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Being Wannierizable is not the end of the story for topological insulators. We introduce a family of
topological insulators that would be considered trivial in the paradigm set by the tenfold way, topological
quantum chemistry, and the method of symmetry-based indicators. Despite having a symmetric,
exponentially localized Wannier representation, each Wannier function cannot be completely localized
to a single primitive unit cell in the bulk. Such multicellular topology is shown to be neither stable nor
fragile, but delicate; i.e., the topology can be nullified by adding trivial bands to either valence or
conduction band.
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Introduction.—Two themes have indelibly shaped the
paradigm of topological insulators (TIs) and couched how
topological properties are discussed, modeled, and mea-
sured. The first is the notion of stability of TIs, and the
second involves the various obstructions to forming a real-
space Wannier-function (WF) representation of the valence
band [1–8]. This Letter describes an extension and fine-
graining of both themes and introduces a novel family of
TIs that would be considered unstable and unobstructed
according to the presently held paradigm.
The strongest form of stability is the notion of stable

equivalence introduced by K theory [8–12], where the bulk
or surface topological invariant of a valence subspace is
immune to addition of trivial bands. The intermediate
notion of fragility means that the topological property
can be nullified by adding trivial bands to the valence
subspace, but not to the conduction subspace [13–19]
[Fig. 1(a)]. A distinct notion that we introduce here is
delicate topology, where the topological property can be
nullified by adding trivial bands to either valence or
conduction subspace [Fig. 1(b)]. For symmetry-protected
delicate topology, nullification occurs only by adding
trivial bands of certain symmetry representations.
Many authors have proposed a useful definition of a

trivial band to be its possession of an exponentially
localized WF representation respecting the crystallographic
spacetime symmetries [11,12,19–23]. By this definition, all
stably equivalent and fragile TIs present an obstruction to a
WF representation. It has been further argued through
equivariant vector bundle theory that suchWannier obstruc-
tions represent a robust property of a valence subspace
summed with an arbitrary conduction subspace [19], and
therefore such obstruction cannot exist for delicate topo-
logical insulators. Here, we introduce a distinct class of
obstructions that prevents WFs from being completely

localized to a single, primitive unit cell—we call this
multicellular topology [Figs. 2(a)–2(c)]. Conversely, we
adopt a distinct notion of triviality, namely that symmetry-
respecting WFs exist and can be confined to a single cell by
a continuous, adiabatic deformation of the Hamiltonian—
unicellularity.
The notions of delicate and multicellular topology are

distinct and a priori need not come together in any specific
realization of a TI. This Letter aims to open the debate by
presenting a concrete family of tight-binding models that
simultaneously manifests both types of topology and sets
the stage for future realizations and discoveries.
Returning Thouless pump.—We begin by introducing a

class of tight-binding models in three spatial dimensions,
which exhibit both symmetry-protected delicacy and
multicellularity. The relevant symmetry is an n-fold rota-
tion symmetry Cn about the z axis. The tight-binding
Hilbert space is given by an orthonormal set of WFs
fφj;RgR∈BL;j¼1;…;CþV over the Bravais lattice (BL), which
satisfy the uniaxial condition, i.e., that all independent WFs

(a) (b)

(c)

FIG. 1. Topological stability of (a) fragile vs (b) delicate
topology. The blocks [colored according to legend in (c)] below
(above) the Fermi energy (dashed blue lines) are valence
(conduction) bands, with addition indicated by stacking and
topological equivalence by “∼.” In panel (a) the complement to
fragile topological bands could be fragile topological, obstructed
atomic limit, or fully trivial.
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within a representative, primitive unit cell are centered
on the same rotational axis and individually form one-
dimensional representations of Cn. (This simplifying
assumption holds only for the subclass of multicellular
TIs studied here.) This allows one to decompose the Hilbert
space as H½φ� ¼⊕n−1

l¼0 Hl½φ�, where the summands are
distinguished by the n possible angular momenta l, with
corresponding rotation eigenvalues ei2πl=n.
We further assume the valence (respectively, conduction)

bands can be spanned by exponentially localized WFs
fWv

j;RgR∈BL;j¼1;…;V (respectively, fWc
j;RgR∈BL;j¼1;…;C).

