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Variational quantum eigensolvers (VQEs) combine classical optimization with efficient cost function
evaluations on quantum computers. We propose a new approach to VQEs using the principles of
measurement-based quantum computation. This strategy uses entangled resource states and local
measurements. We present two measurement-based VQE schemes. The first introduces a new approach
for constructing variational families. The second provides a translation of circuit- to measurement-based
schemes. Both schemes offer problem-specific advantages in terms of the required resources and coherence
times.
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Variational methods are crucial to investigate the physics
of strongly correlated quantum systems. Numerical tools
like the density matrix renormalization group [1–4] have
been applied to several problems, including real-time
dynamics [5], condensed matter physics [6], lattice
gauge theories [7–10], and quantum chemistry [11,12].
Nevertheless, the classes of states that can be studied with
classical computers are limited [13]. Variational quantum
eigensolvers (VQEs) overcome this problem using a closed
feedback loop between a classical computer and a quantum
processor [14–16]. The classical algorithm optimizes a
cost function—typically the expectation value of some
operator—which is efficiently supplied by the quantum
hardware. The VQE provides an approximation to the (low-
lying) eigenvalues of this operator and the corresponding
eigenstates. VQEs are advantageous for a variety of
applications [16–22] and have been experimentally dem-
onstrated in fields including chemistry [23,24], particle
physics [25–28], and classical optimization [29–31].
Existing VQE protocols are based on the circuit model,

where gates are applied on an initial state [32]. These gates
involve variational parameters whose optimization allows
the resulting output state to approximate the desired target
state. We propose a new approach to VQE protocols, based
on the measurement-based model of quantum computation
(MBQC) [33–38]. In MBQC, an entangled state is prepared
and the computation is realized by performing single-qubit
measurements. While the circuit- and measurement-based
models both allow for universal quantum computation and
have equivalent scaling of resources [36], they are intrinsi-
cally different. The former is limited by the number of
available qubits and gates that can be performed, and
MBQC is limited by the size of the entangled state one can

generate. For certain applications, the required coherence
times [39,40] and error thresholds [36,39–41] are much less
demanding for MBQC.
Here, we develop a new variational technique based on

MBQC, that we call measurement-based VQE (MB-VQE).
Our protocols determine the ground state of a
target Hamiltonian, which is a prototypical task for
VQEs with wide-ranging applications [14,20–23,26,42].
The underlying idea is to use a tailored entangled state
called a “custom state,” that allows for exploring
an appropriate corner of the system’s Hilbert space
[Fig. 1(a)]. This custom state includes auxiliary qubits,
which, once measured, modify the state of the output
qubits. The choices of the measurement bases and the
corresponding variational changes to the state are
controlled by a classical optimization algorithm. This
approach differs conceptually and practically from standard
VQE schemes since MB-VQE shifts the challenge from
performing multiqubit gates to creating an entangled
initial state.
After presenting the framework for the MB-VQE, we

design two specific schemes that are suited to different
problem classes. First, we introduce a novel method to
construct variational state families, illustrated using the
toric code model with local perturbations [43]. As Fig. 1(a)
shows, we start from an ansatz state jψai in an appropriate
corner of the Hilbert space. To explore this neighborhood
using a classical optimization algorithm, we introduce a
custom state and apply measurement-based modifications
of jψai that have no direct analog in the circuit model. The
resulting variational family is not efficiently accessible with
known classical methods and is more costly to access with
circuit-based VQEs.
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Second, we introduce a direct translation of circuit VQEs
to MB-VQEs [Fig. 1(b)]. Here, the variational state family
is the same for the circuit- and measurement-based
approaches, but the implementation differs as the MB-
VQE requires different resources and is manipulated by
single-qubit measurements only. We exemplify this direct
translation for the Schwinger model [44] and highlight the
different hardware requirements and the scaling of resour-
ces. As explained below, a translation to MB-VQE is
advantageous for circuits containing a large fraction of so-
called Clifford gates (e.g., CX gates), as these are absorbed
into the custom state.
While MB-VQE is platform agnostic, it opens the door

for complex quantum computations in systems where long
gate sequences or the realization of entangling gates are
challenging. In particular, MB-VQE offers new routes for
experiments with photonic quantum systems, thus enlarg-
ing the toolbox of variational computations.
General framework.—The main resource of MBQC are

so-called graph states [45,46]. Graphs as in Fig. 1 are
stabilizer states (eigenstates with þ1 eigenvalues) of the
operators Ŝn ¼ X̂n

