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The coherence of an individual quantum state can be meaningfully discussed only when referring to a
preferred basis. This arbitrariness can, however, be lifted when considering sets of quantum states. Here we
introduce the concept of set coherence for characterizing the coherence of a set of quantum systems in a
basis-independent way. We construct measures for quantifying set coherence of sets of quantum states as
well as quantum measurements. These measures feature an operational meaning in terms of discrimination
games and capture precisely the advantage offered by a given set over incoherent ones. Along the way, we
also connect the notion of set coherence to various resource-theoretic approaches recently developed for
quantum systems.
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Introduction.—The superposition principle is a direct
consequence of the linearity of quantum mechanics.
Given a set of orthogonal quantum states, their coherent
superposition also represents a possible state. The coherence
stems from the fact that the phase relation between the
various orthogonal states in the superposition is well defined.
This key concept of quantum theory has broad implications.
It is a central element for the existence of genuine random-
ness in quantum measurements and is also the basis of the
phenomenon of entanglement. Consequently, these ideas
play a fundamental role in quantum information processing,
quantum metrology, quantum transport, and many more
important research directions.
A natural question is therefore to characterize the

coherence of quantum systems, in particular for quantum
states. An intense research effort has been devoted to these
questions in recent years, leading notably to the develop-
ment of a general resource theory of quantum coherence;
see, e.g., Refs. [1–8]. There the coherence of a quantum
state can be quantified via specific measures. Interestingly,
these measures have been shown to have an operational
meaning, capturing precisely the advantage offered by a
given quantum state (with coherence) for a certain task,
compared to any possible incoherent quantum state [9,10].
The case of quantum measurements has been investigated
as well [11,12].
However, as intuition suggests, the above ideas can be

meaningfully formalized only with respect to a preferred
basis (or preferred reference frame). Indeed, a single
quantum state has intrinsically no coherence; for instance,
all pure quantum states are equivalent to each other if no
basis is specified. That is, the notion of quantum coherence
for a single state is necessarily a relative property; it can be
defined only with regard to a given reference. While the
choice of a preferred basis can be motivated in certain cases

(for instance, choosing the energy basis in a thermody-
namic setting), this basis dependence arguably limits the
general scope and applicability of these ideas.
In this work, we follow a different approach for defining

and quantifying the coherence of quantum systems in an
absolute way, i.e., without referring to any preferred basis.
This provides a basis-independent (or reference frame–
independent) quantification of coherence. The main idea is
to consider a set of quantum states, instead of a single state.
Consider for instance a pair of nonorthogonal pure states.
Clearly there exists no unitary that can map this pair of
states to an orthogonal pair. Hence, for any possible basis
choice, the pair will necessarily feature some level of
coherence. More generally, given a set of states, a mean-
ingful quantity can be defined by minimizing the coherence
of the states in the set over all possible basis choices. We
term this quantity set coherence. We note that a related
approach was proposed in Ref. [13], where the authors
developed an entropic measure for the quantumness of an
ensemble of states, reflecting the entropy production in the
ensemble. In contrast, our approach is motivated by the
more recent resource-theoretic perspective and thus tailored
to the problem of characterizing the intrinsic coherence of a
set of states.
Below, we start by introducing formally the concept of

set coherence. Then, we present two measures for set
coherence of quantum states. We derive explicit expres-
sions for the set coherence of sets of qubit states and discuss
sets featuring the highest set coherence. This reveals a
direct connection to the notion of commutativity. Next, we
investigate the notion of set coherence for quantum
measurements. Then, we demonstrate the operational
meaning of our measures via quantum games. In particular,
the measure of set coherence of a set of states quantifies the
advantage offered by this set over any incoherent set.
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Finally, we conclude with a discussion on possible future
directions.
Set coherence.—Consider a set of n quantum states

ϱ⃗ ¼ fϱjgnj¼1; ð1Þ

where all states ϱj are defined on a Hilbert space of
dimension d. While each state in the set has per se no
absolute coherence (one can always express ϱj in the basis
in which it is diagonal), the situation can be different when
considering the entire set of states ϱ⃗. This motivates us to
introduce a notion of set coherence characterizing the
coherence of the set ϱ⃗ in an absolute manner, i.e., without
referring to any specific basis or reference frame.
To proceed, we follow a resource-theoretic approach.