Though generally distinct from fφj;Rg, we demand that

fWc=v
j;R g also satisfy the uniaxial condition and additionally

satisfy the mutually disjoint condition—that any represen-
tation appearing in the valence subspace
(H½Wv� ¼⊕lv Hlv ½Wv�) cannot appear in the conduction
subspace (H½Wc� ¼⊕lc Hlc ½Wc�, with lvðcÞ disjoint).
The uniaxial condition on exponentially localized WFs

implies that both conduction and valence bands are band
representations [24,25], making the system trivial from the
viewpoints of topological quantum chemistry [20] and
symmetry-based indicators [22]. A band representation
also precludes a nontrivial first Chern class [19,23], making
the model trivial in the tenfold way [9,26,27]. Nevertheless,
we find that the mutually disjoint condition allows for a
type of symmetry-protected multicellularity, where the
WFs necessarily extend—beyond one unit cell—in the
direction of the rotation axis.
The multicellularity manifests in the discrete spectrum of

the projected position operator PẑP [28,29], with P projec-
ting to the bulk valence band. Since PẑP is invariant under
translations perpendicular to the rotation axis, each eigen-
value of PẑP forms a band over the two-dimensional (2D)
reduced Brillouin zone, rBZ ∋ k⊥ ¼ ðkx; kyÞ. Under trans-
lation along the rotation axis by a lattice period (set
to one), PẑP → Pðẑþ 1ÞP, hence each eigenvalue belongs

to an infinitely extended Wannier-Stark ladder [30], and
the full spectrum comprises V such ladders, which are
nondegenerate at generic k⊥ [7]. We pick one representative
eigenvalue from each ladder and define their sum (modulo
integer) to be the (charge) polarizationPðk⊥Þ, in accordance
with the geometric theory of polarization [31,32].
Since distinct rotational representations cannot mix at

Cn-invariant points (k0⊥ ≡ Cnk0⊥), the polarization can be
decomposed into a sum of polarizations in each angular-
momentum sector: Pðk0⊥Þ ¼

P
lv Plv

ðk0⊥Þ. This non-
mixing, combined with the mutually disjoint condition,
implies an identity between symmetry-decomposed Hilbert
spacesHlv ½Wv�jk0⊥ ¼ Hlv ½φ�jk0⊥ when restricted to any Cn-
invariant wave vector. It follows that the polarization
Plvðk0⊥Þ equals, modulo integer, to the polarization of
the basis WFs in the spin sector lv; the latter quantity is k0⊥
independent because any tight-binding basis function has
support only on a single lattice site. Therefore, modulo
integer, Plvðk0⊥Þ is independent of k0⊥, and hence also
Pðk0⊥Þ. If Pðk⊥Þ is continuously defined over rBZ with
multiple Cn-invariant points, the difference ΔPk0⊥k00⊥ ≔
Pðk00⊥Þ −Pðk0⊥Þ between any pair of these points is
quantized to integers. ΔPk0⊥k00⊥ ¼ μ implies a Thouless
pump [33] of μ electron charges over one half-period of
the rBZ (connecting k0⊥ and k00⊥); the triviality of the first
Chern class ensures that this charge is reversed in the
second half-period. Such a returning Thouless pump (RTP)
guarantees that (i) the Hamiltonian cannot be adiabatically
deformed to be k independent (having no hopping elements
in real space), and (ii) at least one WF must extend over
multiple unit cells in the direction of the rotation axis (see
Supplemental Material [34]).
Minimal model.—To exemplify a nontrivial RTP, we

consider a two-band, tight-binding model with sixfold (C6)
rotational symmetry. On each site of a triangular lattice, we
situate an s and a pþ ¼ px þ ipy (spinless) orbital, which
transform under C6 with angular momenta lv ¼ 0 and
lc ¼ 1, respectively. The Hamiltonian has the form