Q
k Ẑk, where k refers to the vertices

connected to site n. To obtain the desired final state
encoded in the output qubits (white circles), single-
qubit measurements are performed on auxiliary qubits
(orange circles), either in the eigenbasis of the Pauli

operators X̂, Ŷ, Ẑ, or in the rotated basis
RðθÞ≡ fðj0i � eiθj1iÞ= ffiffiffi

2
p g. Depending on the measure-

ment outcomes, the system is probabilistically projected
into different states. To make the computation determin-
istic, so-called by-product operators and adaptive measure-
ments are required [36]. The former applies X̂ and Ẑ
operators to the output qubits depending on the measure-
ment results, while the latter involves adapting the
measurement bases RðθÞ based on earlier measurement
outcomes. Consequently, adaptive measurements must be
performed in a specific order.
An advantage of MBQC is the possibility to

simultaneously perform all nonadaptive measurements
at the beginning of the calculation [see Fig. 1(b) and
Supplemental Material [47] ]. This corresponds to the
Clifford part of a circuit and includes single- and many-
qubit gates. This is independent of the position of the gates
in the circuit, and reduces the required overhead and
coherence time. Remarkably, this can be either done
directly on the graph state in the quantum hardware or
on a classical computer before the experiment. In the latter
case, the Gottesman-Knill theorem [48] allows for effi-
ciently determining the custom state which is local-Clifford
equivalent to the quantum state obtained after all non-
adaptive measurements are performed [50]. This state can
be directly prepared and used for the MBQC, which may
have dramatically fewer auxiliary qubits compared to the
initial graph state.
We now explain how MBQC is used to design a

MB-VQE. While the classical part of the feedback loop
is untouched (the best optimization algorithm [51–56] is
problem dependent [26,57]), the MB-VQE is based on the
creation and partial measurement of a tailored graph state
rather than the application of a sequence of gates.
Specifically, the quantum part of a MB-VQE comprises
an ansatz state jψai, a custom state, and a measurement
prescription. As schematically represented in Fig. 1(a),
jψai is a graph state from which we start exploring the
variational class of families attainable by the MB-VQE.
The custom state is then created by expanding jψai into a
bigger graph state. This is done by decoration, i.e., by
adding new vertices and connecting them to preexisting
sites in the ansatz state. According to a measurement
prescription, which is the same at each iteration of the
algorithm, the auxiliary qubits of the custom state are then
measured, with the remaining ones constituting the output
jψouti of the quantum processor [see Fig. 1(a)]. The cost
function to be fed into the classical side of the MB-VQE is
then calculated from jψouti (e.g., its energy), with the
angles θ of the rotated bases RðθÞ being the variational
parameters over which the optimization occurs.
Just like the circuit in a VQE, the custom state deter-

mines the success of our MB-VQE. Generally, the more
auxiliary qubits that are measured in rotated bases RðθÞ, the
bigger the available class of variational states that can be

FIG. 1. MB-VQE schemes. (a) Variation of a problem-specific
ansatz state by “edge decoration.” An ansatz graph state starts the
MB-VQE in a suitable corner of Hilbert space (choice of green
island). Next, a classical algorithm explores the neighborhood
(runner on black arrow). The variational optimization exploits a
custom state that is obtained by decorating the edges of the ansatz
state with auxiliary qubits (orange circles). Their measurement in
rotated bases RðθÞ with variational parameters θ transforms jψai
into the output state jψouti. (b) Direct translation of a VQE circuit
into a MB-VQE. Left: circuit consisting of Clifford gates (black)
and single-qubit parametric gates (“knobs”). Right: correspond-
ing MB-VQE, where the Clifford part of the circuit has been
performed beforehand. The custom state consists of output (white
circles) and auxiliary (orange circles) qubits only; the latter are
measured in rotated bases and are related to the knobs in the
circuit.

