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We obtain a compact analytical solution for the nonlinear equation for the nuclear spin dynamics in the
central spin box model in the limit of many nuclear spins. The total nuclear spin component along the
external magnetic field is conserved and the two perpendicular components precess or oscillate depending
on the electron spin polarization, with the frequency, determined by the nuclear spin polarization.
As applications of our solution, we calculate the nuclear spin noise spectrum and describe the effects of
nuclear spin squeezing and many body entanglement in the absence of a system excitation.
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Introduction.—The problem involving a single “central”
spin interaction with surrounding spins is known as the
central spin model. It is widely used to describe the
interaction of a localized electron with nuclei, for example,
in quantum dots or in the vicinity of donors in bulk
semiconductors [1]. Generally, this is a complex many
body problem, and it has been studied in detail [2,3]. In
particular, the central spin model allows one to describe the
Hanle effect in a transverse magnetic field [4], polarization
recovery in a longitudinal field [5,6], spin precession mode
locking [7], nuclei-induced frequency focusing [8], spin
noise [9–11], the effect of spin inertia [12,13], dynamic
nuclear spin polarization [14], and many other effects.
Interest in the intertwined electron and nuclear spin dynam-

ics is driven mostly by the perspective of quantum dot based
scalable technology for quantum computations [15–17].
Most previous studies considered the nuclear spins as an
important source of electron spin decoherence [18–20]. But
recently the nuclear spins were recognized as a possible
platform for quantum information storage and proces-
sing [21,22]. For example, a coherent interface between
electron and nuclear spins was developed [23], sensing of
single quantum nuclear spin excitation was realized [24],
and elementary quantum algorithms were implemented in
the nuclear spin quantum register in strained quantum
dots [25].
The complexity of the nuclear spin dynamics is related

mainly to the large number of nuclei interacting with a
single electron. Despite the possibility of diagonalizing the
central spin model Hamiltonian for a finite number of
nuclei using the Bethe ansatz [26] and of calculating the
nuclear spin dynamics in the box model [27–29], it is still
hardly possible to qualitatively describe the nuclear spin
dynamics, especially for many nuclear spins [30–32]. In
this Letter we solve this long-standing problem and obtain
the exact expressions for the nuclear spins dynamics in the
limit of many nuclear spins. These expressions are used to
calculate the nuclear spin noise spectra, and to describe the

effects of intrinsic nuclear spin squeezing and many body
entanglement in the central spin model.
Nuclear spin dynamics in the box model.—The

Hamiltonian of the box model has the form

H ¼ AISþ ℏΩBSþ ℏωBI; ð1Þ

where A is the constant of the hyperfine coupling between
the total nuclear spin I and the electron spin S, and ΩB and
ωB are electron and nuclear spin precession frequencies in
the external magnetic field, respectively. Throughout the
Letter we use the minuscule and majuscule omegas to
denote the nuclear and electron spin precession frequen-
cies, respectively. The total nuclear spin is composed of N
individual nuclear spins In: I ¼

P
N
n¼1 In. Thus, the box

model is a particular case of the central spin model where
all the hyperfine coupling constants are equal.
In the Heisenberg representation the electron spin

operator obeys the Bloch equation

dS
dt

¼ Ωe × S; ð2Þ

where Ωe ¼ ΩB þΩN is the total electron spin precession
frequency and ΩN ¼ AI=ℏ is the frequency related to the
Overhauser field. Thus, the electron spin rotates in the sum
of the nuclear and external magnetic fields, as illustrated in
Fig. 1(a).
Similarly, the nuclear spin operator obeys

dI
dt

¼
�
A
ℏ
Sþ ωB

�
× I: ð3Þ

One can see that the system states with the different
absolute values of the total nuclear spin I are not mixed,
so it is a good quantum number.
Generally, one cannot replace the operators S and I in

Eqs. (2) and (3) with their average values and solve the
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resulting equations. This procedure would give, for exam-
ple, no effect of the hyperfine interaction for the nuclear
spin dynamics if the electron spin were unpolarized, which
is not correct because of the quantum uncertainty for
electron spin, which is as large as its maximum possible
average value. This problem was solved previously only
numerically. Below we solve it analytically in the limit of a
large nuclear spin.
In self-assembled GaAs quantum dots, typically,