HðkÞ ¼ ½z†ðkÞσzðkÞ� · σ; zðkÞ ¼ ðz1; z2ÞT;

z1ðkÞ ¼
X6
a¼1

e−iπa=3 exp

�
itðaÞ · k⊥

�
;

z2ðkÞ ¼ sin kz þ i

�X6
a¼1

exp

�
itðaÞ · k⊥

�
þ 4 cos kz þm

�
;

ð1Þ

where tðaÞ ¼ ½cosðπa=3Þ; sinðπa=3Þ�, m is a tuning param-
eter for topological-phase transitions, and σ is the vector of
Pauli matrices with hσzi ¼ 1 (respectively, −1) correspond-
ing to the s (respectively, pþ) orbital. For generic m ∈ R,
an energy gap exists throughout the BZ, and the conduction
(respectively, valence) eigenvector is a periodic-in-BZ,

(a) (c) (e) (g)

(f)
(d)

(b)

FIG. 2. Characterization of (a)–(d) bulk and (e),(f) surface
Wannier functions for the delicate topological insulator modeled
by Eq. (1) with m ¼ −6; χ ¼ −1. (a) illustrates the exponential
decay parallel (orthogonal) to the rotation axis, as indicated by Rz
(Rx). (b),(e),(f) Rotation-symmetric probability distribution—
projected onto the rotation-invariant plane, utilizing the color
bar in (g). (c),(d) The total polarization in z direction is
nonanalytic at topological-phase transitions indicated by dashed
lines.
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analytic function ucðkÞ ¼ zðkÞ=jjzðkÞjj [respectively,
uvðkÞ ¼ iσyucðkÞ�] satisfying the symmetry condition
U6uv=cðkÞ ¼ expði2πlv=c=6Þuv=cðR6kÞ, with U6 (respec-
tively, R6) the pseudospinor (defining) representation of
C6. Consequently, the mutually disjoint condition is sat-
isfied with uc (respectively, uv) being pþ-like (respectively,
s-like) along all rotation-invariant lines, and uc=v Fourier
transform to symmetric, exponentially decaying [42] WFs
[Figs. 2(a) and 2(b)]. Applying our previous argument for
the integer-quantization of ΔPk0⊥k00⊥ , we find that the
polarization at all C2-invariant points (Γ;M;M0;M00) and
C3-invariant points (Γ; K; K0) in the rBZ [cf. Fig. 3(c)] are
identical modulo integer. The sixfold symmetry implies
there are two independent polarization differences ΔPKΓ
and ΔPMΓ.
For large jmj, the Hamiltonian reduces to a k-independent

diagonal form HðkÞ ≈ −m2σz, implying that the s-type
valence (and also the pþ-type conduction) band is unicel-
lular. This is consistent with Pðk⊥Þ being continuously
deformable to a flat sheet for representative valuesm ¼ −11
and m ¼ 8, as illustrated by the blue, respectively, brown
line in Fig. 3(b). Increasing m from −11 to −10, the bulk
gap closes at the Brillouin-zone center; the resultant
effective-mass Hamiltonian has the form in Eq. (1) with z1 ¼
3ðky þ ikxÞ and z2 ¼ kz þ ið10þmÞ, which identifies the
quadratic band-touching point as a dipole source of Berry
curvature [43] with dipole moment parallel to the rotation-
invariant k line. This dipole intermediates [43] a valence-to-
conduction transfer of a 2π quantum of the Berry-Zak phase
(ϕZ)—defined for the parallel transport of Bloch functions
along said k line. Since ϕZ=2π ≡1 PðΓÞ according to the
geometric theory of polarization [31,32], with ≡j meaning
“equal (mod j),” there is correspondingly a discontinuous
unit decrease of ΔPMΓ and ΔPKΓ when the gap reopens
for δm ≔ mþ 10≳ 0 [orange line in Fig. 3(b)]. This
further manifests as a “ðδmÞ2sgn½δm�”-type nonanalyticity
in the total polarization P ¼ R

d2k⊥Pðk⊥Þ=AreaðrBZÞ
[cf. Figs. 2(c) and 2(d)] [34]. Further gap closings (at
m ¼ −2;−1, 6, 7) result in Berry dipoles at other high-
symmetry wave vectors, with the resultant phase diagram
and RTPs summarized in Figs. 3(a) and 3(b).

