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Precision measurements using a traditional heterodyne readout suffer a 3 dB quantum noise penalty
compared with a homodyne readout. The extra noise is caused by the quantum fluctuations in the image
vacuum. We propose a two-carrier gravitational-wave detector design that evades the 3 dB quantum penalty
of the heterodyne readout. We further propose a new way of realizing frequency-dependent squeezing
utilizing two-mode squeezing in our scheme. It naturally achieves more precise audio frequency signal
measurements with radio frequency squeezing. In addition, the detector is compatible with other quantum
nondemolition techniques.
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Introduction.—Since 2015, laser interferometric gravi-
tational-wave detectors have made a series of direct
observations of gravitational waves from mergers of binary
black holes and neutron stars [1–3]. They have opened a
new observational window into the universe and provided
significant inputs to many scientific fields. In the detector,
to translate the electromagnetic sidebands into a measur-
able electrical signal, a readout scheme is required, which is
also fundamental for determining the sensitivity of the
detector [4].
Heterodyne readout is widely implemented in precision

measurements, e.g., for the stabilization of laser frequen-
cies and optical cavities (also known as the Pound-Drever-
Hall technique [5,6]) and for quantum squeezing
characterization due to its natural immunity to the low-
frequency laser noise [7–11]. Compared with homodyne
readout, heterodyne readout suffers 3 dB noise penalty as
the scheme picks up the vacuum fields above and below the
local oscillator (LO). The additional field that does
not coincide with the signal is called the image vacuum
[12–15]. The noise penalty is a direct and necessary
consequence of the Heisenberg uncertainty principle when
all quadratures are allowed to be measured simultaneously
[16]. In the first generation of gravitational wave detectors,
a heterodyne readout with two balanced radio frequency
(rf) sidebands was used [17], reducing the factor of 2 (3 dB)
quantum penalty to a factor of 1.5. In that scheme, the
vacuum fields which are twice the modulation frequency
away from the carrier couple to the readout channel [16]. In
subsequent detector upgrades, the readout scheme was
switched to dc readout [17,18], a variant of homodyne

readout. The LO in the dc readout is derived by slightly
detuning the arm cavities, which offsets the interferometer
from a perfect dark fringe. Direct current readout has the
advantage of a straightforward implementation without
needing an external LO. However, the dark-fringe offset
induces extra couplings of technical noises and is not ideal
for future-generation gravitational wave detectors [19]. A
balanced homodyne readout can eliminate the dark fringe
offset by introducing a spatially separated LO [4]. This
requires auxiliary optics on the LO path and an additional
output optical mode cleaner. Meanwhile, heterodyne read-
out is used in current detectors for the stabilization of
auxiliary degrees of freedom, e.g., the lengths of recycling
cavities [20,21].
Is there a way to evade the fundamental quantum noise

penalty with a heterodyne readout? It was found that the
noise penalty of a heterodyne readout could be evaded if the
image vacuum fields can be excited to contain coherent
signal flux [14,22,23]. Inspired by this finding, we give a
new gravitational wave detector scheme that includes two
carriers at ω1 and ω2 with a beam at ωL ¼ ðω1 þ ω2Þ=2
serving as the heterodyne LO. The three beams are evenly
separated by an rf ωm. The schematic of the design is
shown in Fig. 1. The two carriers resonate, and the LO
antiresonates in the arm cavities. The LO resonates in
recycling cavities. This new design with a heterodyne
readout will lead to the same quantum-limited sensitivity
as with a homodyne readout and the same total arm power.
Another highlight of the two-carrier detector with a