N ∼ 105, so even in the absence of nuclear spin polarization
the typical fluctuation of I ∼

ffiffiffiffi
N

p
is very large. Note also

that the nuclear magnetic moment is much smaller than that
of an electron, so we assume that ωB ≪ ΩB. In this case the
electron spin precession is much faster than that of the
nuclei [18], which allows us to find the compact exact
solution.
Formally, the solution of Eq. (2) is SðtÞ¼eiHt=ℏSe−iHt=ℏ.

For large nuclear spin I ≫ 1 we shall neglect the commu-
tator of its components hereafter [33] [it was not neglected
in the derivation of Eq. (3) for the only time], which yields
SðtÞ ¼ eiΩeStSe−iΩeSt. The standard decomposition of the
spin matrix exponents gives

SðtÞ ¼
�
cosðΩet=2Þ þ 2i

SΩe

Ωe
sinðΩet=2Þ

�
S

×

�
cosðΩet=2Þ − 2i

SΩe

Ωe
sinðΩet=2Þ

�
: ð4Þ

Note that Ωe here is still an operator. In fact this expression
contains only the even powers of Ωe, which can be
calculated as Ω2

e ¼ Ω2
e.

Equation (4) contains oscillating terms and has a nonzero
time average

S̄ ¼ ΩeðΩeSÞ
Ω2

e
: ð5Þ

It has the meaning of the projection of the electron spin on
the direction ofΩe [18], as illustrated in Fig. 1(a). Note that
S̄ is an operator and not a quantum mechanical average.

In view of the separation of the timescales of the electron
and nuclear spin dynamics, the electron spin in Eq. (3) can
be replaced with its average:

dI
dt

¼
�
A
ℏ
S̄þ ωB

�
× I: ð6Þ

It is convenient to rewrite this equation as

dI
dt

¼ A
ℏ
ez × J þ ωB × I; ð7Þ

where J¼ðΩeSÞΩBI=Ω2
e describes the correlation between

electron and nuclear spins and ez is the unit vector along the
ΩB direction. This is an auxiliary quantity. For example, in
a strong magnetic field Ωe ≈ΩB, so J ¼ ISz, which has a
clear meaning for the electron and nuclear spin correlators.
We note thatH ≈ ΩeS, so this product is constant, which

can be referred to as the adiabatic approximation.
Moreover, H2 ≈Ω2

e=4, so Ω2
e is also constant. Therefore,

using Eq. (3) we obtain

dJ
dt

¼ A
ℏ
Ω2

B

4Ω2
e
ez × I þ ωB × J: ð8Þ

This equation along with Eq. (7) forms a closed set. It
accounts for the electron spin commutation relations but
neglects the nuclear ones. This set is exact in the limit of
large I, and that is the main result of this Letter.
Quasiclassical interpretation.—In Eqs. (7) and (8) all the

quantities (except for ΩB and ωB) are operators. In this
section we replace all the operators with their average
values but use the same notations for brevity.
It is convenient to rewrite Eqs. (7) and (8) for the

quantum mechanical average values in more physically
transparent notations. The direction of Ωe represents a
good electron spin quantization axis, so the quantities
P� ¼ 1=2�ΩeS=Ωe represent the probabilities of the
electron spin being parallel or antiparallel to this direction.
We also introduce

I� ¼
�
I
2
� Ωe

ΩB
J

�
=P�; ð9Þ

which represent the nuclear spins in these two cases,
respectively. Importantly, one should use the average value
J here and should not replace it with the product of the
average values from the definition in order to correctly
describe the correlations between electron and nuclear
spins. The total nuclear spin is given by I ¼ PþIþ þ P−I−.
From Eqs. (7) and (8) we simply obtain

dI�

dt
¼ ω�

n × I�; ð10Þ

where

(a) (b)

