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The density distribution in solids is often represented as a sum of Gaussian peaks (or similar functions)
centered on lattice sites or via a Fourier sum. Here, we argue that representing instead the logarithm of the
density distribution via a Fourier sum is better. We show that truncating such a representation after only a
few terms can be highly accurate for soft matter crystals. For quasicrystals, this sum does not truncate so
easily, nonetheless, representing the density profile in this way is still of great use, enabling us to calculate
the phase diagram for a three-dimensional quasicrystal-forming system using an accurate nonlocal density
functional theory.
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The form of the average (probability) density distribution
ρðrÞ of particles in crystalline and quasicrystalline solids
depends crucially on various factors such as temperature,
pressure, and the nature of the particle interactions. Many
important material properties are in turn sensitively related
to the form of ρðrÞ. For example, the Lindemann criterion
[1–3] identifies the melting of a crystal in terms of the
widths of the peaks in ρðrÞ, which depend sensitively on the
distance in the phase diagram between the current state and
where solid-liquid phase coexistence occurs.
It has been known for some time that in a uniform solid,

ρðrÞ can be represented well by sums of Gaussian peaks
centered on the lattice sites [1–4], i.e.,

ρðrÞ ¼
X
l

n

�
α

π

�
3=2

e−αðr−RlÞ2 ; ð1Þ

where α controls the peak widths and fR1;R2;…g ¼
fRlg is the set of vectors of the lattice sites in the solid. For
a crystal these are the set of lattice vectors and n is the
average number of particles per lattice site. If the particles
have a hard core then n ≤ 1, but for the soft penetrable
particles which model polymeric molecules in solution
[5–7] considered here, n > 1. The Gaussian form (1) and
its anisotropic generalizations [2–4] are fairly accurate deep
in a crystal phase, but are less accurate close to melting.
The other standard representation, due to its periodicity,

is to express ρðrÞ as a Fourier sum [1,2]:

ρðrÞ ¼
X
j

ρ̂j expðikj · rÞ; ð2Þ

where fkjg is the set of reciprocal lattice vectors (RLVs)
for the crystal, including k ¼ 0, and ρ̂j are the Fourier
coefficients. For example, in a simple cubic crystal, these
wave vectors form a cubic lattice, and the smallest nonzero
wave number is related to the size of the unit cell.
Both the representations above become more involved

when considering quasicrystals (QCs). These have the
spatial order of crystals but they lack periodicity, so in
QCs the set of vectors fRlg is aperiodic and Eq. (1) needs
to be modified to allow the heights and widths of the peaks
to vary in space, replacing ðn; αÞ by ðfnlg; fαlgÞ. The
representation in Eq. (2) can still be used for QCs, with the
RLVs indexed by up to six integers [8,9].
The density peaks of a solid can be rather sharp, so the

Fourier sum representation (2) requires a large number of
terms to be accurate. Here, we advocate the following
alternative ansatz as being more useful and accurate than
either (1) or (2) for crystal and QC density distributions:

ρðrÞ ¼ ρ0 exp

�X
j

ϕ̂j expðikj · rÞ
�
; ð3Þ

namely, we represent the logarithm of the density as a
Fourier sum over the RLVs, with Fourier coefficients ϕ̂j
and ρ0 an arbitrary reference density.
The advantage of representation (3) is that it excels both

deep in the crystalline region of the phase diagram, where
(1) is accurate, and also close to melting, where the peaks
broaden and (2) becomes viable. We show below that for
the soft matter systems considered here, retaining only a
few terms in the sum in (3) can be remarkably accurate in
both regimes. In [10] we showed that simply retaining wave
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number zero and one other wave number in (3) quantita-
tively agrees with a fully resolved representation of the
density in lamellar phases, both near and far from melting.
We show here that minimal extra effort is required for
crystals such as face-centered cubic (fcc) and body-
centered cubic (bcc), although it transpires that more
effort is needed for dodecagonal QCs and icosahedral
quasicrystals (IQCs).
In what follows, we explain the procedure to determine