heterodyne readout is the simplicity of generating quantum
squeezing. Most gravitational-wave signals from a compact
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binary system detected by ground-based detectors are
within the audio band, from several hertz to several
kilohertz. However, at audio frequencies, excess noises
are significant due to the parasitic interferences from
scattered light [24,25]. In general, even though the signal
field is on dark fringe, a bright LO is required for photon
detection and can introduce audio-band scattering to the
audio-band squeezer. We will show that, instead of observ-
ing audio-band squeezing [26,27] around LO frequency,
radio frequency squeezing in a broadband two-mode
quantum state is sufficient in our configuration, i.e., low-
frequency signals measurement with high-frequency
squeezing [28,29]. Note that the audio-band noises with
respect to the carriers cannot be omitted.
Heterodyne readout and two-mode squeezing.—In a

single sideband heterodyne readout, two vacuum fields,
ŝ1;�Ω; ŝ2;�Ω around frequencies ω1 and ω2 are measured as
shown in Fig. 2. The eventual photocurrent containing the
signal and noise can be derived as

I ∝ ŝ†1;−Ωe
iðϕL−ϕDÞ þ ŝ†2;−Ωe

iðϕLþϕDÞ

þ ŝ1;Ωe−iðϕL−ϕDÞ þ ŝ2;Ωe−iðϕLþϕDÞ; ð1Þ

where ϕL is the LO phase and is assumed to be π=2 in this
Letter, ϕD is the demodulation phase. In the two-photon
formalism [30,31], the photocurrent is proportional to the
combined quadrature [32]

Q̂ζ ¼ Hζ · ½ X̂1 Ŷ1 X̂2 Ŷ2 �T; ð2Þ

with Hζ ≡ ½cos ζ1; sin ζ1; cos ζ2; sin ζ2�. Here, X̂j, Ŷj

(j ¼ 1, 2) represent the amplitude and phase quadrature
of the sidebands ŝ1;�Ω and ŝ2;�Ω, respectively. ζj defines
the measurement quadrature,

ζ1 ¼ ϕL − ϕD; ζ2 ¼ ϕL þ ϕD: ð3Þ

We normalize the shot noise spectral density for the
vacuum state to be 1. With the pumping laser frequency
of the squeezer at 2ωL, the quadratures of two modes at ω1

and ω2 are correlated [7,32–34], of which the correlation is
quantified by the covariance matrix,

V ¼

2
66664
α 0 β 0

0 α 0 −β
β 0 α 0

0 −β 0 α

3
77775; ð4Þ

where α ¼ cosh 2r, β ¼ sinh 2r, and r is the phase squeez-
ing factor. The spectral density of the combined quadrature
Q̂ζ in Eq. (2) is given by

HζVHT
ζ ¼ 2α − 2β ¼ 2e−2r; ð5Þ

which is a natural result of the EPR entanglement between
quadratures of the two modes [9,35–37]. This is clearly
depicted in Fig. 2. This two-mode quantum state can be
achieved with a broadband squeezer, which, in principle,

Broadband 
Squeezer

FIG. 1. Schematic of the two-carrier gravitational-wave detec-
tor with heterodyne readout. The red, blue, and cyan lasers
correspond to the carriers at ω1, ω2, and the LO at
ωL ¼ ðω1 þ ω2Þ=2, respectively. The three beams are spatially
overlapped in the detector. The broadband squeezer is pumped at
2ωL and has a bandwidth from ω1 − Ω to ω2 þ Ω.
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FIG. 2. Two-carrier heterodyne readout with two-mode squeez-
ing: sideband picture (top) and quadrature picture (bottom). The
two carriers are at frequencies ω1 and ω2. The LO field is in the
middle at ωL ¼ ðω1 þ ω2Þ=2. The squeezer is pumped at 2ωL,
entangling sideband pairs symmetric around the LO field at ωL.
This leads to a two-mode EPR entanglement between quadratures
on ζ1 and ζ2. Ω is audio frequency and ωm is the separation
between the LO and each carrier.
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gives constant squeezing within the bandwidth from
ω1 −Ω to ω2 þΩ. However, in our scheme, squeezing
only around ω1 and ω2—i.e., ωm away from half of the
squeezer pumping frequency—is required to be observed.
This means that, although we need a broadband
squeezer, good squeezing around ωL is not required to
be observed. In a single-carrier scheme with a heterodyne
readout, in which only one of the two modes takes signal,
the noise to signal ratio is 2e−2r, where the signal part is
normalized to be 1. The factor of 2, here, corresponds to
the well-known 3 dB quantum penalty. In the two
carrier scheme, the same total power is divided into two
carriers equally, and the noise to signal ratio becomes
2e−2r=ð ffiffiffi

