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We study the bending of a booklike system, comprising a stack of elastic plates coupled through friction.
The behavior of this layered system is rich and nontrivial, with a nonadditive enhancement of the apparent
stiffness and a significant hysteretic response. A dimension reduction procedure is employed to develop a
centerline-based theory describing the stack as a nonlinear planar rod with internal shear. We consider the
coupling between the nonlinear geometry and the elasticity of the stacked plates, treating the interlayer
friction perturbatively. This model yields predictions for the stack’s mechanical response in three-point
bending that are in excellent agreement with our experiments. Remarkably, we find that the energy
dissipated during deformation can be rationalized over 3 orders of magnitude, including the regimes of a
thick stack with large deflection. This robust dissipative mechanism could be harnessed to design new
classes of low-cost and efficient damping devices.
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Multilayered microstructure layouts are essential in
many biological and engineered materials for enhanced
mechanical properties [1]. For example, nacre and nacre-
like materials have been investigated and engineered for
their superior stiffness, strength, and toughness [2–4].
Layered architectures are also found across scales, from
multilayer graphene [5] and fish scales [6,7] to deployable
mechanisms [8] and geological stacks [9]. In all these
systems, interlayer interactions dictate the overall mechani-
cal response. Frictional damping across layered elements is
also central to the performance of classic engineering
systems, such as mechanical joints [10], turbine blades
[11], and leaf springs [12,13]. There has been progress in
modeling layered system with a few number of interfaces
[14–16] or when frictional effects dominate [17]. Still, it
remains challenging to predict how the microscopic archi-
tecture and interlayer interactions of a layered mechanical
system give rise to a specific macroscopic constitutive
response, especially for large deformations.
Here, we study the mechanics of a model layered system,

where the effects of the small-scale structural layout and
friction can be related directly to the macroscopic response.
Specifically, we address the question: What is the bending
response of a book with internal friction? It is well known
that the bending stiffness of a slender structure scales as its
thickness cubed ∼h3 [18]. Naturally, the answer for a book
with n sheets is bound by the two limiting cases of ∼ðnhÞ3
and∼nh3. The first estimate ignores the possibility of sliding
(infinite friction), whereas the second neglects the interlayer
shear stresses (zero friction). As in other related problems
studied recently involving friction [17,19,20], there is no
general solution method to tackle friction, especially when it
couples with other ingredients, such as elasticity, nonlinear

geometry, and multiplicity of contacts. We study this
problem by performing precision nonlinear bending tests
of a multilayered stack of elastic plates interacting solely
through friction [see Fig. 1(a)]. We quantify the mechanical
response of this booklike system, including the dissipated
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FIG. 1. (a) Photograph (front view) of the experimental setup.
A stack ① of n plates (n ¼ 70 here) is placed on two rollers ② and
loaded by an indenter ③ prescribing the deflection at midspan.
(b) Loading-unloading curves of the average indenter force per
plate F2ðw∘Þ=n for selected values of n. The thin black line
corresponds to the classic, nonlinear prediction for the three-point
bending of a single plate, n ¼ 1 ([21], Sec. II). (c) Normalized
incremental rigidity K=ðnB1Þ and its maxima K�

m (⊳ and ⊲
symbols for loading and unloading, respectively).
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energy. Following a dimension reduction procedure, we
develop a beamlike theory based on the centerline of the
stack. This model takes into account the nonlinear geometry
of large stacks and treats friction as a perturbation.
In our experiments, we quantify the resistance to bending

of a booklike system by performing mechanical tests of a
stack of n plates in a three-point bending configuration
[see photographs of the apparatus in Fig. 1(a) and the
Supplemental Material [21], Sec. I]. This canonical testing
geometry is well established for the characterization of the
mechanics of beams, including in the large deflection regime
[22,23]. We seek to quantify the effect of frictional dis-
sipation between the plates on the mechanical response of
the system. Our stack comprises n plates made of poly-
ethylene terephthalate (Partwell group), each with dimen-
sions 2L ×W × h ¼ 220 × 30 × 0.286 mm3. The number
of plates is varied in the range 1 ≤ n ≤ 70. Both faces of the
plates are roughened using sandpaper (K80, Emil-Lux
GmbH) to avoid interlayer adhesion and ensure reproducible
dry-friction interactions [24]. The three-point bending con-
figuration is established by two fixed lower supports,
separated by 2a ¼ 130 mm, and an indenter located at
midspan. The fixed supports are set as rollers, comprising
two steel cylinders (radius b0 ¼ 6.8 mm) coated with a film
of vinyl polysiloxane (thickness ≈100 μm) to prevent
sliding, and mounted on air bearings (IBS Precision
Engineering, pressure ≈70 psi) to offer nearly frictionless
rotation of the supports. The reaction force at the indenter F2

