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Quantum Monte Carlo simulations of quantum many-body systems are plagued by the Fermion sign
problem. The computational complexity of simulating Fermions scales exponentially in the projection time
β and system size. The sign problem is basis dependent and an improved basis, for fixed errors, leads to
exponentially quicker simulations. We show how to use sign-free quantum Monte Carlo simulations to
optimize over the choice of basis on large two-dimensional systems. We numerically illustrate these
techniques decreasing the “badness” of the sign problem by optimizing over single-particle basis rotations
on one- and two-dimensional Hubbard systems. We find a generic rotation which improves the average sign
of the Hubbard model for a wide range of U and densities for L × 4 systems. In one example improvement,
the average sign (and hence simulation cost at fixed accuracy) for the 16 × 4 Hubbard model at U=t ¼ 4

and n ¼ 0.75 increases by exp ½8.64ð6Þβ�. For typical projection times of β⪆100, this accelerates such
simulation by many orders of magnitude.
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The power of quantum computers and the difficulty of
simulating quantum many-body ground states stem from
similar sources: nontrivial entanglement and paths of inter-
fering signs.Lowentanglement states can be solvedusing the
density matrix renormalization group [1,2]. Paths of inter-
fering signs are the source of the fermion sign problem in
quantumMonte Carlo (QMC) simulations. Systems, such as
bosonic Hamiltonians, which have only positive paths and
hence no sign problem, can be simulated efficiently. For
some classes of systems with “naive” sign problems,
approaches have been found that also allow for efficient
simulations. One common technique involves finding a sign-
problem-free basis in which to perform the simulation [3–7].
Examples where this has also been successful include
Hubbard models at half filling [8,9] and employing a
Majorana representation [10]. Note that, while there is
always a sign-problem-free basis (i.e., the eigenstate basis),
it is often as (or more) difficult to find this basis as doing the
simulation. Even in cases where the sign problem cannot be
removed, the choice of basis can affect thebadness of the sign
problem [11]. Interestingly, there has not yet been a signifi-
cant amount of work in automatically searching for a good
basis to help mitigate or remove the sign problem. It is this
problem that we approach in this Letter.
Our approach is as follows: given a quantification of the

sign problem, search over a class of unitary rotations of the
Hamiltonian, minimizing the badness of the sign problem.
The key question, then, is the development of an algorithm
to efficiently accomplish this. As a proof of principle, we
will consider hole-doped Hubbard models, finding a
rotation that decreases the badness of the sign problem
for L × 4 lattices over a wide range of U=t.

Quantification of sign problem.—Let H be the
Hamiltonian represented in a standard basis (i.e., real space)
andHðRÞ≡ RHR† be the Hamiltonian rotated by the unitary
rotation R. Our choice for quantifying the sign problem of
HðRÞ has two goals: (1) The objective function should be
proportional to the cost of a QMC simulation on HðRÞ.
(2) We can measure (and hence optimize) this objective
function efficiently on large bulk two-dimensional systems.
The natural objective function to maximize is the relative

variance of the average sign

hsi≡ 1

N

X
i

si; ð1Þ

where si is the sign for each Monte Carlo sample i and N is
the total number of Monte Carlo samples. While the
efficiency of different observables vary, their values hOi ¼P

i siOi=hsi all involve the average sign. Here Oi is the
observable measured on Monte Carlo sample i. Given the
variance of hsi is Oð1Þ, minimizing the relative variance
comes down to maximizing hsi. Because our interest will
be in the limit of a large QMC projection time β, our focus
will be in optimizing the component of hsi ¼ As̄β which
causes hsi to decay exponentially with β, i.e., s̄.
Naively, though, this appears to be difficult to optimize,

as computing hsi itself has a sign problem. It turns out,
though, that locally optimizing hsðRÞi over a class of
unitary rotations R is significantly easier then computing it.
In particular, sðRÞ ¼ exp½−ΔEðRÞ� [11–13], where
ΔEðRÞ≡ EðRÞ − EðRÞ is the gap between the ground
state EðRÞ of the fermionic Hamiltonian HðRÞ and the
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ground state EðRÞ of an effective bosonic version of the
Hamiltonian jHðRÞj [14–16], defined as

jHðRÞjij ¼ −HðRÞij if i ≠ j and HðRÞij > 0

¼ HðRÞij otherwise; ð2Þ

with EðRÞ ¼ hΨ̄jHðRÞjΨ̄i, where jΨ̄i is the ground state of
HðRÞ. Note that this definition ensures that the propagator
used in a QMC simulation, jGj≡ 1 − τjHj (where τ is a
small constant), contains strictly positive matrix elements.
While EðRÞ is hard to compute (there is a sign problem in
evaluating it), its value is independent of the choice of the
unitary rotation, i.e., EðRÞ ¼ E. On the other hand EðRÞ is
sign-free and hence computable by Monte Carlo simula-
tions on large systems. Maximizing sðRÞ then comes down
to maximizing EðRÞ.
Note this metric is closely related to, but not identical to