Namely, we first define free sets of states, that is, those
featuring zero set coherence. Intuitively, the latter consist of
sets of states ϱ⃗, such that there exists a choice of basis (a
unitary U) for which all states in the set UϱjU† become
diagonal. Formally, the free set is given by

F n ¼
�
ϱ⃗j ∃U; ∀ j; UϱjU† ¼

Xd
i¼1

pðijjÞjiihij
�
; ð2Þ

where pð·jjÞ is a probability distribution for j ¼ 1…n and
fjiigdi¼1 denotes the computational basis. If no such unitary
can be found, then the set of states features nonzero set
coherence. Our goal is now to construct a measure for this
effect, which is not straightforward due to the nonconvexity
of the free set F n (see the Supplemental Material
[14], Sec. I).
We first consider the free set defined in Eq. (2) but

restricting for the moment to a fixed unitary, taken for
simplicity to be U ¼ 1. This corresponds to having a fixed
reference basis, namely, the computational one; in due
course, reference to this arbitrary choice of basis will
disappear. The free set is given by [8]

Fn ¼
�
ϱ⃗j∀ j; ϱj ¼

Xd
i¼1

pðijjÞjiihij
�

ð3Þ

and is now convex, so that one can define the so-called
generalized robustness of a given set of states ϱ⃗with respect
to Fn, i.e.,

RFn
ðϱ⃗Þ ¼ min

�
t ≥ 0j ϱ⃗þ tτ⃗

1þ t
∈ Fn

�
; ð4Þ

where the optimization is performed over all sets τ⃗ with the
same number of states and dimension as ϱ⃗.
To remove the dependency on a reference basis, we now

minimize the above measure with respect to any possible
basis choice. Formally, we define the max robustness of set
coherence of ϱ⃗ as

Rðϱ⃗Þ ¼ min
U

RFn
ðUϱ⃗U†Þ: ð5Þ

where the minimization is performed over all unitaries U
acting on Cd. Clearly, the above quantity is basis inde-
pendent and corresponds to the intrinsic (or minimal)
amount of coherence present in the set.
While this measure captures a general property of the set

ϱ⃗, one can nevertheless express it in terms of the robustness
of the individual states ϱj in the set. More precisely, we
show in [14], Sec. I that

Rðϱ⃗Þ ¼ min
U

max
j
RF1

ðUϱjU†Þ; ð6Þ

hence the name max robustness. This naturally suggests
another possible measure for set coherence, replacing the
maximum by the average over the states. We thus define the
mean robustness of set coherence as

R1ðϱ⃗Þ ¼ min
U

1

n

Xn
j¼1

RF1
ðUϱjU†Þ: ð7Þ

Importantly, bothR andR1 are faithful measures, in the
sense that Rðϱ⃗Þ ¼ 0 if and only if the set ϱ⃗ is incoherent,
i.e., belongs to F n. While these measures are not convex
(see [14], Sec. I), similarly to the free set F n, we will see
below that they nevertheless have a clear operational
meaning.
In the following we will investigate these measures in

various scenarios. The max robustnessR will be useful for
discussing the set coherence of quantum measurements.
For sets of states, we will focus our attention mostly on the
second measureR1. It turns out thatR1 is more convenient
to calculate, as we will see below, and it provides a lower
bound on R, as clearly R1ðϱ⃗Þ ≤ Rðϱ⃗Þ.
Sets of qubit states.—We now illustrate the above ideas

considering sets of qubit states (d ¼ 2). We take advantage
of the Bloch sphere representation: q⃗j denotes the Bloch
vector of the state ϱj, i.e., ϱj ¼ ð1þ q⃗j · σ⃗Þ=2, where σ⃗
contains the Pauli matrices ðσx; σy; σzÞ.
To compute the set coherence measure R1ðϱ⃗Þ for qubit

sets, we proceed as follows. Note first that the basis-
dependent free set Fn, as defined in Eq. (3), now corre-
sponds to sets of states all aligned with the vertical axis of
the sphere (i.e., diagonal in the σz basis). As shown in
Ref. [10] the robustness of each individual state reduces to
the norm of its off-diagonal elements, i.e.,