Stability of RTP.—Equation (1) represents a minimal
model of a RTP with the smallest dimension for the matrix
HðkÞ. Models of arbitrarily large matrix dimensions can be
constructed from our minimal model by adding unicellular
bands to either conduction or valence subspace, assuming
their symmetry representations maintain the mutually
disjoint condition—this preserves the integer-valued quan-
tization of ΔPMΓ and ΔPKΓ, hence also the RTP. In
contrast (as numerically verified in the Supplemental
Material [34]), the quantization is lost upon addition of
unicellular conduction bands that nullify the mutually
disjoint condition, thus manifesting the RTP is a sym-
metry-protected delicate invariant.
Multicellularity with only translational symmetry.—

Which of our conclusions survive when rotational sym-
metry is relaxed? While the RTP generically destabilizes,
we show that multicellularity persists—at least for the
minimal model and any continuous deformation thereof
that preserves the bulk energy gap and the bulk translational
symmetry; any other symmetry can be relaxed. We appeal
to a special feature of Pauli-matrix Hamiltonians with a
spectral gap at each three-momentum k; namely, that even
with a trivial first Chern class, HðkÞ has an integer-valued
classification given by the Hopf invariant χ [44–48], which
is equivalent to a Brillouin-zone integral of the Abelian
Chern-Simons 3-form [48,49]

χ ¼ −
1

4π2

Z
BZ

A · ð∇ × AÞd3k; ð2Þ

with AðkÞ ¼ huji∇kui the Berry connection of an energy-
nondegenerate band [50]. Since χ is integer-quantized only
for Pauli-matrix Hamiltonians, it is manifestly a delicate
topological invariant distinct from RTP. That our minimal
model for m ∈ ½−10;−2� has χ ¼ −1 is a consequence of a
single Berry dipole intermediating a unit change in χ at Γ at
m ¼ −10 [43].
That χ ≠ 0 implies multicellularity is now proven by

contradiction. Assume that the valence-band WF is local-
izable to one unit cell, i.e., Wv

R ¼ δR;0κv, with κv a
pseudospinor wave function that corresponds to a single
point on the Bloch sphere S2. The Fourier transform ofWv

R
is then k independent, namely uvðkÞ ¼ κv. It is an eigen-
vector of a Hamiltonian that represents the trivial, constant
map from the BZ to S2, in contradiction with the assumed
nontrivial Hopf invariant.
Hopf-RTP correspondence.—We have shown that both

the Hopf invariant and RTP imply multicellularity. In fact,
by a straightforward application of Whitehead’s formu-
lation of the Hopf invariant [51], we find [34] that the Hopf
invariant and RTP are related to each other as [cf. Fig. 3(a)]

χ ≡6 3ΔPMΓ − 2ΔPKΓ; ð3Þ
for any C6-symmetric, Pauli-matrix Hamiltonian having
trivial Chern class and satisfying the uniaxial and mutually
disjoint conditions with lv ¼ 0;lc ¼ 1.

(a) (b)

FIG. 3. (a) The polarization and Hopf invariants as a function of
m ∈ R [cf. Eq. (1)]; colors distinguish distinct phases. (b) For
each phase, the polarization along MΓK is plotted for a
representative value ofm. (c) Rotation-invariant points in reduced
Brillouin zone.
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Bulk-boundary correspondence.—We have established
the RTP and Hopf invariant as bulk delicate invariants
leading to bulk multicellularity, but what does bulk multi-
cellularity imply in the presence of a rotation-invariant
surface termination?We answer with the following obstruc-
tion principle: there does not exist a symmetric, 2D tight-
binding description (of a single surface facet) where all
WFs are centered on the same rotational axes as the bulk
WFs. Alternatively stated, on a half-infinite slab, the entire
Hilbert space of states—filled and unfilled, bulk extended
and surface localized—cannot be spanned by (uniaxially
symmetric, exponentially localized) WFs whose positional
centers coincide with the WFs obtained under periodic
boundary conditions. (In contrast, for the “boundary-
obstructed” topological phase studied in Ref. [52], a
Wannier obstruction exists for the filled subspace but not
for the entire Hilbert space.)
A stronger form of our principle is realized by the half-