ρðrÞ in the framework of density functional theory (DFT)
[1,11,12]. We show that a severely truncated and simplified
ansatz based on (3) allows for an accurate and efficient
determination of the three-dimensional (3D) density dis-
tributions, and compares well with existing results [6,13].
Additionally, we show how this strongly nonlinear theory
(SNLT) enables efficient computation of the phase diagram
in a system that is capable of forming both 3D crystals
and IQCs.
The central quantity in DFT is the Helmholtz free energy,

expressed as a functional of the density:

F ½ρ� ¼ kBT
Z

ρ½lnðΛ3ρÞ − 1�drþ F ex½ρ� þ
Z

ρUdr:

ð4Þ

The first term is the ideal-gas contribution, with Λ the
thermal de Broglie wavelength, kB Boltzmann’s constant,
and temperature T. F ex is the excess contribution due to
particle interactions and the third term is from any external
potential UðrÞ. We set U ¼ 0, as we are interested only in
bulk behavior. The equilibrium density profiles minimize
the grand potential Ω½ρ� ¼ F ½ρ� − μ

R
ρdr, where μ is the

chemical potential, and thus satisfy the Euler-Lagrange
equation

lnðΛ3ρÞ − cð1Þ½ρ� − βμ ¼ 0; ð5Þ

where β ¼ ðkBTÞ−1 and cð1Þ½ρ�≡ −βδF ex=δρ is the one-
body direct correlation function [1,11,12]. Taking a func-
tional derivative of (5) with respect to ρ and then integrating
again yields a formally exact expression for cð1Þ½ρ� that can
be rearranged to give

ρðrÞ ¼ ρ0 exp

�Z
dr0½ρðr0Þ − ρ0�

Z
1

0

dλcð2Þðr; r0; ρλÞ
�
;

ð6Þ

which is obtained by thermodynamic integration (details in
the Supplemental Material [14]) along a sequence of states
with profiles ρλ ¼ ð1 − λÞρ0 þ λρ. Here, cð2Þðr; r0; ρλÞ is the
pair direct correlation function for the inhomogeneous
systems along this path [1,2]. For a system with inter-
particle pair potential vðrÞ, the function cð2Þðr; r0; ρλÞ ∼
−βvðjr − r0jÞ for large jr − r0j and is finite for all ðr; r0Þ.

Thus, the spatial integral inside the exponential in Eq. (6)
has the effect of smearing the sharp peaks in ½ρðrÞ − ρ0� and
so is more slowly varying than the density, meaning it can
be represented accurately via a Fourier sum with fewer
terms. The exponential of this smooth function is then the
sharply peaked density.
The first term in (5) provides further motivation for the

ansatz (3). Substituting ρ ¼ ρ0 expðϕÞ into (5) (without
assuming the system is periodic), we obtain

lnðΛ3ρ0Þ þ ϕ − cð1Þ½ρ0eϕ� − βμ ¼ 0: ð7Þ

Fourier transforming gives

ϕ̂ − dcð1Þ½ρ0eϕ� − βμ�δðkÞ ¼ 0; ð8Þ

where the circumflex denotes the Fourier transform. We
define βμ� ¼ βμ − lnðΛ3ρ0Þ, i.e., the chemical potential
with a constant subtracted, and δðkÞ is a Dirac delta
function. When the system is periodic, we can replace
the Fourier transforms in (8) by Fourier sums and the Dirac
delta becomes the Kronecker delta δk;0. With the ansatz (3),
the unknown Fourier amplitudes ϕ̂j, are found by solving
Eq. (8). The advantage of this is that we are working with,
rather than against, the physics, and fewer modes in (3) are
needed to resolve ρðrÞ accurately.
Here, our strongly nonlinear theory (SNLT) is a severe