RF1
ðϱjÞ ¼ 2jh0

���� 1þ q⃗j · σ⃗

2
j1i

���� ¼ kq⃗jkj sin ðe⃗z; q⃗jÞj; ð8Þ

where ðe⃗z; q⃗jÞ is the angle between q⃗j and the z axis. With
this, Eq. (7) simplifies to
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R1ðϱ⃗Þ ¼
1

n
min
p⃗∈S2

Xn
j¼1

kq⃗jkj sin ðp⃗; q⃗jÞj; ð9Þ

where the minimization is now performed over unit-length
vectors p⃗ on the Bloch sphere S2. The optimal vector p⃗
indicates the basis choice where the coherence of the set ϱ⃗
is minimized. Note also that by using the relation
k½ρ; η�k ¼ 1

2
kr⃗kkv⃗kjsinðr⃗; v⃗Þj, where r⃗ and v⃗ are the

Bloch vectors of the states ρ and η, respectively, one can
rewrite

R1ðϱ⃗Þ ¼
2

n
min
jψi

Xn
j¼1

k½jψihψ j; ϱj�k; ð10Þ

where the optimization is over pure qubit states. Hence
there is here a direct connection between set coherence and
commutativity in the qubit case.
We start our analysis with sets of n ¼ 2 qubit states, the

case n ¼ 1 trivially giving Rðϱ1Þ ¼ 0 by aligning p⃗ with
q⃗1. For pairs of pure qubit states the minimum in Eq. (9) is
reached when p⃗ is either q⃗1 or q⃗2; hence

R1ðϱ⃗Þ ¼
1

2
j sinðq⃗1; q⃗2Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðϱ1ϱ2Þ½1 − trðϱ1ϱ2Þ�

p
: ð11Þ

Note that for pairs of mixed states, the optimal p⃗ is aligned
with the Bloch vector of the purest ϱj (i.e., the longest
Bloch vector). From the above equation, we see that, to
maximize the set coherence, one should choose a pair
of pure qubit states with Bloch vectors that are
orthogonal, i.e., jðq⃗1; q⃗2Þj ¼ π=2. For n ¼ 2 we thus
get R1 ≤ R�

1 ≔ maxϱ⃗ R1ðϱ⃗Þ ¼ 1=2.
More generally, we can characterize the sets of n qubit

states featuring the largest set coherence; see [14], Sec. II
for details. For triplets, i.e., n ¼ 3, R1 ≤ R�

1 ¼ 2=3, the
upper bound being attained when the three Bloch vectors
form an orthonormal basis of R3. For some values of n, we
can go further by using known results on optimization over
the sphere [19,20]. For n ¼ 4 one has R1 ≤ R�

1 ¼ 1=
ffiffiffi
2

p
,

reached by states whose Bloch vectors form a regular

tetrahedron, while for n ¼ 6 one has R1 ≤ R�
1 ¼

ffiffiffi
5

p
=3,

obtained from half of an icosahedron. The case of n ¼ 5
does not have any general answer in the literature and is
notoriously hard [21]. Note that when n → ∞ the optimal
distribution of pure states tends to be uniform over the
Bloch sphere and it follows thatR1 ≤ R�

1 ¼ π=4. All these
results are summarized in Table I.
Let us also discuss our alternative measure, namely, the

max robustness of set coherence. As mentioned above, we
have thatR1ðϱ⃗Þ ≤ Rðϱ⃗Þ, the inequality being tight only for
incoherent sets of states. For n ¼ 2, similarly to Eq. (11)
one can show that Rðϱ1; ϱ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − trðϱ1ϱ2Þ