is measured by a universal testing machine (Instron 5943)
under imposed-displacement conditions. The midspan
deflection is cycled at constant speed (v ¼ �1 mm=s) in
the range 0 ≤ w∘ ≤ wmax∘ . The geometry and loading con-
ditions ensure that each plate remains in the elastic regime.
Our experimental apparatus yields highly reproducible and
precise mechanical response measurements (further evi-
dence provided in the Supplemental Material [21], Sec. I).
In Fig. 1(b), we plot representative curves of the

average load per plate F2=n for cycles with amplitude
wmax∘ ¼ 50 mm, at selected values of n ¼ f1; 35; 70g. For
n ¼ 1, the response agrees with the classic prediction for
large-deflection three-point bending; there is a linear
regime followed by a maximal load with no hysteresis
during unloading (see [21], Sec. II). We find that both the
maximal load per layer F2=n and the energy dissipation
through friction (area of the hysteresis loop) increase with
n, implying that the behavior of the stack is not a
superposition of n independent layers. To address this
nonlinear response, we introduce the incremental stiffness
Kðw∘Þ ¼ ða3=6ÞðdF2=dw∘Þ; the prefactor ensures that
K ¼ nB1 for small deflection and without friction, where
B1 ¼ ½Eh3W=12ð1 − ν2Þ� ¼ 1.76 × 10−4 Nm2 is the bend-
ing rigidity of a single plate, E ¼ 2.4 GPa is the Young
modulus, and ν ¼ 0.44 is Poisson’s ratio. In Fig. 1(c),
we plot Kðw∘Þ=ðnB1Þ, using the same data as in
Fig. 1(b), for a loading-unloading cycle. The limiting value

Kð0Þ=ðnB1Þ for small deflections is 1 for n ¼ 1 and
increases with n, implying that, when n > 1, friction affects
even the initial response. In addition, the loading curves
display an increasingly pronounced hysteresis as n
increases: the incremental stiffness K is different between
loading and unloading. The maximum stiffness K�

m pro-
vides a robust measure of the bending rigidity of the stack;
we define one for loading, Kþ

m, and one for unloading, K−
m.

Having characterized the overall loading response of our
stacks, we proceed by further quantifying the kinematics of
a bent stack. By way of example, we select a thick stack
with n ¼ 70 and focus on two representative configurations
at moderate and large deflections, w∘=a ¼ 0.4 and 1, see
Figs. 2(a1) and 2(a2). The schematic diagram in Fig. 2(c)
defines the quantities used in the geometric analysis: θ is
the tangent orientation, and S̃ is the arc length measured
along a specific plate. In Fig. 2(b), we plot the profiles θðS̃Þ
for the upper- and lowermost plates, for the two selected
deflection levels. The profiles of the upper- and lowermost
plates are different, especially at larger deflections: the
same increment of θ takes place over a narrower range of
arc length S̃ in the uppermost plate than in the lowermost
one. An appropriate model for the stack must account for
these through-thickness variations.
We visualize the extent of shear in our booklike system

by physically painting three red lines on the lateral face of
the stack [see Figs. 2(a)1 and 2(a2)], perpendicularly to its
centerline in the undeformed configuration. During the
ensuing deformation by the three-point bending test, we
find that the two outer lines lose perpendicularity to the
centerline, indicating that there is significant shear. The
nonpenetration of the contacting plates is at the source of
this shear buildup, which is known to arise in parallel
bundles of inextensible curves [25]; strong geometric

(a2)

(c)

(a1) (b)

