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In order to scale up quantum processors and achieve a quantum advantage, it is crucial to economize on
the power requirement of two-qubit gates, make them robust to drift in experimental parameters, and
shorten the gate times. Applicable to all quantum computer architectures whose two-qubit gates rely on
phase-space closure, we present here a new gate-optimizing principle according to which negligible
amounts of gate fidelity are traded for substantial savings in power, which, in turn, can be traded for
substantial increases in gate speed and/or qubit connectivity. As a concrete example, we illustrate the
method by constructing optimal pulses for entangling gates on a pair of ions within a trapped-ion chain, one
of the leading quantum computing architectures. Our method is direct, noniterative, and linear, and, in some
parameter regimes, constructs gate-steering pulses requiring up to an order of magnitude less power than
the standard method. Additionally, our method provides increased robustness to mode drift. We verify the
new trade-off principle experimentally on our trapped-ion quantum computer.
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Introduction.—For the growing number of program-
mable quantum computers available today [1–10], compu-
tational instructions for quantum applications are typically
compiled into single- and two-qubit quantum gates
[11–13]. In all current quantum-computer architectures,
two-qubit gates are about 1 to 2 orders of magnitude more
costly to implement than single qubit gates in terms of the
required power, fidelity, and gate speed [14,15]. Therefore,
improving two-qubit gate performance is critical to the
utility and scalability of quantum computers. While it is too
early to predict which qubit realization technology will
ultimately be used to construct the most powerful quantum
supercomputers, a large portion of today’s most advanced
quantum computers [1–10] is realized either with super-
conducting or trapped-ion qubits. In the realm of trapped-
ion qubits, both quantum charge coupled device technology
(QCCD) [4] and trapped ion-string technology [4–8,16]
have successfully been realized. We focus in this Letter
on ion-string technology as a test bed for our methods,
although the methods are generally applicable to QCCD
technology as well. Within the framework of ion-string
technology, the best two-qubit gates are mediated by the
harmonic motion through spin-dependent forces [17–22].
For laser-based gates in multi-ion chains, a range of pulse-
shaping protocols has been devised to decouple the
multiple motional modes from the qubit degrees of free-
dom, such as amplitude modulation [7,23–26], phase
modulation [27–29], frequency modulation [30], or combi-
nations thereof [31,32]. These pulses can also create
additional resilience to mode drift [31,32] and gate-timing

errors [32], enable fast gate action [33], or allow for
simultaneous [34,35] or multiqubit [36] gates.
In Ref. [31], based on the Mølmer-Sørensen protocol

[18–20], we presented a constructive method for calculat-
ing power-optimal pulse shapes with perfect fidelity. In
practice, however, we expect a quantum gate to be
imperfect due to limitations independent of the pulse
shape, such as intensity fluctuations due to beam-power
or beam-steering noise, motional-mode heating, motional
dephasing, laser dephasing, off-resonant photon scattering,
qubit dephasing or depolarization, and others. Therefore,
we need not require mathematical exactness in constructing
the pulse shape, but rather ensure that the error incurred by
the imperfect pulse shape is much smaller than the other
error mechanisms limiting the fidelity. Based on this
strategy we present here a pulse-shaping technique that
includes a systematic method of trading negligible amounts
of fidelity for power savings of up to an order of magnitude
under realistic operating conditions on our trapped-ion
quantum computer. Alternatively, by trading power savings
for gate speed, we are able to speed up two-qubit gates for a
given power budget. We confirm this new trade-off
principle experimentally on our trapped-ion quantum
computer. This method also constructs gates that are
naturally robust to mode-frequency drifts. We emphasize
that our methods are generally applicable to all gate
schemes that rely on phase-space closure and work for
all gate types, such as XX [5,7,31] and ZZ [37,38] gates.
Protocol.—Implementation of the trade-off strategy is

based on a provably power-optimal pulse-shaping method
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for laser-based radial-mode gates [31]. Using simultaneous
amplitude and frequency modulation, including stabiliza-
tion against mode-drift errors, it produces a gate with a
theoretical fidelity of 1 for any given gate time τ. We
refer to this method as the exact AMFMmethod. The laser-
control pulses gðtÞ are represented as Fourier-sine series
gðtÞ ¼ PNA