PHYSICAL REVIEW LETTERS 126, 220501 (2021)

220501-2



explored. However, an excessive number of parameters θ
makes the algorithm’s convergence slower. Therefore, it is
convenient to tailor the custom state to the considered
problem. Qubit decoration, with the subsequent measure-
ment of the auxiliary qubits, allows for remarkable control
over the desired ansatz state’s transformation(s). Not only
can one apply gates—just like in a circuit-based VQE—by
following MBQC prescriptions (see the Schwinger model
example), one can also identify completely new patterns of
auxiliary qubits that modify the output state in a way that
would be expensive or even impossible with the circuit
formalism (see the toric code example). For instance, a
single auxiliary qubit measured in RðθÞ and connected to an
arbitrary number of output qubits f1; 2; 3;…g, acts
eiðθ=2ÞẐ1⊗Ẑ2⊗Ẑ3⊗… onto them [35]. In a circuit, the same
operation requires a linear number of 2-qubit gates [58].
State variation by edge modification (perturbed toric

code).—Here, we demonstrate how a MB-VQE mani-
pulates states in a different way than a circuit-based
VQE. MB-VQEs are advantageous whenever a perturba-
tion Ĥp is added to a Hamiltonian Ĥ0, whose ground state,
used as ansatz state jψai below, is a stabilizer state or a
graph state.
To create the custom state from jψai, we employ the

pattern in Fig. 2(a), which decorates each connected pair of
output qubits m and n with four auxiliary qubits ðm; nÞi
(i ¼ 1;…; 4), to be measured in rotated bases RðθÞ.
Depending on RðθÞ, the entanglement between the qubits
m and n is modified, and their state is subjected to an

additional rotation. For example, if all auxiliary qubits in
the custom state are measured with θ ¼ 0, we obtain the
original ansatz state. However, if all auxiliary qubits are
measured with θ ¼ π=2, then all entanglement of jψai is
eliminated (for more details, see Supplemental Material
[47]). This decoration technique is tailored to the perturbed
toric code example below, in which the ground states of Ĥ0

and Ĥp are maximally entangled and pure, respectively.
However, it can be easily generalized to expand the class of
available variational states (see Supplemental Material
[47]), thus suiting different scenarios.
We apply this MB-VQE approach to the toric code

model, a quantum error-correcting code defined on a two-
dimensional rectangular lattice with periodic boundary
conditions [59]. On the lattice, the number of rows
(columns) of independent vertices is Nx (Ny) and edges
represent qubits. The toric code state is a stabilizer state of
so-called star Âs and plaquette B̂p operators. For any vertex
s in the lattice, Âs acts Ẑ on the four incident edges, while
B̂p acts X̂ on the four edges in the pth plaquette. The toric
code Hamiltonian is then Ĥ0 ¼ −

P
s Âs −

P
p B̂p. SinceQ

s Âs ¼
Q

p B̂p ¼ 1, the toric code has 2NxNy − 2 inde-

pendent stabilizers, and Ĥ0 has four degenerate ground
states jr; tiL (r, t ¼ 0, 1), called logical states below. These
are simultaneous eigenstates of Ĥ0 and the two logical-Z
operators [59], as explained in the Supplemental
Material [47].
The perturbation added to the toric code Hamiltonian is

Ĥp ¼
X2NxNy

n¼1

λnẐn; ð1Þ

which corresponds to an inhomogeneous magnetic field.
As ansatz state for the MB-VQE, we choose the highly
entangled graph state jψai ¼ j0; 0iL that approximates the
ground state of Ĥ0 þ Ĥp for small positive values of λn.
The graph state representation of j0; 0iL can be calculated
efficiently classically [50] and is shown in Fig. 2(b) for
Nx ¼ Ny ¼ 2. In the Supplemental Material [47], we
explain how to adapt our MB-VQE protocol to use an
arbitrary superposition of jr; tiL (r, t ¼ 0, 1) as ansatz state,
which is more suited for different kinds of perturba-
tions Ĥp.
Numerical results for the MB-VQE are shown in

Fig. 2(c). The relative energy difference between the
MB-VQE result and the true ground state (calculated via
exact diagonalization) is plotted against the perturbation
strength. This is done with all λn in Eq. (1) equal to λ (solid
blue line), with each λn drawn from a Gaussian distribution
PGðμ; σ2Þ with mean μ ¼ λ and variance σ2 ¼ 0.1λ (orange
squares), and with λ1 ¼ λ, λn randomly sampled from
PGðμ ¼ 0.1; σ2 ¼ 10−4Þ for n ≠ 1 (green triangles). A plot
of the infidelity resembles Fig. 2(c), with maximum