FIG. 2. (a) Snapshots of a deformed stack with n ¼ 70, at (a1)
w∘=a ¼ 0.4 (filled disks) and (a2) w∘=a ¼ 1 (filled diamonds).
(b) Schematic diagram of the geometric quantities used in Eq. (1).
(c) Tangent angle θ versus arc length S̃ along the upper- and
lowermost plates (green and red symbols, respectively). The
predictions (dashed lines) were obtained by integrating Eq. (2).
The predicted profiles are superimposed as dashed curves in (a1)
and (a2).
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constraints couple the layers in the stack. A well-known
model for thick and shearable beams is that of Timoshenko
[26,27]; however, it is inapplicable here as it assumes that
the shear stress has an elastic origin.
To rationalize our experimental results, we build a 1D

model for thick beams that accounts for internal friction at
the interfaces of the layers. Similar reduction methods for
bundles of slender components have recently been
employed to describe helical strips [28,29] or bundled
filaments [30], albeit in different geometries than ours and
without considering friction. The centerline of the stack is
represented as an inextensible curve xbbðSÞ with arc length
S and curvature κðSÞ; we reserve the symbol S for arc
lengths measured along the stack’s centerline, whereas S̃
pertains to the arc length along a specific plate. The
transverse coordinate y varies from−nh=2 at the lowermost
plate to nh=2 at the uppermost one. In the absence of
delamination, the final position of a point belonging to the
plate offset by y from the stack’s centerline is written as

x̃ðS; yÞ ¼ xbbðSÞ þ nðSÞy; ð1Þ

where nðSÞ is the unit normal to the centerline [Fig. 2(c)].
Note that in our non-Lagrangian parametrization, the final
position x̃ is viewed as a function of the arc length S of its
projection xbb onto the centerline in the final configuration.
Thus, S is different from the Lagrangian arc length S̃,
and S̃ðS; yÞ − S provides a measure of shear. The two arc
lengths are related as dS̃ ¼ ½1 − yκðSÞ�dS due to the
combined effects of curvature and plate inextensibility,
as shown in the Supplemental Material ([21], Sec. II) by
differentiating Eq. (1).
From Eq. (1), the curvature of a plate is κ̃ðS̃; yÞ ¼

κðSÞ½1 − yκðSÞ�−1. The bending energy E of the stack is
found by summing the contributions

RþL
−L ðB1=2Þκ̃2dS̃ from

each plate, yielding

E ¼ 2
B1

nh2

Z
l

0

φ½nhκðSÞ�dS;

where φðxÞ ¼ ðx=2Þ ln ð1þ x
2
=1 − x

2
Þ and l is the arc

length where contact with the rollers takes place,
lðw∘ ¼ 0Þ ¼ a (see [21], Sec. II). The range of the
integration to obtain E has been restricted to 0 ≤ S ≤ l,
given both the symmetry of the solution and the fact that the
overhanging parts of the stack beyond the supports remain
straight and, therefore, carry no energy.
The strain energy potential E defines an equivalent non-

linear beam model for the stack, with an internal moment
given by the constitutive law MðSÞ ¼ ðB1=hÞφ0ðnhκÞ.
Following a variational approach (see [21], Sec. II), one
obtains the governing equilibrium (Kirchhoff) equations for
planar rods,

nB1θ
00ðSÞ

ð1 − n2h2θ02ðSÞ
2

Þ2
þ
�
F2

2
cos θðSÞ þ F1 sin θðSÞ

�

¼ 0; ð2Þ

where primes denote differentiation with respect to S, F2 is
the poking force, and the reaction force at the support
S ¼ �l is written as F ¼∓ F1e1 þ ðF2=2Þe2. The center-
line satisfies x01ðSÞ ¼ cos θðSÞ and x02ðSÞ ¼ sin θðSÞ. The
boundary conditions are ðθ; x1; x2ÞS¼0 ¼ ð0; 0;−w∘Þ and
ðθ0; x1; x2ÞS¼l ¼ ð0; a − b sin θðlÞ; bðcos θðlÞ − 1ÞÞ, with
b ¼ b0 þ nh=2 as the effective radius of the support.
Solving the boundary-value problem in Eq. (2) yields the

centerline xbbðSÞ; this solution ignores friction and will be
referred to as the “elastic backbone.” The shape of the full
stack can be reconstructed using Eq. (1). In Fig. 2(a), we
find excellent agreement between the computed and the
experimental shapes of the upper- and lowermost plates.
As part of the solution process, one also obtains the poking
force F2;bbðw∘Þ.
Next, we address the interlayer friction to rationalize the

hysteresis observed in the experiments. Treating friction as
a perturbation, we use the (frictionless) elastic backbone
solution obtained above to estimate the power Pμ dissi-
pated by friction. This Pμ is the integral over all the plate-
plate interfaces of the sliding velocity multiplied by the
tangential contact stress. From Amontons-Coulomb law of
friction, the tangential contact stress is the friction coef-
ficient μ times the normal stress ΣðS; yÞ. Given that the
plates are sliding against one another, μ is a dynamic
friction coefficient. Reconstructing the stress ΣðS; yÞ in the
backbone solution and carrying out a partial integration in
the transverse direction, one obtains the expression of the
dissipated power as ([21], Sec. III)