p
so that the

maximal value isR� ≔ maxϱ⃗Rðϱ⃗Þ ¼ 1=
ffiffiffi
2

p
, also obtained

for an orthogonal pair. For n ¼ 3, it seems numerically that
R� ¼ ffiffiffi

3
p

=2, obtained when the three vectors form a trine
on an equator of the Bloch sphere.
Qudits.—Going beyond qubits using our methods turns

out to be challenging, as the Bloch representation becomes
more complex. We can nonetheless still make a few
statements.
First, observe that the case of a pair of pure states of

arbitrary dimension corresponds to the qubit case, as the
states span only a qubit subspace. Therefore the rightmost
expression in Eq. (11) is applicable to any pair of pure
states. For n > 2 and d > 2 the situation is more compli-
cated. One can nevertheless prove from the inequality
RF1

ðϱÞ ≤ d − 1 of Ref. [10] that

R� ≤ d − 1 and R�
1 ≤

ðn − 1Þðd − 1Þ
n

: ð12Þ

Although for d ¼ 2 the bound onR is tight for n → ∞ and
the one on R1 for n ¼ 2, 3, we observe numerically that
this is not the case in general. Moreover, it seems that
constructions based on mutually unbiased bases do not lead
to the largest values of R1. For the case of sets of pure
states, an interesting open question is whether the set
coherence relates to properties of the Gram matrix (a matrix
with entries given by the inner products of each pair of
states in the set), which is known to identify uniquely its set
of states, up to a unitary.
Finally, we note that lower bounds on the set coherence

could be obtained by adapting the method developed in
Ref. [22], where optimization problems over unitaries can
be relaxed to a hierarchy of semidefinite programs [23].
Quantum measurements.—The notion of set coherence

naturally applies to the case of quantum measurements (or
positive operator-valued measures, POVMs). Indeed the
latter are represented by a set of Hermitian operators: A ¼
fAagna¼1 with the properties Aa ≥ 0 for all a andP

a Aa ¼ 1. Note that the operators must sum up to the
identity but do not need to have unit trace.
To quantify the set coherence of a POVM A we use the

robustness RðAÞ defined as in Eq. (5) by replacing the set
of density matrices fϱjgnj¼1 by an n-outcome POVM

TABLE I. Maximal valuesR�
1 of the set coherence measureR1

for sets of n qubit states (d ¼ 2). The sets achieving these optimal
values are also described by means of the geometry of their Bloch
representation (see the main text for details).

n R�
1 Optimal sets

2 1
2

Orthonormal pair (e.g., X, Z)
3 2

3
Orthonormal basis (e.g., X, Y, Z)

4 1=
ffiffiffi
2

p
≈ 0.7071 Regular tetrahedron

6
ffiffiffi
5

p
=3 ≈ 0.7454 Half of an icosahedron

∞ π=4 ≈ 0.7854 Uniform distribution
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fAagna¼1. The free set and basis-dependent robustness are
constructed as in Eqs. (3) and (4), with the only difference
that all sets of operators considered, such as τ⃗, should form
a POVM. The detailed construction of this measure, as well
as its related mean robustness, can be found in [14],
Sec. III. In what follows, we concentrate on the measure
constructed in line with Eq. (5).
We first discuss the set coherence for the case of a single

POVM. Clearly, RðAÞ ¼ 0 for all projective measure-
ments, i.e., measurements with A2

a ¼ Aa for all a, as the
POVM elements commute with on another and can hence
be simultaneously diagonalized. Note that this is also the
case for binary measurements. There are, however, non-
projective POVMs that feature nonzero set coherence. For
qubit POVMs, we find numerically (similarly to the case of
states; see [14], Sec. III) that the most set coherent ternary
(n ¼ 3) POVM is the trine (R ¼ 1=

ffiffiffi
3

p
), while for n ¼ 4

we get R ¼ 1=
ffiffiffi
2

p
for the symmetric informationally

complete POVM (with Bloch vectors forming a regular
tetrahedron).
It is relevant to comment on the relation between the set