FIG. 2. Perturbed toric code. (a) Edge modification resource for
the MB-VQE [see Fig. 1(a)]. Four auxiliary qubits (orange
circles), labeled ðm; nÞi (i ¼ 1;…; 4), are added to two connected
output qubits m and n (white circles). (b) Graph state represen-
tation of the ansatz state j0; 0iL. Additional Hadamard gates are
applied to qubits with dashed lines. (c) Relative difference
between the MB-VQE result and the true ground state energy
vs the perturbation strength. We let λn in Eq. (1) be equal on all
qubits (solid blue line) or sampled from a normal distribution PG
of average λ and variance 0.1λ (red squares). Green triangles
describe a perturbation acting strongly on λ1 and weakly on the
other qubits. Dotted and dashed lines are computed with respect
to j0; 0iL (ansatz state) and j1i⊗2NxNy (ground state of Ĥp)
for λn ¼ λ ∀ n.
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infidelities for the blue curve, red squares, and green
triangles being 6.2 × 10−2, 6.5 × 10−2, and 9.4 × 10−3,
respectively. Figure 2(c) shows that the MB-VQE produces
the ground state energy with high confidence when the
perturbation strength is very small or very large. Notably,
the MB-VQE outperforms the ansatz state (dotted black
line) and the ground state of Ĥp in Eq. (1) (dashed black
line) in all cases. If the perturbation only acts on one qubit,
the chosen custom state allows the MB-VQE to find the
exact ground state energy within machine precision. This is
also the case if the perturbation acts on two disconnected
qubits, provided we connect them and add auxiliary qubits
as in Fig. 2(a). This suggests that the outcome of the
MB-VQE can be significantly improved by adding few
extra auxiliary qubits.
Translating VQEs into MB-VQEs (Schwinger model).—

Instead of the approach described above, one can create a
MB-VQE by translating the circuit of a VQE into its
corresponding custom state and a sequence of measure-
ments. Since a universal set of gates can be realized in a
MBQC [36], any VQE can be translated into a MB-VQE.
As we discuss below, this strategy is advantageous if the
number of parametric adaptive measurements [i.e., knobs in
Fig. 1(b)] in the resulting MB-VQE scheme is small.
As an example, we determine the ground state energy of

the Schwinger model [44], a test bed used for benchmark-
ing quantum simulations in high-energy physics [8,25,60].
The Schwinger model describes quantum electrodynamics
on a one-dimensional lattice and can be cast in the form of a
spin model with long-range interactions [61–63],

Ĥ ¼ J
2

XS−2

n¼1

XS−1

k¼nþ1

ðS − kÞẐnẐk −
J
2

XS−1

n¼1

n mod 2
Xn

k¼1

Ẑk

þ w
XS−1

n¼1

ðσ̂þn σ̂−nþ1 þ H:c:Þ þ μ

2

XS

n¼1

ð−1ÞnẐn; ð2Þ

where S is the number of fermions, μ is their mass,
w ¼ 1=2a, and J ¼ ðg2a=2Þ. Here, a and g are the lattice
spacing and the coupling strength, respectively, and
σ̂�n ¼ ðX̂n � iŶnÞ=2.
For the VQE protocol, we assume the typical situation

where parametric single-qubit gates and fixed entangling
gates (CXs) are used [23,64]. We consider a generic VQE
circuit, in which a sequence of “layers” is applied [14], each
containing local rotations and entangling gates. As shown
in Fig. 3(a) for S ¼ 4, we choose the layer

YS=2−1

n¼1

CX2n;2nþ1

YS=2

n¼1

CX2n−1;2n

YS

n¼1

Ûx;nðθx;nÞÛz;nðθz;nÞ; ð3Þ

where Ûν;nðθν;nÞ ¼ exp ðiθν;nV̂n=2Þ [ðν; V̂Þ ¼ ðx; X̂Þ or
ðν; V̂Þ ¼ ðz; ẐÞ]. The circuit for the VQE is created by
concatenating K layers, where K is big enough to

sufficiently explore the relevant subsector of the considered
Hilbert space. As described in the Supplemental Material
[47], the MB-VQE custom state corresponding to a K-layer
circuit is obtained by joining the measurement patterns of
the gates in Eq. (3) and performing all nonadaptive
measurements classically, which effectively removes the
Clifford parts of the circuit. The custom state is shown in

Fig. 3(b). As ansatz state we use jψai ¼ ⊗
S

n¼1
jþi.