2
p

=2þ ffiffiffi
2

p
=2Þ2 ¼ e−2r, which demonstrates the

evasion of the 3 dB penalty.
Quantum noise of the detector.—So far, we have been

focusing on shot noise. Inside the interferometer, the two
sideband modes interact with the test mass through the
radiation pressure force by beating with the two carriers,
which also introduces radiation pressure noise. When the
interferometer is tuned with equal power in two carriers,
he optomechanical factors describing the interaction of the
modes with the test mass mirrors and their cross correlation
are identical. They are equal to half of the optomechanical
factorK defined in Ref. [38]. Note that, here, because ωm is
much smaller than ωj, we neglect the effect of the differ-
ence in the wavelength of two carriers. The input-output
transfer matrix T for the quadratures of these two modes
and their response vector R of the interferometer to the
gravitational wave strain can be derived as [39]

T ¼ e2iΦ

2
6664

1 0 0 0

−K=2 1 −K=2 0

0 0 1 0

−K=2 0 −K=2 1

3
7775; R ¼ eiΦ

hSQL

2
6664

0ffiffiffiffi
K

p

0ffiffiffiffi
K

p

3
7775:

ð6Þ

Here, Φ ¼ atanðΩ=γÞ is the phase of the sidebands at
frequency Ω acquired by reflection from the interferometer
with an effective bandwidth γ. The optomechanical factor is

K ¼ 16ωLPγ
mcLΩ2ðγ2 þ Ω2Þ ; ð7Þ

where m is the mass of each mirror, and P is the
total circulating power in the arm cavity. The standard
quantum limit (SQL) of the detector in strain is
hSQL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ℏ=ðmΩ2L2Þ

p
.

The low-frequency radiation pressure noise can be
improved by using frequency-dependent squeezing [38].
The filter cavity provides frequency dependent quadrature
rotations θ1, θ2 for the two modes, which can be described
by [42]

Pθ ¼

2
66664
cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2
0 0 sin θ2 cos θ2

3
77775: ð8Þ

The quantum noise spectral density of the heterodyne
readout is given by

Shh ¼
HζTPθVPT

θT
†HT

ζ

jHζRj2 : ð9Þ

When the frequency-dependent rotation angle satisfies

cosðθ1 þ θ2Þ ¼
1 −K2

1þK2
; ð10Þ

the noise spectrum reaches the minimal value

Smin
hh ¼ h2SQL

2

K2 þ 1

K
e−2r: ð11Þ

In a special case of Eq. (10), θ1 ¼ θ2 ¼ atanK, the required
frequency dependent rotation angle is the same as that in
the single-carrier detector with a homodyne readout [38].
Thus, one filter cavity is sufficient, and its parameters are
identical to that in a single-carrier detector, as long as 2ωm
is an integer multiple of the free spectral range (FSR) of the
filter cavity. In Fig. 3, we plot the noise spectral densities