coherence of a POVM and some recently developed
quantifiers of the usefulness of a POVM. First, in
Ref. [24] the authors quantify the informativeness of a
POVM through its robustness with respect to those POVMs
that have elements proportional to the identity operator. The
latter correspond to generalized coin-flip measurements,
i.e., measurements with state-independent outcome distri-
butions. Clearly these POVMs have zero set coherence, and
hence they belong to our free set. Thus any feasible point of
the robustness measure for informativeness is also a
feasible point in our optimization. This further implies
that the robustness of informativeness upper bounds the set
coherence. There exist, however, POVMs that are inform-
ative but have no set coherence (e.g., projective measure-
ments). Second, one can consider POVMs that are
simulable with projective measurements [25,26], i.e.,
measurements in the convex hull of projective measure-
ments. Any POVM with no set coherence is in this convex
hull, as we show in [14], Sec. IV, based on a generalization
of the Birkhoff–von Neumann theorem [27]. Hence, the
robustness of a POVM with respect to the set of projective
simulable measurements lower bounds the set coherence.
Finally, note that both the informativeness and nonprojec-
tive simulability have an operational interpretation in terms
of a performance in a state discrimination task, as their
corresponding free sets are convex [24,25,28,29]. For set
coherence, the free set is not convex, although it is
somewhere in between the two mentioned convex free
sets. In the next section we show that an interpretation
through discrimination tasks is nevertheless possible.
We nowmove to the case of a set of POVMs. In this case,

one could expect a connection between the set coherence
and the incompatibility of sets of POVMs as captured,
e.g., via nonjoint measurability. Joint measurability asks

whether for a set of POVMs there exists a common
POVM that functions as their common readout.
Clearly, zero set coherence guarantees mutual commuta-
tivity and hence joint measurability by using the
product POVM Ga⃗ ¼

Q
x Aaxjx. This is indeed a POVM

because ½Aaxjx; Aayjy� ¼ 0 and it has the property
Aajx ¼

P
a⃗ δax;aGa⃗; i.e., neglecting all but the outcome

ax gives the POVM fAaxjxgax . Hence, the set coherence is
an upper bound on the incompatibility robustness [30].
However, there exist compatible sets of POVMs featuring
nonzero set coherence, such as noisy X and Z measure-
ments, and one may expect that a high enough set
coherence ensures incompatibility. These are interesting
questions for future work.
Set coherence as a quantum game.—We now discuss the

operational meaning of set coherence in terms of a quantum
discrimination game. We consider the case of a set of states
ϱ⃗ and show that if R1ðϱ⃗Þ > 0, then there exists a specific
discrimination game for which ϱ⃗ provides an advantage
over any incoherent set (i.e., sets of states that have zero set
coherence). Moreover, the value of R1ðϱ⃗Þ quantifies
precisely the relative advantage provided by ϱ⃗ over any
incoherent set.
To construct such a game we consider a task of

subchannel discrimination, i.e., distinguishing between
different branches of a time evolution. The branches are
modeled as sets of completely positive maps C ¼ fIaga
with the property that

P
a Ia is trace preserving. Given C

and a final measurement A, the goal is to identify which
subchannel Ia has been applied. The resource is the initial
state ϱ. The success probability is given by

psuccðϱ; C;AÞ ≔
X
a

trðIaðϱÞAaÞ: ð13Þ

In the case in which one considers a fixed reference basis,
the robustness measure RF1

quantifies the relative advan-
tage offered by ϱ over any state τ in the free set [9,10], i.e.,

psuccðϱ; C;AÞ
maxτ∈U†F1Upsuccðτ; C;AÞ ≤ 1þRU†F1UðϱÞ: ð14Þ

This relation can be derived from Eq. (4) (with n ¼ 1) and
holds for any unitary U (specifying the reference frame),
any set of subchannels C, and any POVM A.
Moving now to the case of a set of states ϱ⃗ and making

the construction basis independent by minimizing over
unitaries, we show in [14], Sec. V that