The (MB-)VQE simulation results are shown in Fig. 3(c)
for S ¼ 4 and different values of K. We plot the
order parameter hÔi ¼ ½1=2SðS − 1Þ�Pi;j<ih½1þ ð−1ÞiẐi�
½1þ ð−1ÞjẐj�i against the fermion mass μ and correctly
observe a second-order phase transition around μ ¼ −0.7
[25,65,66]. Increasing K improves the ground state
approximation, as demonstrated by the inset in Fig. 3(c)
and by Fig. 3(d). The points near the phase transition
require K ≳ 3 layers (≳28 qubits), whereas K ¼ 1 layer
(12 qubits) suffices for the easiest points. Note that
allowing different gates as resources in Eq. (3) generally
leads to different convergence rates, as demonstrated by the
results in Ref. [25].
Perfect platforms provided, both the VQE and the

MB-VQE give the same result. However, the quantum
hardware requirements are different for the two methods.

FIG. 3. Schwinger model. (a) Ansatz state and VQE circuit for
S ¼ 4 qubits and K layers. Each layer consists of CX gates and
local rotations (orange) parametrized by angles θnν;i (with rotation
axis ν ¼ x, z; i ¼ 1;…; 4). (b) MB-VQE custom state for K
layers. White circles are output qubits. Auxiliary qubits (orange)
are measured in a rotated bases RðθÞ. (c) The order parameter hÔi
vs the fermion mass μ. The dashed line and dots represent exact
diagonalization (ED) and (MB-)VQE results, respectively, with
the number of layers K indicated in the legend. The inset shows
the infidelity 1 − F. (d) Relative energy difference ΔE=E
between (MB-)VQE results and ED for μ ¼ −0.7 vs the number
of iterations in the optimization procedure. The variational
parameters are initialized at zero, and J ¼ ω ¼ 1 in Eq. (2).
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The circuit-based VQE requires S qubits, 2KS single-qubit
operations, and KðS − 1Þ entangling gates. For the corre-
sponding MB-VQE, a custom state of Sð2K þ 1Þ qubits
and 2KS single-qubit operations (measurements) are
required. Generally, translating a VQE into its correspond-
ing MB-VQE is advantageous whenever the VQE circuit
involves a large Clifford part compared to the number of
adaptive measurements (i.e., knobs). In this case, MB-VQE
avoids the requirement of performing long gate sequences,
which is currently challenging due to error accumulation.
This is especially interesting for platforms where entan-
gling gates are hard to realize (e.g., photonic setups) or in
systems with limited coherence times.
Conclusions.—In this Letter, we merged the principles of

measurement-based quantum computation and quantum-
classical optimization to create a MB-VQE. We presented
two new types of variational schemes that are applicable
but not restricted to the examples given. The first applies
when the ansatz state is a stabilizer state. In this case, it is
classically efficient to determine the corresponding graph
state [50], which is decorated with additional control qubits
and prepared directly. We applied this MB-VQE to the
perturbed toric code. Additionally, we showed how to adapt
any circuit-based VQE to become a MB-VQE, with the
Schwinger model as example.
Experimental proof-of-concept demonstrations can be

explored by considering the smallest instance of the planar
code [59] with a perturbation on a single qubit as first step.
In this scenario, the MB-VQE requires as few as eight
entangled qubits instead of the 44 used above. Especially
promising candidate systems include superconducting
qubits and photonic platforms. The latter recently demon-
strated the capability to entangle several thousands of
qubits [67,68] and to create tailored graph states
[69–72]. When designing custom states for future experi-
ments, it will be important to understand the effects of
decoherence and it will be interesting to investigate whether
MB-VQEs retain the high robustness of MBQC against
errors [39–41].
Our scheme based on edge decoration provides a new

way of thinking about state variations in VQEs. In
particular, the effects resulting from measuring only one
or few entangled auxiliary qubits can be challenging to
describe with a simple circuit. The resulting state mod-
ifications do not necessarily correspond to unitary oper-
ations and can affect a large number of remaining qubits
[35]. Accordingly, MB-VQEs can lead to schemes in which
few auxiliary qubits suffice to reach the desired state, while
many gates would be required in a circuit-based protocol.
Just like circuit optimization in standard VQEs [73],
tailored decorations can lead to more resource-efficient
MB-VQEs, with the custom state optimized to the specific
problem. The framework presented here provides a starting
point for designing VQEs whose properties are different
and complementary to the standard approach that is based
on varying a state by applying gates.
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