n¼1 An sinð2πnt=τÞ, where NA ∼ 1000 achieves
convergence for typical two-qubit gates with τ ∼ 100 μs.
Thus, in contrast to previous methods that employ either a
single [5,7] or a few [32] laser-frequency tones, our method
uses a quasicontinuum of frequencies resulting in a chirped
pulse of the form gðtÞ ¼ ΩðtÞ sin½ψðtÞ�, where ψðtÞ ¼R
t
0 μðt0Þdt0 and μðtÞ is the detuning function. The resulting
signal can be implemented straightforwardly with an
arbitrary waveform generator. Phase-space closure requires
αip ¼ −ηip

R
τ
0 gðtÞ expðiωptÞ ¼ 0, for i; p ¼ 1;…; N, where

p is the mode index, i the ion index, ηip the Lamb-Dicke
parameter, ωp the mode frequency, and N the number of
ions. Therefore, including stabilization against mode-
frequency drift to an arbitrary order K, we require
∂Kαip=∂ωK

p ¼ 0. This represents Q ¼ NðK þ 1Þ homo-
geneous, linear equations that, in matrix notation, may
be written as MA⃗γ ¼ 0, where γ ¼ 1;…; NA −Q and the
set of nontrivial amplitude solutions A⃗γ spans the null space
of the constraint matrixM. In general, the dimension NA of
the frequency space is much larger than Q, which leaves a
large null-space to optimize the gate power. Introducing
the root-mean-square (rms) Rabi frequency P̄, where
P̄2 ¼ hΩ2i ¼ ð1=τÞ R τ

0 Ω
2ðtÞdt ¼ PNA

n¼1 A
2
n, the gate angle

χij ¼ A⃗TVijA⃗ is achieved with the minimum P̄ if A⃗
is chosen as the eigenvector of Vij associated with
the eigenvalue of largest absolute value. Vij is the
null-space projected kernel matrix Kij

nm ¼ P
p η

i
pη

j
pR

τ
0 dt2

R t2
0 dt1 sinð2πnt2=τÞ sinð2πmt1=τÞ sin½ωpðt2 − t1Þ�,

which can be evaluated analytically since it contains only
elementary functions. Since the number of ions N does not
occur explicitly other than in the vector space size, the
method is naturally scalable to any number of ions. Since
the method involves only linear algebra, it is computation-
ally efficient and straightforward to implement. Additional
linear conditions, for instance stabilization against gate-
timing errors [32], may be added at will. Thus the method
also scales in the number and types of stabilization
conditions. However, if more conditions are added, the
size of the null-space contracts, and with it the number of
accessible degrees of freedom, which leads to an increase in
the power required. Conversely, for a given set of
constraints and P̄, there is a minimum gate duration,
τmin, which roughly follows τmin ∼ 1=P̄ for gate times
τ > 100 μs. Thus, there is a trade-off between power
requirement and gate duration.
Figure 1(a) shows the power requirement of the optimal,

exact AMFM method for various qubit pairs (i, j) and

degrees of stabilization K as a function of gate duration τ
for a 15-ion chain, with an inter-ion spacing of 5 μm and
the 11 central ions used as qubits. We see that the power
requirement dramatically increases as we decrease τ,
exhibiting a steplike transition, whose location is nearly
independent of the specific ion pair. The reason is the
following. To operate a two-qubit gate at low power,
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FIG. 1. Properties of gate pulses generated for a 15-ion, 11-
qubit chain as a function of gate duration τ. (a) rms Rabi
frequency requirement of the exact AMFM gate for three
different qubit pairs, (1,2) (squares), (4,10) (circles), and
(1,11) (triangles), and three different degrees of stability K ¼
0 (blue), K ¼ 2 (black), and K ¼ 4 (orange). (b) Comparison
between rms Rabi frequency requirement of exact AMFM
(green) and ENS AMFM (blue) for f ≤ 10−4. (c) rms Rabi
frequency requirement for different degrees of stabilization K for
the ENS protocol (colored, solid lines) with f ≤ 10−4. Red,
green, and blue lines are for K ¼ 2, K ¼ 4, and K ¼ 6,
respectively. For comparison, the results for the exact AMFM
for K ¼ 2 (dotted line) and K ¼ 4 (dot-dashed line) are copied
from (a) without change, and K ¼ 6 (dot-dot-dashed line) is
added to illustrate the trend.
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it is necessary that the basis frequencies 2πnt=τ,
have good overlap with the motional-mode frequencies,
ωp ≲ 2π × 3 MHz. As τ decreases, more basis frequencies
are pushed out of the frequency range of the motional
modes, effectively reducing the dimension of the null space
from which the power-optimal solutions are drawn. The
step in power results when we run out of null-space vectors
with good motional-mode frequency overlap. Since
increasingK reduces the null-space dimension even further,
the power step happens at larger gate times τ for larger K.
Similar to Ref. [33], our scheme cancels carrier excitations
to first order due to the sinusoidal nature of our basis
functions. While Fig. 1 shows gates < 100 μs, which
remain approximately in the Lamb-Dicke regime, further
investigation is needed to ensure the standard MS formal-
ism with its perturbative expansions of the Hamiltonian is
still valid in this short-pulse regime.
Relaxing the stringent requirement of perfect decoupl-