having a ground state with only positive amplitudes or a
Hamiltonian with no positive off-diagonal matrix elements.
For example, the Heisenberg model on a bipartite lattice
has no sign problem (i.e., no exponentially large relative
variance) in a QMC simulation, but does have positive off-
diagonal Hamiltonian matrix elements and a nonpositive
ground state (although both these can be removed by
applying the Marshall sign rule [17]). ΔEðIÞ where I is the
identity rotation is correctly zero in this case.
Unitary rotation.—Here we describe the parametrization

of our unitaries. While a unitary rotation exists that removes
the sign problem (i.e., the eigenstate basis), it is often
harder to find than the ground state itself. Instead, we focus
on unitary rotations that have simple representations.
Two such classes are unitary rotations from shallow-
depth quantum circuits and basis rotations on the set of
single-particle orbitals used to represent the Hamiltonian:
i.e., given a Hamiltonian written as H ¼ P

ij tijc
†
i cj þP

ijkl Vijklc
†
i c

†
jckcl, we can write bj ≡

P
k Ujkck, where U

is an N × N unitary matrix for a system ofN sites.U can be
parametrized in various ways, including as the eigenvalues
of an orthogonal matrixH or asU ¼ eA, where A is a skew-
symmetric matrix, i.e., A ¼ −AT . In our numerical exam-
ples, we focus on single-particle basis rotations, although
the approach we describe works also with quantum circuits.
Optimization.—Our goal now is to maximize EðRÞ. In

this section we demonstrate a series of techniques to
optimize this quantity that we benchmark on single-particle
basis rotations of the Hubbard model under periodic
boundary conditions,

H ¼ −t
X
σhi;ji

c†jσciσ þ H:c:þ U
X
i

ni↑ni↓; ð3Þ

with hi; ji denoting nearest neighbors.
We optimize EðRÞ via three separate techniques. First,

we optimize EðRÞ via exact diagonalization using finite

differences. When diagonalization is too costly, we turn
to the second technique, the projector quantum Monte
Carlo (PQMC) method [18,19]. The PQMC method is a
form of QMC simulation which propagates walkers for a
projection time β giving the energy

¯EðR; βÞ ¼ hΨinitjHðRÞ exp½−βHðRÞ�jΨiniti
hΨinitj exp½−βHðRÞ�jΨiniti

; ð4Þ

where walkers are sampled from an initial wave func-
tion jΨiniti. In a PQMC simulation, by taking large β, we
can compute EðRÞ≡ limβ→∞EðR; βÞ in polynomial time;
derivatives can be computed using finite differences, giving
an algorithm that scales linearly in the number of param-
eters and otherwise is similar in cost to a sign-free QMC
simulation of the same rotated Hamiltonian (i.e., polyno-
mial in system size).
Parameters are then updated using the optimization

scheme described in [20] inspired by [21]. For each of
the unique entries vi of our unitary parametrization, the
next parameter is determined by

viþ1 ¼ vi þ αγ
j∂Ē=∂vij
∂Ē=∂vi ; ð5Þ

where α is a random number chosen between zero and one,
and γ controls the size of the random step.
Although the cost of the direct PQMC approach is

polynomial, it can still be expensive, especially since this
rotation can result in a quadratic number of terms per
(matrix) row (which is a significant increase from the linear
number of terms in the Hubbard model but standard for
QMC simulations on materials [22]). To overcome this
expense, we develop and benchmark a further approxima-
tion to our algorithm that significantly accelerates the
optimization. Instead of directly optimizing EðRÞ, we
optimize

EVðRÞ≡ hΨuðRÞjHðRÞjΨuðRÞi; ð6Þ

where ΨuðRÞ ≡ 1=2N is the uniform wave function in the

basis R. This is a strict upper bound in energy to HðRÞ and
is equivalent to EðR; β ¼ 0Þ in the PQMC simulation when
the initial wave function is chosen as jΨuðRÞi. This
approximation turns out to be reasonable as the variational
energy EVðRÞ tracks the ground-state energy EðRÞ and so
pushes the parameters in the correct direction (see Fig. 2).
This approximation can be made even faster by choosing a
relatively fixed few random states [Oð10Þ] and using these
states to optimize EVðRÞ. We further utilize the Jax library
[23] and implement the derivative dEVðRÞ=dR using
automatic differentiation. Because these derivatives (and
the energy) are computed from only Oð10Þ Monte Carlo
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samples, the statistical error is large, but the correlations
introduced by using the same configurations better controls
the path generated by the gradients.
Results.—1D: We perform initial tests optimizing one-