(but controlled) truncation of (3), along with the require-
ment that Fourier modes whose indices are permutations of
each other have equal amplitude. We refer to the level of
truncation as the “order” of the SNLT. In the Supplemental
Material [14] we give a detailed exposition of SNLT and
MATLAB code applying it to the fcc crystal.
To illustrate the advantage of SNLT, we consider two

different model systems in 3D: (i) the generalized expo-
nential model with exponent 4 (GEM-4) [6,13], which
enables to compare our SNLT results with those of
Ref. [13], where an unconstrained minimization of Ω
was performed, and (ii) a modified Barkan-Engel-
Lifshitz (BEL) [16] model designed to promote the for-
mation of IQCs. For both we use the random phase
approximation for the excess free energy

F ex½ρ� ¼
1

2

Z Z
ρðrÞvðjr − r0jÞρðr0Þdr0dr; ð9Þ

which is accurate for soft-core systems [5]. For particles
with a hard core, one should instead use an alternative
approximation for F ex½ρ�, e.g., one based on the highly
accurate fundamental measure functionals for hard spheres
[1,12,17]; see also [18–21] for hard-core systems that form
QCs. Taking (7) with (9) yields
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ϕðrÞ þ ρ0β

Z
vðjr − r0jÞeϕðr0Þdr0 − βμ� ¼ 0; ð10Þ

recalling that expðϕÞ is proportional to the density.
The GEM-4 is a simple model of dendrimers in solution,

treating the effective interactions between the centers of
mass via the pair potential vðrÞ ¼ ϵ expð−r4=R4Þ, with ϵ
denoting the strength of the interaction and R its range.
Figure 1 shows the GEM-4 grand potential minus that
of the uniform liquid state per unit volume (V),
βR3ðΩ −ΩliqÞ=V, versus the chemical potential βμ� for
successive orders of SNLT calculations for fcc and bcc
crystals, compared with full numerical solutions of Eq. (10)
(an unconstrained minimization, using the approach
described in [10]). We see that the order 1 SNLT approxi-
mation (red dashes) fails to describe the crystal accurately,
especially for the fcc, but the order 2 and 3 SNLT perform
significantly better, to the extent that order 3 calculations
(cyan dashes) overlap with the full numerical solutions
(black solid line). Using this accurate order 3 SNLT, for
βϵ ¼ 1 we find that the uniform liquid state transitions to a
bcc phase at βμ� ¼ −9.67, which itself then transitions to a
fcc phase at βμ� ¼ −5.06. The corresponding coexisting
densities at the liquid-bcc transition are R3ρ̄liq ¼ 5.55 and
R3ρ̄bcc ¼ 6.10, while for the bcc-fcc transition we have
R3ρ̄bcc ¼ 7.65, R3ρ̄fcc ¼ 7.70. These SNLT values agree
well with results from Pini et al. [13] and can easily be
rescaled to obtain corresponding values at other temper-
atures [10]. Other periodic structures, such as lamellar,
columnar hexagons and simple cubic crystals, are never
global minima of the grand potential.
Figure 2 shows the density distribution ρ as a function of

the interpeak distance x in the fcc crystal, calculated from
SNLT (blue circles), from the unconstrained minimization
in Figs. 2 and 3 of Ref. [13] (red crosses), and from
assuming the Gaussian form (1) (dashed black line). Both
SNLT and the Gaussian form (1) match [13] well on the
scale of the main plot. However, in the inset we plot log10 ρ
as a function of x2, which highlights the density between
peaks, where we observe that the results of [13] and SNLT

both deviate significantly from the Gaussian form. This
highlights an important weakness of representation (1): it
underestimates the density between peaks by several orders
of magnitude. The density between peaks gives the particle
hopping rate between peaks, thus errors in calculating this
leads to errors in the diffusion coefficient and related
transport properties.
Figure 3 shows the maximum and minimum of ρ as a