infinite, Hopf-insulating slab (with or without rotational
symmetry), namely that its Hilbert space does not even
have an exponentially localized WF representation,
because it is characterized [3] by a nonvanishing first
Chern number—a stable, K-theoretic invariant [9]. This
follows from the equality [43] of the bulk invariant χ and
the faceted Chern number Cf—defined as the net Chern
number of all surface-localized bands, independent of
filling. The reason for this bulk-boundary correspondence
is that bulk bands [characterized by a nontrivial Chern-
Simons 3-form of the Berry connection, cf. Eq. (2)] result
in a surface anomalous Hall conductance (SAHC), accord-
ing to the geometric theory of the magnetoelectric polar-
izability [53–58]; since the net SAHC of the entire Hilbert
space must vanish, this necessitates the existence of surface
bands that contribute a canceling SAHC [43]. Figure 4(a)
illustrates the topologically nontrivial surface-localized
band with Chern number Cf ¼ −1 for our minimal model
(m ¼ −6, χ ¼ −1); we emphasize that band(s) with the
counterbalancing Chern number C0

f ¼ þ1 do not exist in
the entire Hilbert space (of filled and unfilled states) on a
half-infinite geometry.

Next we demonstrate with an example that the Hilbert
space of a half-infinite RTP insulator either has no 2D tight-
binding description (owing to stable or fragile topology) or
has a 2D tight-binding description with displaced Wannier
centers. To model an insulator that is not a Hopf insulator
and yet has a nontrivial RTP, we enlarge the Hilbert space
of our minimal model (m ¼ −6) by adding a unicellular
valence band whose representative WF has angular
momentum l ¼ 2. To simplify the discussion, we restrict
ourselves to the P3 space group by includingC3-symmetric
(and C2-asymmetric) Hamiltonian matrix elements. By
construction, the mutually disjoint condition is satisfied
for representations of C3, thus the polarization difference
ΔPKΓ ¼ −1 remains quantized, but quantization no longer
holds for ΔPMΓ.
For the bulk valence (VB) and conduction (CB) bands,

the symmetry representations at C3-invariant wave vectors
are presented in the first three rows of Fig. 4(c). The fourth
row of Fig. 4(c) gives the symmetry representations of the
nontrivial surface band SB1 [cf. Fig. 4(b)], which is
topologically equivalent to the nontrivial surface band of
the minimal model in Fig. 4(a). Observe that the repre-
sentations of SB1 are identical to those of VBs except at Γ,
where SB1 has the same representation as CB. This may be
rationalized by a thought experiment of imposing a surface
termination on the bulk s-dominated WF; because of its
nontrivial polarization [cf. Fig. 2(c)], such termination
generates energetically unfavorable dangling bonds; to
remove these bonds, the surface WF hybridizes with pþ-
type orbitals.
We are ready to diagnose the advertised obstruction:

having Chern number Cf ¼ −1, SB1 has no exponentially
localized WF representation. To attain such a representa-
tion, one must sum the surface band with another band over
the rBZ having the opposite Chern number. Indeed, by
modification of the surface Hamiltonian, one may always
localize a second surface band SB2 by detaching it (i.e.,
“peeling it off”) from either the VBs or CB. If detached
from the CB, SB2 combines bulk symmetry representations
from the conduction subspace [third row in Fig. 4(c)]. For a
C3-symmetric band with Chern number C, the product of
C3 eigenvalues at fΓ; K; K0g gives e−i2πC=3 [59]. It follows
that any detachment from CB necessarily has C≡3 0 and
cannot nullify the unit Chern number of SB1. Instead, if we
apply the same rule to detachments from VBs, we find three
possible symmetry representations for SB2 with C ¼ þ1,
which we denote by SBα;β;γ