ing between the qubit- and motional-mode states, the
AMFM protocol is perfectly suited for implementing the
fidelity-power trade-off strategy. This is accomplished by
constructing an approximate null space of M that now also
includes Linc eigenvectors with nonzero eigenvalues, as
long as their moduli are small enough to guarantee f < f0,
where f is the infidelity and f0 is the desired infidelity of
the gate. We call this approach the extended null-space
(ENS) protocol. The Supplemental Material [39], Sec. S3
contains expanded mathematical detail. Throughout this
Letter we use f0 ¼ 10−4, which is deemed acceptable in
contemporary experiments, given that it roughly corre-
sponds to the spontaneous scattering limit [40,41].
In Fig. 1(b) we compare the power requirement of ENS

AMFM with that of the exact AMFM. We see that
ENS AMFM provides a power advantage for τ ≲ 50 μs.
In Fig. 1(c) we compare the pulse-power requirements of
stabilized pulses produced according to the exact AMFM
method and the ENS method. Over a large span of gate
times, the ENS method offers significant power savings for
stabilized pulses. In particular, we find that for stability

degree K ¼ 6 and gate duration τ ¼ 250 μs, the power
saving can be as large as a factor of 15.
We note that faster gates come with exponentially

decreasing infidelity and increased natural stability against
mode-frequency drift, even in the absence of active
stabilization. We illustrate this in Fig. 2(a), which shows
that increasing the gate speed from 40 to 10 μs reduces
the infidelity by about 8 orders of magnitude, reaching
below f ¼ 10−11 over a drift-frequency range larger than
�10 kHz at τ ¼ 10 μs. While pulses this short may not be
practical, the stability they provide can be propagated to
longer gates at the cost of power optimality by reducing the
power and repeating the pulse sequence multiple times.
According to Fig. 1(a), qubit pairs that are farther apart

from each other require more power. Therefore, given a
fixed power budget, instead of trading the power savings
afforded by our pulse design for gate duration, we can
alternatively trade the savings for better qubit connectivity.
This power-connectivity trade-off can play a critical role in
harnessing the power of quantum computation since
matching hardware and application connectivity is crucial
for performance in a future quantum operating system [44].
In Fig. 2(b) we show the power requirement for K ¼ 4 and
τ ¼ 50 μs pulses as a function of qubit distance for the
exact AMFM and the ENS AMFM. We see that compared
to its exact AMFM counterpart, ENS AMFM requires
factors of about 2 to 4 smaller power.
Experiment.—We implement the exact AMFM and ENS

pulses on our programmable, fully connected trapped-ion
quantum computer, located at the University of Maryland
[45]. We trap seven 171Ybþ ions in a 1D chain and use the
middle five as qubits. The ions are laser-cooled close to the
motional ground state, and then optically pumped to j0i.
Coherent operations are driven by a pair of counterpropa-
gating Raman beams, one of which is split into individual
addressing beams, each focused on one ion. These beams
are controlled independently by rf pulses generated by
arbitrary waveform generators (AWGs), which enable the
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FIG. 2. Trade space for a 15-ion, 11-qubit chain. (a) Infidelity f as a function of uniform mode-frequency drift ωp → ωp þ Δωp on
qubits (5,7) (Linc ¼ 2) for four different gate times τ, K ¼ 0. (b) rms Rabi frequency requirement as a function of distance between the
qubits for a τ ¼ 50 μs gate, K ¼ 4. Purple squares: exact AMFM; green circles: ENS AMFM.
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implementation of pulse shapes from a broad range of
frequencies, amplitudes, and phases.
Figure 3 shows the theoretically predicted and experi-