Pμ ¼ μhnjFjj_θðlÞj þ 2μ

Z
l

0

QðSÞj_θðSÞjdS; ð3Þ

where dots denotes differentiation with respect to time
and QðSÞ ¼ R nh=2

−nh=2 jΣðS; yÞjdy.
The first term in Eq. (3) represents the dissipation in the

stack by the pointlike contact force at the supports, while
the second term is the dissipation everywhere else in the
stack. By symmetry, there is no sliding (hence, no dis-
sipation) at the poking point. The poking force is then
derived by a global balance of power as

F2 _w∘ ¼ − _E þ Pμ: ð4Þ

Whereas _w∘ and _E change sign between loading and
unloading, Pμ does not, implying that F2 is different
during the two phases.
Before the poking force can be computed from Eqs. (3)

and (4), the kinematic friction coefficient μ must be
obtained. Friction coefficients for dry surfaces are known
to be sensitive to the magnitude of the normal load [17],
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which, in our system, varies significantly depending on
both the amount of deflection and the position along the
stack ([21], Sec. III). Therefore, an independent measure-
ment of μ may not be relevant. Instead, we proceed by
extracting μ directly from the experimental data by lever-
aging the variations of the stacks stiffness K�

m as a function
of n. In the limit of small deflections (see Supplemental
Material [21], Sec. IV), our model yields K�

m ¼ Kmbb ×
½1� nμ 3

4
ðh=aÞ� with Kmbb as the bending stiffness of the

backbone solution; with the scaling Kmbb ∼ nEh3W, this
yields K�

m ∼ nEh3W½1� nμ 3
4
ðh=aÞ�, which is in-line with

the nh3 scaling anticipated in the Introduction while also
including the correction from friction. Exploiting the linear
relation between K�

m=Kmbb and n provides the friction
coefficient as μ ¼ 0.52� 0.03 (see [21], Sec. V for more
details on how K�

m and μ were obtained from the exper-
imental data). The poking force F2 can now be obtained
from Eqs. (2)–(4) to compute the loading curves over the
entire deflection range. In Fig. 3(a), we compare the
predictions from our model (solid curves) with the experi-
ments (data points), finding excellent agreement between
the two, for different values of n, with a single parameter μ
that was fitted to the data once and for all.
In Fig. 3(b), the energy D dissipated during one loading

cycle is plotted as a function of the scaled maximum
deflection. From the experimental data, D is measured as
the area enclosed by the loading-unloading curves. The
model predictions are accurate over the entire range of
parameters, from thin to thick stacks and small to large
deflections; i.e., 10 ≤ n ≤ 60 and 0.1 ≤ wmax∘ =a ≤ 1,
respectively. For small deflections, the curves collapse
onto a straight line in the logarithmic plot, corresponding
to the power law Dlin ¼ ð9μB1h=2a2Þðnwmax∘ =aÞ2 appli-
cable to small deflections (see [21], Sec. IV).
In closing, we highlight that the ability of our centerline-

based theory to accurately capture the mechanical behavior

of a stack of frictional plates was a priori not straight-
forward, given the nonconservative nature of the system.
We circumnavigated this challenge by treating friction
perturbatively while tracking the localized dissipative
regions and considering the full coupling between elasticity
and nonlinear geometry. Our methodology is general and
we anticipate that it can be adapted to other complex
systems where friction is important. We have uncovered a
simple mechanism where the energy dissipated per cycle
can be made to vary by a large amount; this could be
harnessed to design new classes of low-cost and efficient
damping devices. As geometry, elasticity, and friction are
the sole ingredients, it should be applicable across a wide
range of length scales. Whereas we focused on a quasistatic
setting, dynamic and impact conditions should also be
included in future research efforts, which we hope the
current study will instigate.
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