2 in Fig. 4(c) and discuss
in order.
Though a WF representation exists for the composite band

SB1 ⊕ SBα
2 , these WFs cannot individually beC3 symmetric

on any of the C3-invariant Wyckoff positions: f1a; 1b; 1cg.
Indeed, the symmetry representations of SB1 ⊕ SBα

2

are incompatible with a band representation of space group
P3, which is deducible by comparison with symmetry-
representation tables in the Bilbao crystallographic

(a) (b) (c)

FIG. 4. Spectrum of (a) Hopf-insulating and (b) RTP-insulating
slab with one, respectively, two detached surface bands. Red,
blue, green coloring represents contribution to the bands from
basis orbitals with l ¼ 0, 1, 2. (c) For various bands discussed in
the main text, lΓ;lK;lK0 denote the mod-three angular momenta
at C3-invariant wave vectors.
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server [60]. The obstruction to C3-symmetric WFs is fragile,
in the sense that a trivial band TB exists (though not
necessarily in the present Hilbert space), such that SB1 ⊕
SBα

2 ⊕ TB is not obstructed.
In contrast, by comparing the symmetry representations

of SB1 ⊕ SBβ
2 with the Bilbao tables, we deduce that

SB1 ⊕ SBβ
2 is a band representation with representative

WFs of angular momentum l ¼ 1 and l ¼ 0, centered
on the 1c and 1a Wyckoff positions, respectively [34]
[Figs. 2(e) and 2(f)]; SB1 ⊕ SBγ

2 is likewise band repre-
sentable with l ¼ 1 and l ¼ 0, centered on 1b and 1a,
respectively. Indeed, no matter how many bands are
detached from VBs and added to SB1, the resultant,
composite band cannot have a tight-binding description
with all Wannier centers on the 1a Wyckoff position of the
bulk WFs. (In the language of topological quantum
chemistry [20], the surface WFs realize an “obstructed
atomic limit,” while this is not true for the bulk WFs [34].)
Assuming the contrary, the set of C3 eigenvalues of the
composite band must be identical at Γ, K, and K0 [7]. But
this cannot be satisfied, because SB1 contributes one C3

eigenvalue (¼ ei2π=3) at Γ, which can never have an equal
counterpart at K and K0.
Conclusion.—The multicellular landscape, as enriched

by crystalline symmetries, promises to be fertile ground for
TIs that would naively be missed and deemed trivial. We
have introduced two (not necessarily disjoint) classes of
multicellular, Wannierizable TIs: rotation-invariant insula-
tors with a returning Thouless pump, and Hopf insulators.
For both classes, we have shown that bulk multicellularity
(a) is a delicate topological invariant and (b) implies that
the Hilbert space (on a half-infinite slab) cannot be
Wannierized with WF centers identical to those of the
bulk WFs. Whether (a) and (b) extend to all multicellular
TIs is presently unanswered. Whether all delicate topo-
logical invariants are accompanied by bulk multicellularity
is also unknown.
Our formulation of the RTP in terms of the Berry-Zak

phase allows for a high-throughput search for material
candidates. We have identified over 40 hexagonal magnetic
space groups that allow a symmetry-protected RTP, which
we tabulated in Sec. IX of the Supplemental Material [34].
After selecting materials in these space groups whose low-
energy bands satisfy the mutually disjoint symmetry con-
dition, one would compute the Berry-Zak phase by standard
first-principles techniques [61].
The multicellular Hopf insulator is already known to

manifest higher-order topology, quantized surface magnet-
ism [62], and quantized magnetoelectric polarizability [43];
it would be interesting to investigate if these properties
extend to other multicellular and/or delicate topological
insulators. Beyond band theory, we expect multicellularity
to add a new chapter to the interplay between nonunicel-
lular WFs, generalized Hubbard models, and exotic corre-
lated phases [63–65].
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