Frequency [Hz]
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FIG. 3. Quantum-limited sensitivity of different configurations.
The blue curve corresponds to the case of a single-carrier detector
with heterodyne readout. The orange curve corresponds to the
two-carrier detector, which perfectly overlaps with the dashed
yellow curve for homodyne readout. The solid purple curve is the
sensitivity of the two-carrier detector with 10 dB squeezing,
which perfectly overlaps with the dashed green curve for
homodyne readout with the same squeezing. The dot-dashed
purple curve corresponds to a 15% power imbalance between the
two carriers while the total power stays constant. The black curve
is the standard quantum limit. The detector and filter cavity
parameters used in the two-carrier detector are the same as those
of Advanced LIGO [43,44] and Advanced LIGO upgrade [45].
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for different configurations as a comparison. The two-
carrier detector with a heterodyne readout gives identical
sensitivity to that of Advanced LIGO with a homodyne
readout. The figure also shows that the scheme is robust
against a power imbalance between the two carriers. A
rather large 15% power imbalance between the two carriers
under 10 dB frequency-dependent squeezing only results in
a 20% degradation in sensitivity at low frequencies. At low
frequencies, where the radiation pressure noise dominates,
an ideal EPR measurement at the output of the interfer-
ometer is not enabled due to an asymmetric optomechanical
effect from the power imbalance. The impact of a 15%
power imbalance on the signal is negligible, leading to only
a 0.57% sensitivity degradation at high frequencies.
Criteria for macroscopic lengths.—In our proposed

scheme, the lengths between core optics need to be care-
fully set to defined absolute values to guarantee coreso-
nance of the respective optical fields. This introduces
requirements on the macroscopic lengths in addition to
the usual requirements for controlling the microscopic
position of the optics. We anticipate this coresonance
requirement to be relatively easy to achieve, as the current
lock acquisition system already permits selecting a specific
fringe.
To keep the carriers resonant and the LO beam anti-

resonant in the arm cavities, 2ωm shall be an odd multiple
of the FSR of the arm cavity. Another consideration is on
the coupling between the symmetric and antisymmetric
ports for both the carriers and the LO. Taking the LO field
as dc by convention (ωL ¼ 0, ω1 ¼ −ωm, ω2 ¼ ωm), and
locking the central Michelson on its bright fringe, we can
treat the central Michelson as an effective mirror with
amplitude transmissivity

rMI ¼ ira sin
ωΔl
c

; tMI ¼ ra cos
ωΔl
c

; ð12Þ

where ω is the sideband frequency, Δl is the Schnupp
asymmetry [21], and ra is the amplitude reflectivity of arm
cavities. For the LO antiresonating in the arm cavities,
ra ¼ −1, andω ¼ ωL ¼ 0. For the carriers we have ra ¼ 1,
as well as ω ¼ ω1 ¼ −ωm and ω ¼ ω2 ¼ ωm, respectively.
To keep the carriers on the Michelson dark fringe, we need
to have ωmΔl=c ¼ π=2. The macroscopic round-trip length
of the signal recycling cavity and power recycling cavity
should be tuned to satisfy the following conditions: in the
signal recycling cavity, the signal (carrier) modes are
antiresonant, while the LO beam is resonant; in the power
recycling cavity, all three beams are on resonance. In
Advanced LIGO, ωm is around 2π × 45 MHz, so Δl needs
to be around 1.67 m. Given the Advanced LIGO power and
signal recycling mirror transmissivities of 0.03 and 0.325,
the effective power transmissivity of the LO field from the
symmetric port to the antisymmetric port is around 25%. To
use one filter cavity for two modes, we can make 2ωm be an

integer multiple of the FSR of the filter cavity, as mentioned
earlier.
The mirror motion coupling at 2ωm.—With two carriers

resonating in the arm cavities, the mirror motion around
2ωm sensed by one carrier is also measured within the
audio band with respect to other carriers. The additional
noise current is

I2ωm
∝ ŝ†1;2ωm−Ωe

iðϕLþϕDÞ þ ŝ†2;−2ωm−Ωe
iðϕL−ϕDÞ

þ ŝ1;2ωmþΩe−iðϕLþϕDÞ þ ŝ2;−2ωmþΩe−iðϕL−ϕDÞ; ð13Þ

where ϕL ¼ π=2, ϕD ¼ 0 in our scheme. Around fre-
quency 2ωm, the radiation pressure also excites mirror
motion at the vibration mode resonances of the mirror. The
susceptibility at 2ωm þΩ of the vibration mode at resonant
frequency ωa can be modeled as a harmonic oscillator with
the damping part described by mechanical dispersion, ψ
(ψ ¼ 1=Q, Q is the quality factor), as [46]