FIG. 1. (a) Electron spin precesses around the sum of the
external magnetic field and the Overhauser field and effectively
projects in the direction of Ωe. (b) At long timescales the average
electron spin adiabatically follows the direction of Ωe and
induces the nuclear spin precession around the direction of the
magnetic field with the frequency ωn.
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ω�
n ¼ �ωe

ΩB

Ωe
þωB; ð11Þ

with ωe ¼ A=ð2ℏÞ being the nuclear spin precession
frequency in the Knight field of completely spin polarized
electron. Thus, in the cases of electron spin parallel or
antiparallel to Ωe, the total nuclear spin precesses with the
frequency ω�

n , respectively. This is illustrated in Fig. 1(b).
The external magnetic field tilts the average electron spin S̄
from the direction ofΩN toΩe. As a result, the Knight field
being parallel to S̄ tilts from the direction of I and leads to
the nuclear spin precession [34]. However, this precession
is slow, so the electron spin adiabatically follows the
direction of Ωe. In this case the Knight, the Overhauser
and external magnetic fields always lie in one plane, so the
nuclear spin rotates around the z axis with the frequency
ω�

n . The total nuclear spin dynamics represents the super-
position of precessions with these two frequencies.We
stress that due to the dependence of ω�

n on ΩN ,
Eqs. (10) describing the nuclear spin dynamics are formally
nonlinear.
The solution of Eqs. (10) in the case of ωB ¼ 0 yields

IxðtÞ ¼ Ixð0Þ cosðωntÞ −
2ðΩeSÞ
Ωe

Iyð0Þ sinðωntÞ; ð12aÞ

IyðtÞ ¼ Iyð0Þ cosðωntÞ þ
2ðΩeSÞ
Ωe

Ixð0Þ sinðωntÞ; ð12bÞ

where ωn ¼ jω�
n j (note that ΩeS and Ωe do not depend on

time). Crucially, these expressions demonstrate that the
nuclear spin oscillates even in the absence of electron spin
polarization (S̄ ¼ 0) due to the electron spin quantum
uncertainty. In this case the superposition of the two
precessions in the Knight field with the opposite frequen-
cies results in the nuclear spin oscillations, while ωB ¼ 0.
We have checked to ensure that our theory agrees with

the numerical solution of the Schrödinger equation with the
accuracy ∝ 1=N [35].
Nuclear spin noise.—Nuclear spin dynamics can be most

easily studied experimentally in close to equilibrium
conditions through its action on the electron. In this case
it is characterized by the nuclear spin noise spectra [11,39]

ðI2αÞω ¼
Z

∞

−∞
hIαðtÞIαðtþ τÞieiωτdτ; ð13Þ

where the angular brackets denote the statistical averaging.
These spectra can be measured directly using the resonance
shift spin noise spectroscopy [40,41]. In the steady state the
correlator in the integrand does not depend on t. Its
dependence on τ is given by the solution of Eq. (10),
which should be averaged over the initial conditions taken
from the equilibrium nuclear spin distribution function.

The noise spectrum of the transverse spin components
reads [35]

ðI2xÞω ¼
X
�

ffiffiffi
π

p
δ3

16ω3
�ΩB

exp

�
−
�
ΩB

δ

�
2
�
ω2
e

ω2
�
þ 1

��

×

�
2ωeΩ2

B

ω�δ2
ch

�
2ωeΩ2

B

ω�δ2

�
− sh

�
2ωeΩ2

B

ω�δ2

��
ð14Þ

and ðI2yÞω ¼ ðI2xÞω. Here δ is the typical fluctuation of ΩN

(hΩ2
Ni ¼ 3δ2=2) and ω� ¼ ω� ωB. This result agrees with

the numerical calculations performed in Ref. [39]. The
nuclear spin noise spectrum is shown in Fig. 2 as solid
curves for the case of zero nuclear g factor (ωB ¼ 0).
Generally, the spectrum is an even function of ω, so the
positive frequencies only are shown in the figure. The
spectrum consists of a single peak, which shifts from ω ¼ 0
to ω ¼ ωe with an increase of the magnetic field. Its width
changes nonmonotonously: it vanishes in the limits of weak
and strong magnetic fields, and it is of the order of ωe when
ΩB ∼ δ; the width of the peak is of the order of its central
frequency in this case.
The shift of the peak in the spin noise spectrum with an