function of βμ� obtained by three different methods, to
compare the regimes under which the different representa-
tions of ρ are valid. The inset compares their grand
potentials. The Gaussian representation (1) (blue solid
lines) recovers the maximum of the density profile cor-
rectly, but underestimates the minimum significantly, in
line with Fig. 2. This form also leads to an overestimate in
the value of the grand potential, particularly near to
melting. The red dashed lines are results from the crystal
approximation method of Ref. [22] employing the
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FIG. 1. Specific grand potential βR3ðΩ − ΩliqÞ=V (where V is the volume) for βϵ ¼ 1 as a function of the chemical potential βμ� for
(a) fcc crystals and (b) bcc crystals in the GEM-4 model, at order 1, 2, and 3 in SNLT, compared with fully resolved direct numerical
solutions (DNS) of (10). All our results for crystal properties from order 3 SNLT are indistinguishable from the DNS.

FIG. 2. The density profile ρ in a fcc crystal as a function of
x=R, where x is the distance along a path joining two nearest
neighboring density peaks and R is the range parameter in the pair
potential, for βϵ ¼ 1 and R3ρ̄ ¼ 8.3. The red crosses are the
unconstrained minimization results from Figs. 2 and 3 in [13],
the blue circles are the order 3 SNLT results and the black dashed
line is the Gaussian form (1). The inset shows log10ðρR3Þ as a
function of ðx=RÞ2, where (1) is a straight line.
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representation (2), also truncated at order 3. This gives the
unstable lower solution branch well, but not the upper
solution branch (going to much higher order is required to
obtain the stable upper branch accurately [10]). In contrast,
the black solid line order 3 SNLT accurately captures the
form of the density distribution for both branches, near and
far away from melting.
Even though the density ρ varies over many orders of

magnitude, fewer than a dozen independent Fourier ampli-
tudes in (3) are needed to represent it, while a full Fourier
representation (2) requires Oð483Þ modes to resolve the
peaks accurately. On the other hand, using sums of
Gaussians (1) requires even fewer degrees of freedom
(only α, n, and jRlj), but as Fig. 3 shows, this representation
is less accurate close to melting, particularly in determining
the minimum of ρ and the grand potential.
The reason for such remarkable efficiency of SNLT is that

the convolution in (10) strongly damps modes with wave
numbers greater than some cutoff value (which depends on
the particular system), as pointed out in [10]. The density
ρ ¼ ρ0 expðϕÞ is sharply peaked and so has large amplitudes
over a wide range of Fourier modes, but when multiplied by
vðrÞ and averaged in the convolution, high wave number
modes are damped. Of the three terms in (10), the last (βμ�)
has only wave number zero, the second (convolution) term
has only wave numbers up to a cutoff, and so the first term
ϕðrÞ can also only contain wave numbers up to the same
cutoff, and so can be represented accurately with relatively
few Fourier modes. Thus, the logarithm of the sharply
peaked density is a smooth function.
For the GEM-4 case, modes with wave numbers ≳2=R

are strongly damped [10], and (for crystals) SNLT of order

4 or higher includes only modes with wave numbers above
this cutoff (see the Supplemental Material [14]), so order 3
SNLT is sufficient. The limited number of unknowns
needed in SNLT makes it possible to determine crystal
structures and compute phase diagrams using simple root
finding packages (such as fsolve) or minimization
packages in MATLAB. Since the exact Eq. (7) has a similar
structure to the approximate Eq. (10)—recall that all
accurate DFTs are constructed from convolutions of the
density with bounded functions (so-called weight func-
tions) [1,12,17]—therefore the above argument that SNLT
is accurate for periodic crystals because Fourier modes in
ln ρ above a certain cutoff are strongly damped, applies in
general, as long as the Fourier transform of the weight
functions are short ranged. This is equivalent to the
condition that the Fourier transform of