χa ¼
1

μm½ω2
a þ iω2

aψ − ð2ωm þ ΩÞ2� ; ð14Þ

where μ is an effective mass coefficient which includes the
coupling between mirror mode and the carrier
Gaussian mode.
In order to not affect the quantum sensitivity, we need the

radiation pressure induced mirror motion around 2ωm to be
much smaller than the quantum shot noise. In other words,
jχaj need to be much smaller than the absolute value of the
free mass susceptibility, 1=ðmΩ2Þ, at a frequency where
radiation pressure noise is approximate to shot noise. For
ωa ¼ 2ωm þ Ω, and taking Ω ¼ 2π × 60 Hz, L ¼ 4 km,
ωm ≈ 2π × 45 MHz, this requires

Q
μ
≪ 2.25 × 1012: ð15Þ

Around 90 MHz, the Q of silica is around 105 [47]. We use
program, CYPRES [48] and simulate the effective mass
coefficients up to 300 kHz taking Advanced LIGO mirror
and beam size as the example. As it turns out, μ is always
larger than 0.1 without observing a trend of smaller μ
toward higher frequency. Details are in the Supplemental
Material [39]. It proves the satisfaction of Eq. (15)
indirectly.
The thermal noise at 90 MHz from the mode at the same

frequency can be calculated as [46]

ffiffiffiffiffiffi
Sth

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ×

4kBTQ
μmω3

aL2

s

¼ 2.4 × 10−25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

300 K
×
1

μ
×

Q
105

s
1ffiffiffiffiffiffi
Hz

p ; ð16Þ
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with a bandwidth around ωa=ð2πQÞ ¼ 900 Hz. kB is the
Boltzmann constant, T is the environment temperature.
From the mode simulation (with details in Supplemental
Material [39]), we observe that the density of modes with μ
no larger than 1 is almost constant over frequency and
around one mode per 2.5 kHz on average. Even though
assuming that the mode separation is the same as the
mode bandwidth, the thermal noise at 90 MHz results
3.1 × 10−25ð1= ffiffiffiffiffiffi

Hz
p Þ, by taking contributions from 100

modes in the vicinity into account. The thermal noise is
compatible with the quantum noise of the two-carrier
detector, but experimental studies with more details are
required in the future.
Conclusions and discussion.—We have shown that the

proposed two-carrier gravitational wave detector with
heterodyne readout evades the 3 dB quantum penalty of
a conventional heterodyne readout. It also allows the usage
of two-mode squeezing in the same way of single mode
squeezing with a homodyne readout. Furthermore, the two-
carrier detector provides advantages: (1) it can enable
squeezing enhanced measurements in the audio band
and below with high-frequency squeezing, which is
immune to the audio-band LO scattering contamination
to the squeezer, although still susceptible to the scattering
from residual carriers; (2) it allows us to operate the
interferometer on the dark fringe without an additional
LO path and output mode cleaners that are essential to the
balanced homodyne readout scheme, in which two mode
cleaners are required [32]. If the higher optical modes at the
dark port cannot be suppressed by the interferometer itself,
one output mode cleaner, of which the FSR equals to ωm, is
sufficient.
As an outlook, we want to highlight that the two-carrier

detector is compatible with general quantum nondemolition
schemes [49,50], in contrast to a conventional heterodyne
readout [16]. For example, similar to the implementation of
frequency dependent squeezing, we can add a filter cavity
at the output to realize a frequency-dependent readout
for back action evasion [38]. The resulting optimal sensi-
tivity is

Sopthh ¼ h2SQL
2

1

K
e−2r: ð17Þ

This saturates the fundamental quantum limit or the
quantum Cramér-Rao bound [51–54].
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