increase of the magnetic field is related to the acceleration
of the nuclear spin precession in the Knight field. In a small
magnetic field, the electron spin is almost parallel to the
nuclear spin, so it hardly causes the nuclear spin precession.
However, the stronger the magnetic field, the larger the
deviation of the average electron spin S̄ from the direction
of the total nuclear spin I, and the faster the nuclear spin
precession. In the limit of a strong magnetic field, the
electron spin is parallel to it, which leads to the precession
of the transverse nuclear spin components with the fre-
quency ωe (in the case of ωB ¼ 0). Hence, the nuclear spin
noise spectrum is centered around this frequency [39]. The

FIG. 2. Nuclear spin noise spectra calculated after Eq. (14) for
different strengths of the magnetic field indicated by the labels,
neglecting the nuclear Zeeman splitting, ωB ¼ 0. The dotted
curves are calculated for the same parameters with the addition of
the nuclear spin relaxation time τnsωe ¼ 25 [35].
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finite nuclear g factor leads to the splitting of the peaks at
both negative and positive frequencies [35].
The effect of the electron, τes , and nuclear, τns , spin

relaxation times can be described using the kinetic equa-
tions for the distribution functions of I� [35]. The effect of
τns is illustrated in Fig. 2 by the dotted curves. The nuclear
spin relaxation generally broadens the spectra. In particular,
in weak (ΩBτ

n
sωe=δ ≪ 1) and strong (ΩB=δ ≫ 1) magnetic

fields the spectrum represents a Lorentzian at ω ¼ 0 and
ω ¼ ωe, respectively, with the width 1=τns . Moreover, if the
nuclear spin relaxation is fast, τnsωe ≪ 1, the spectrum is
always Lorentzian centered at zero frequency, having the
large width 1=τns .
Nuclear spin squeezing and entanglement.—As another

important application, we describe the squeezing of the
nuclear spin distribution function [42]. The spin squeezing
is currently being widely studied [43–46], mainly in the
field of quantum metrology, as it allows one to increase the
phase sensitivity in the Ramsey interferometry beyond
the standard quantum limit [47]. In applications to quantum
dots it can also be used to increase the electron spin
coherence time [48,49]. Previously, it was suggested that
the nuclear spin squeezing can be produced by the quadru-
pole interaction [50] or in the presence of external driving
under the conditions of fast electron spin relaxation [48].
Our solution of the nuclear spin dynamics predicts the

dependence of the nuclear spin precession frequency on its
value, Eq. (11). Therefore, after the preparation of the
coherent nuclear spin state with the average polarization
being perpendicular to the external magnetic field (say, along
the x axis) and electron spin polarization along Ωe [35],
different spins in the distribution precess at different
frequencies. This produces the nuclear spin squeezing
intrinsically in the central spin model. An example of the
squeezed nuclear spin distribution produced in this way is
given in the inset of Fig. 3(a).
The distribution squeezing is described by the parameter

ξS [51], which is the ratio of the minimal spin standard

deviation over the directions perpendicular to the average spin
and its value for the coherent spin state [35]. This is shown in
Fig. 3(a) as a function of time for the different nuclear spin
polarization degrees, P. One can see that the larger the
polarization, the faster ξS decreases, but the sooner it saturates.
In typical GaAs based quantum dots, ωe ∼ 1 μs−1 and spin
relaxation time τns ∼ 0.1 ms, so ωeτ

n
s ∼ 100 and very strong

nuclear spin squeezing, ξS ∼ 10−2, can be reached.
The interferometry beyond the standard quantum limit

requires the metrological degree of the spin squeezing ξR ¼
ξS=P to be less than unity [52]. This criterion is more
difficult to satisfy, and for P ¼ 10% it is not reached.
However, for larger nuclear spin polarizations it is reached
at the points marked by the red and blue stars in Fig. 3(a).
Since in modern experiments a polarization of up to 80% is
feasible [53], we believe that the metrological nuclear spin
squeezing can be obtained as well.
Spin squeezing evidences the nuclear spin entangle-