mentally measured power requirements as a function of
gate duration for exact AMFM and ENS-based pulses. We
chose f0 ¼ 10−4 since the experimental gates are limited to
∼10−2 by other imperfections with the leading sources of
error being intensity and phase noise on the Raman beams,
caused by beam-steering fluctuations and imperfect overlap
of the beam and ion positions. We chose to stabilize these
pulses to degree K ¼ 4. Because of the limited amplitude
resolution of the AWG (14-bit DAC), the relative ampli-
tudes of basis frequencies smaller than 10−4 are neglected
in the experimental implementation. We confirmed numeri-
cally that this does not significantly impact the theoretical
fidelity and stability of the resulting gates. We verify a
successful implementation of a pulse by observing a
continuous coherent transfer of population between the
j00i and j11i states when the applied laser power is varied.
We then calculate the minimal Rabi frequency Ω0 ¼ sΩmax
needed to perform a maximally entangling gate, where
s ≤ 1 is a scale factor on the AWG amplitude, used to set
the Rabi frequency with the help of a controller calibration
curve, and Ωmax is the maximum Rabi rate measured at the
ions. We further verify the creation of the maximally
entangled state by measuring the parity contrast for some
of the pulses [7].
All the experimentally determined Rabi frequencies for

the two-qubit gates, using either the ENS- or the exact
AMFM protocols, fall within �10% of the respective
theoretically predicted values. The small discrepancies
between experimental values and theory predictions are
due to uncertainties in the Lamb-Dicke parameters and

mode frequencies (see Supplemental Material [39],
Sec. S4). We note that shorter gates at higher Rabi
frequency may suffer from more noise, and thus higher
infidelity due to, e.g., acoustic vibrations, which do not get
averaged out over the gate application.
We demonstrate the benefit of stabilizing the gates with

respect to fluctuations in the motional-mode frequencies by
applying pulses with two different stabilization orders, i.e.,
K ¼ 1 and K ¼ 5, to qubits (4,5) on our seven-ion, five-
qubit quantum computer. The two ENS AMFM pulses are
constructed with f0 ¼ 10−4 at zero gate-frequency offset.
To systematically control the detuning error, we offset the
gate frequency from the original intended gate frequency,
which is equivalent to uniformly offsetting the motional-
mode frequencies in the opposite direction. We apply the
pulses to the initial state j00i and measure the even-parity
populations when P00 ≈ P11, akin to performing a max-
imally entangling gate. Figure 4 shows the even-parity
population Peven ¼ P00 þ P11, which is the quantity sta-
bilized by the gate. Since this does not measure coherent
errors, we checked the parity contrast for some of the pulses
as for the previous measurement. The experimentally
measured values with their associated error bars are marked
in red. The error bars are 1σ confidence intervals, sampled
from a binomial distribution, and each point represents
4000 experimental shots. The blue line shows the analytical
fidelity F̄ ¼ 1 − 4

5

P
p ðjαi;pj2 þ jαj;pj2Þ, which is valid in

the low-infidelity limit [41]. As expected, the width of the
detuning-robust region is larger for the pulse with the
higher stabilization order.
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Outlook.—The impossible trinity formed by power, gate
duration, and fidelity, discussed and illustrated in this
Letter, has an analog in the chip design community, where
there are well-known fundamental trade-offs between
power, performance, and area, commonly referred to as
PPA (see, e.g., Ref. [46]). Given that the physical-level
infidelity affects, for instance, the cost of implementing
quantum error correction to achieve a target logical-level
infidelity, our investigations could be considered a quantum
version of PPA trade-offs. Given the enormous utility and
impact of a careful PPA study for system-on-a-chip design,
our results may contribute to future quantum processor
optimization. We are convinced that this holistic optimi-
zation of all facets of the design based on the PPA trade-off
is another stepping stone toward successful practical
quantum computing.
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