R
λ
0 dλc

ð2Þðr; r0; ρλÞ
[see (6)] becomes small beyond some cutoff. Thus, we
expect SNLT to be widely applicable, not just to soft-core
particles, although other systems may have the cutoff at
larger k than for GEM-4 model, requiring one to go a few
orders higher for the SNLT to converge.
The efficiency of the truncated SNLT for crystals relies

on the fact that there are a limited number of RLVs within
the cutoff wave number. In contrast, the Fourier spectrum
for QCs is dense [23], and there is an infinite number of
Fourier modes within any cutoff sphere. Including more
modes in SNLT and/or using six-dimensional projection
methods [9,22,24] turns out to be unsatisfactory because
we get solutions only to a few digits of accuracy.
Nonetheless, these provide good approximate initial con-
ditions for other methods (such as Picard iteration used
here), so we still advocate using the representation (3) and
SNLT, combined with these other methods, for QCs.
We demonstrate this in a QC-forming system of soft

particles interacting via the BEL pair potential [16,25]

vðrÞ ¼ e−ð1=2Þσ2r2
X4
n¼0

C2nr2n; ð11Þ

which was previously shown to form QCs in 2D [16,25].
Here, we show that when the parameters fC2n; σg which
control the form and range of vðrÞ are chosen correctly,
then this system also forms QCs in 3D. The values of
fC2n; σg determine two characteristic length scales in the
particle interactions, which we choose to be in the golden
ratio 2 cosðπ=5Þ ≈ 1.618, in order to encourage IQCs [26].
We choose σ to promote IQC stability while keeping
vðrÞ ≥ 0 for all r [25]. Further details appear in the
Supplemental Material [14]. To compute the phase dia-
gram, we vary the coefficient C6 in (11) and perform order
3 SNLT calculations for varying βμ� (C�

6 denotes the value
at which the system is exactly marginally unstable at the
two length scales). This is sufficient to accurately determine
the periodic crystalline phases. However, for the IQC
phase, we use the order 3 SNLT result as an initial condition

FIG. 3. Maximum (in region with gray background) and
minimum (white background) of ρ as a function of βμ� for the
GEM-4 model in 3D, for fcc crystals. The inset shows the grand
potential of the crystal minus that of the liquid per unit volume.
The solid black lines are results from order 3 SNLT (including
both the stable and unstable branches of solutions), red dashed
lines resulting from a crystal approximation method [22] that uses
Eq. (2), and the solid blue lines are obtained by using Eq. (1) to
approximate the density distribution.
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for a Picard iteration solver [17,27]. Figure 4 displays the
resulting phase diagram, which exhibits the liquid and two
bcc crystals. The q prefix denotes the crystal with lattice
spacing determined by the smaller characteristic length
scale (larger wave number). In between these two, the IQC
emerges as the minimum of the grand potential Ω. In parts
of the region considered, the fcc structure is a local
minimizer, but is never the global minimum. We have
not calculated the free energy for all possible structures, but
of the likely candidates, the IQC is the global minimum in a
portion of the phase diagram.
Favorable contributions to Ω come from triangles and

pentagons (combinations of three or five wave vectors
that add up to zero) in the spectrum of ρ. Their abundance
has been invoked to explain bcc [28] and QC stability
[26,29–32]. However, the sharp peaks in ρ and the con-
sequential flatness of its spectrum obscures this argument.
Our observation of strong damping at large k in the
spectrum of ln ρ suggests that the triangle argument should
be reframed in terms of this field.
In summary, we have demonstrated that SNLT, repre-

senting ln ρ as a truncated Fourier sum (3), is accurate at all
state points, both near and far from melting. It is more
efficient than representing ρ as a Fourier sum (2), and it has
a wider range of validity than representing it as a sum of
Gaussians (1), which fails near melting and always predicts
the density to be too low between the peaks. We expect
SNLT to also be accurate for bicontinuous and similar
phases exhibited by, e.g., the binary mixture considered in
[13]. For QCs, we advocate SNLT as a method of gen-
erating good starting profiles for other (iterative) methods.
Even without the SNLT severe truncation, in all cases we
expect representation (3) to be superior to (2).
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