7Þ for N ¼ 4. If
we assume the IR power divergences DIRðxÞ ∼ xn (n ¼ 1,
2, 3, 4) in lieu of logarithmic, no single acceptable fit is
found (p ¼ 0.00).
We also address the question of the IR regulator

within the framework of Bayesian inference with uniform
priors α ∈ ½−0.4; 0.4�, fð0Þ ∈ ½0; 1�, f0ð0Þ ∈ ½−20; 20�,
β ∈ ½−15; 15�, and ν ∈ ½0; 15�. As in the frequentist study,
forN ¼ 4, two values of α are used: α1;2 ∈ ½−0.4; 0.4�. This
analysis was done using PyMultiNest [34] as an interface to
the MultiNest [35–37] code. The marginalized probabilities
of each model (ΛIR ∝ g and ΛIR ∝ 1=L) were calculated
across a range of gLmin cuts and pairings of B̄ values. In
Fig. 4, both the p value and the Bayes factor of the central
fit are shown across the range of gLmin values. In this plot,
the graph is broken down into regions according to the
Jeffreys’ scale [33]. The Bayes factorK is E1=E2, where E1

and E2 are the marginal probabilities for model 1 (ΛIR ∝ g)
and model 2 (ΛIR ∝ 1=L), respectively. If E ¼ log10ðKÞ is
greater than 1, there is strong evidence for model 1 over
model 2, and if it is greater than 2, it is decisive. The reverse
is true for negative values of E in support of model 2. As the
cut on gLmin is reduced (more data is used), the evidence
for ΛIR ∝ g increases, with there being decisive evidence
under the Jeffreys’ scale for all gLmin cuts forN ¼ 2 and for
gLmin ≤ 19.2 cuts for N ¼ 4. The same pattern is seen for
all B̄ values.
One can also obtain parameter estimates via the posterior

probability distribution, which we find to be in excellent
agreement with the results for the fit parameters from the χ2

analysis.
In conclusion, Bayesian inference prefers the IR-finite

ansatz over the IR-divergent one; complementary and
consistent with this, from χ2 fits we find the IR-finite
FSS ansatz (ΛIR ∝ g) able to describe more degrees of
freedom (i.e., a larger range in gL) with acceptable p values.
Conclusions and outlook.—We present the first non-

perturbative study of the critical properties of a
three-dimensional superrenormalizable scalar QFT with
φ4 interaction and fields in the adjoint of SUðNÞ with
N ¼ 2, 4. When studied in lattice perturbation theory, the
theory exhibits a logarithmic IR divergence for the critical
mass at the two-loop level. The absence of this divergence
in our numerical results from lattice simulations provides
strong evidence for the IR finiteness of the full theory.
This constitutes one of the central results of this study.

TABLE III. Results of χ2 fits to finite-size scaling data. The first error is statistical and the second systematic as described in the text.

N gLmin gLmax αi ν β fð0Þ f0ð0Þ p χ2=Nd:o:f . Nd:o:f .

2 12.8 76.8 0.001 9(8)(18) 0.71(1)(6) 1.05(5)(10) 0.577(1)(16) −0.058ð4Þð53Þ 0.2 1.2 31
4 12.8 76.8 0.001 0(5)(3) 0.001 4(4)(4) 0.840(8)(8) 1.03(2)(2) 0.497(1)(5) −0.090ð3Þð3Þ 0.07 1.4 30

FIG. 4. Top: N ¼ 2, B̄ ¼ 0.52, B̄ ¼ 0.53 data. Bottom: N ¼ 4,
B̄ ¼ 0.42, B̄ ¼ 0.43 data. The p value of the fit of Eq. (12) with
ΛIR ∝ g and ΛIR ∝ 1=L (right y axis) is shown by the orange
squares and green triangles, respectively. The black circles
represent the log in base 10 of the Bayes factor, E ¼ log10ðKÞ,
whereK ¼ E1=E2 withE1 and E2 being the marginal probabilities
for fits with (ΛIR ∝ g) and (ΛIR ∝ 1=L), respectively. The colored
regions represent the strength of the evidence under the Jeffreys’
scale [33]. Blue regions represent decisive evidence (jEj > 2),
while the yellow regions represent strong evidence (1 < jEj < 2)
and the pink region represents insignificant evidence (jEj < 1).
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Further results are the nonperturbative determination of the
critical masses. For the range of couplings considered here,
the critical mass agrees with two-loop perturbation theory
at and below the percent level when employing the
dimensionful coupling constant g as IR regulator, confirm-
ing the expectation of [1,2]. Our result for the critical
exponent is close to the leading-order effective theory
prediction, where the effective fields correspond to the
magnetization of the full theory.
Three-dimensional superrenormalizable QFTs consist-

ing of the Yang-Mills theory coupled to adjoint scalar and/
or fermionic matter are candidate theories for describing the
physics of the early Universe by means of holographic
duality. Our determination of the critical point constitutes
the starting point for the study of cosmology from a three-
dimensional QFT. In view of the holographic duality, the
cosmic evolution corresponds to inverse RG flow where the
initial singularity is mapped to the IR behavior of the QFT.
The absence of an IR singularity on the QFT side may thus
be seen as the holographic resolution of the initial singu-
larity in the bulk.
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