1

n
min
U

X
j

sup
Cj;Aj

psuccðϱj;Cj;AjÞ
maxτj∈U†F1Upðτj;Cj;AjÞ

¼1þR1ðϱ⃗Þ: ð15Þ

Note that here the discrimination procedure ðCj;AjÞ
depends on U. In other words, for any reference basis,
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i.e., for any given U, there exists a set of subchannel

discrimination tasks ðC⃗; A⃗Þ, in which the set of states ϱ⃗
outperforms any incoherent set in this reference frame, with
relative advantage given by RU†F1Uðϱ⃗Þ. When minimizing
this advantage over reference frames, one gets the mean
robustness of set coherence R1ðϱ⃗Þ.
A similar construction can be made for our other

measure of set coherence R. In particular, this can also
be adapted to the case of quantummeasurements, where the
set-coherence robustness of a POVM quantifies the relative
advantage in a state discrimination task. We have sketched
the proofs for these scenarios in [14], Sec. V.
We note that, in the case of measurements, the task-based

interpretation sheds light on a natural question in quantum
measurement theory. Namely, the notion of commutativity
of POVMs, i.e., the requirement that ½Aaj1; Abj2� ¼ 0 for all
a, b, is a type of measurement compatibility that lacks an
operational interpretation. Commutativity implies all
known types of compatibility such as joint measurability
[31], unavoidable measurement disturbance [32], and
coexistence [33], all of which can be given a task-oriented
interpretation [28,29,34–41]. It is clear that our notion of
set coherence of measurements does not exhaust commu-
tativity of POVMs, as one can easily construct a POVM that
does not commute with itself but commutes with a trivial
POVM. However, for binary measurements our notion
coincides with commutativity, and hence in this scenario
we get an operational interpretation of commutativity in the
spirit of Eq. (15).
Conclusion.—We developed a notion of set coherence

for characterizing the coherence of a set of quantum
systems. This provides an approach for quantifying quan-
tum coherence in a basis-independent manner. This is
appealing from the physical standpoint but becomes
formally more challenging due to the nonconvexity of
the resource theory. Nevertheless, we showed that mean-
ingful measures can be constructed for set coherence. Some
of these ideas could be useful for building resource theories
for other quantum resources, such as non-Markovianity, as
the set of Markovian channels is also known to be non-
convex [42]. In parallel, it would also be interesting to see if
the present resource theory of set coherence can be
“convexified,” for instance by taking as the free set the
convex hull of F n.
Finally, it would be interesting to investigate the relevance

of set coherence in settings where sets of quantum states (or
measurements) naturally appear, for instance in quantum
key distribution (QKD) or quantum computation. Could one
design a secure QKD protocol based on any set of states
featuring nonzero set coherence? One may also consider
quantifying the coherence of a quantum dynamical evolu-
tion, where a continuous set of states is explored over time.
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Brunner, Better local hidden variable models for two-qubit
Werner states and an upper bound on the Grothendieck
constant KGð3Þ, Quantum 1, 3 (2017).

[27] R. M. Caron, X. Li, P. Mikusiński, H. Sherwood, and M. D.
Taylor, Nonsquare “doubly stochastic” matrices, Lect.
Notes Monogr. Ser. 28, 65 (1996), www.jstor.org/stable/
4355884.

[28] M. Oszmaniec and T. Biswas, Operational relevance of
resource theories of quantum measurements, Quantum 3,
133 (2019).

[29] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne,
Quantifying Quantum Resources with Conic Programming,
Phys. Rev. Lett. 122, 130404 (2019).

[30] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, One-to-
One Mapping between Steering and Joint Measurability
Problems, Phys. Rev. Lett. 115, 230402 (2015).

[31] T. Heinosaari, T. Miyadera, and M. Ziman, An invitation
to quantum incompatibility, J. Phys. A 49, 123001
(2016).

[32] T. Heinosaari and M.M. Wolf, Non-disturbing quantum
measurements, J. Math. Phys. (N.Y.) 51, 092201 (2010).

[33] P. Lahti and S. Pulmannová, Coexistent observables and
effects in quantum mechanics, Rep. Math. Phys. 39, 339
(1997).

[34] M.M. Wolf, D. Perez-Garcia, and C. Fernandez, Measure-
ments Incompatible in Quantum Theory Cannot be
Measured Jointly in any other No-Signaling Theory, Phys.
Rev. Lett. 103, 230402 (2009).
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