ment [47]. In the central spin model it is produced by the
indirect interaction between nuclei mediated by the
electron spin. While there are a number of entanglement
measures [54], an example of the maximally entangled
state is the Greenberger-Horne-Zeilinger (GHZ) state,
which is a coherent superposition of collective spin states
pointing in opposite directions. To approach this state, we
suggest orienting the electron spin in the direction which
is perpendicular to both the initial nuclear spin direction
and the external magnetic field (say, the y axis) [35]. In
this case the good electron spin quantization axis is
perpendicular to it, so the nuclear spin dynamics repre-
sents the coherent superposition of precessions with the
frequencies ω�

n ; see Eqs. (12). After the relative phase
ðωþ

n − ω−
n Þt reaches π, the nuclear spin state is close to the

GHZ state.
The infidelity [47,54] of the GHZ state preparation is

shown in Fig. 3(b) as a function of the magnetic field for
different numbers of nuclei. It decreases with a decrease of
the magnetic field and an increase of the number of nuclei,
but it is generally very low. However, the smaller the
magnetic field, the slower the increase of the relative phase.
Since the preparation time should be below τns, one has to
consider B=Bn ≳ 10−2, which still produces very high
fidelity of up to 99.99%.
We note also that since the nuclear spin polarization

produces macroscopic magnetic fields of the order of a few
tesla, the nuclear GHZ state would be a coherent super-
position of the macroscopically different states, known as a
Schrödinger cat state [55]. Such states are important for
quantum metrology and investigations of the quantum-
classical correspondence [56–58].
Discussion and conclusion.—The box model considered

in thisLetter is known to also give qualitatively correct results
for the general central spin model [59–62]. For example, the
nuclear spin noise spectra for homogeneous and inhomo-
geneous hyperfine coupling are very similar [39]. The most

(a)
(b)

FIG. 3. (a) Degree of the nuclear spin squeezing, ξS, as a function
of free nuclear spin precession time for the nuclear spin polarization
P ¼ 10% (black solid curve), 30% (red dashed curve), and 50%
(blue dotted curve). Inset: nuclear spin distribution in the plane
perpendicular to the average spin at the time marked with the blue
star. The external magnetic field is equal to the average nuclear
field, ΩB ¼ jhΩNij and N ¼ 106. (b) Infidelity of GHZ state
preparation as a function of the applied magnetic field B=Bn ¼
ΩB=ΩN forN ¼ 6 (black solid curve), 80 (red dashed curve), 1200
(blue dotted curve), and 2 × 104 (green dot-dashed curve).
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important deviations are expected in the nuclear spin
squeezing and entanglement, as the different nuclear spins
would precess at different frequencies for the inhomo-
geneous hyperfine coupling. However, the nuclear spin
precession frequency would be almost the same in a central
core of the electron wave function, which can include
hundreds of nuclei. Thus, a high degree of spin squeezing
and entanglement is expected for these core spins.
The nuclear spin dynamics calculated in this Letter is

important for nuclear spin based quantum computations, as
well as for the description of the optical properties of single
quantum dots [63,64] and the transport properties of double
quantum dots in the spin blockade regime [65]. For
example, the nuclear spin precession probably explains
the low frequency peaks in the electron spin noise spectra
predicted in the numerical simulations [66]. Another
application is related with organic semiconductors, where
the hyperfine interaction determines the optical and elec-
trical properties even at room temperature [67–69]. We
address this specific issue in a joint paper [70].
In summary, in this Letter we derived the exact nonlinear

equations for the nuclear spin dynamics and obtained their
compact solution in the box model with many nuclear
spins. It was used to calculate the nuclear spin noise
spectra, and to describe the effects of nuclear spin squeez-
ing and many body entanglement, which take place
intrinsically after preparation of the appropriate coherent
nuclear spin state. We believe that our results will be useful
for descriptions of the electron and nuclear spin dynamics
for the localized electrons in various nanostructures and
under different experimental conditions.
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