dimensional Hubbard chains for N ¼ f3; 4; 8g. We evaluate
ΔEðRÞ via exact diagonalization and perform derivative-free
optimization using Nelder-Mead optimization [24,25]. In
these runs, R is parametrized by the eigenvectors of a real
Hermitian matrix. Our optimization completely removes the
sign problem at N ¼ 3 at 2=3 doping and N ¼ 4 Hubbard
model at half filling for all values of U (see Supplemental
Material [26] for the specific matrices); a posteri, we
discovered these rotations are known in the continuous-time
QMC literature [29]. Interestingly at N ¼ 4 (see
Supplemental Material [26]), our optimization procedure
finds a basis that does not make all the off-diagonal signs of
jGj positive despite still removing the sign problem
(although by hand G can be made positive). We also include
an example for N ¼ 8, where we improved but were unable
to completely remove the sign problem (see Fig. 1).
2D: Next we consider a variety of width-four Hubbard

models. First we implement projector optimization for the
n ¼ 0.5, U=t ¼ 1, 4 × 4 Hubbard model. We parametrize
R as the matrix exponential of a real skew-symmetric
matrix and start from a random unitary that has a bad sign
problem (worse than not rotating at all).
Figure 2(a) shows the improvement in EðRÞ during

optimization. By rounding the final unitary and removing
noise, we obtain a sparse unitary rotation that rotates each
site operator into linear combinations of four-operator
plaquettes [see inset of Fig. 2(a)]. The rotated operators

do not map to their counterpart in the original basis; i.e.,
operator bði;jÞ does not contain cði;jÞ. We find that ΔEðRÞ ¼
0.137 and achieve an increase in the average sign, which
goes as exp½6.27β� at large β.
We test our optimized rotation for a range of doping n

and interaction strengths U in Fig. 3. While only optimized
for a single U and n, we find this rotation mitigates the
sign problem over the real-space basis for the 4 × 4
Hubbard model for all 0.125 < n < 1.0 when U=t ≤ 4.
The ability for a single optimized rotation to be applicable
to a larger regime of phase space shows the versatility of
our approach.
We then turn to width-four cylinders with periodic

boundary conditions. We perform optimization on the
16 × 4 Hubbard model with n ¼ 0.5 and U=t ¼ 2, using
automatic differentiation of EVðRÞ and varying step sizes

Energy

E(Ra)

E(Rb)

E = E(Ra) = E(Rb)

ΔE(Rb)

ΔE(Ra)

− 6.50t

− 6.93t

− 12.5t

− 6.96t E(I )

FIG. 1. Left: ΔEðRÞ and EðRÞ for an eight-site Hubbard chain
at n ¼ 0.5 and U=t ¼ 1 in the plane of the first two parameters;
the final plot is interpolated. Dark (light) colors indicate miti-
gation (increased) sign problem, respectively. Color bar shows
both ΔE (which measures the badness of the sign problem but
cannot be computed efficiently) as well as EðRÞ, which can be
efficiently computed for large systems. Right: depiction (not to
scale) of the energies of two particular rotations Ra and Rb.
Despite having the same energy E when there is a sign problem,
by optimizing for the largest sign-free EðRÞ, we minimize the gap
ΔEðRÞ, which exponentially improves the average sign hsi by
exp½βðEðRÞ − EðIÞÞ� ≈ exp½0.03β� for projection time β.

(a)

(b)

FIG. 2. (a) Projector optimization of 4 × 4 Hubbard model with
γ ¼ 0.01 showing EðRÞ (blue) and EVðRÞ (red). (b) Optimization
of a 16 × 4 Hubbard model showing both noisy values of EVðRÞ
used in optimization (colored lines), as well as accurate values of
EVðRÞ (red squares) and EðRÞ (stars). Each color indicates a
change in hyperparameters of optimization (see Supplemental
Material [26]). Left insets: rounded optimal unitary rotations at
the end of optimization, in a matrix representation. Right insets:
lattices illustrating the new basis. The rotated basis is made up of
linear combinations of two or four operators, marked by their
same color and shape.

PHYSICAL REVIEW LETTERS 126, 216401 (2021)

216401-3



(see Supplemental Material [26]), shown in Fig. 2(b). By
rounding and removing noise of the final unitary we obtain
a sparse rotation that improves the sign by exp½12.86ð5Þβ�.
We observe this rotation also works for a variety of doping
andU values; e.g., n ¼ 0.5U=t ¼ 6 and n ¼ 0.75U=t ¼ 4
have improvements of the average sign by exp½3.78ð6Þβ�
and exp½8.64ð6Þβ�, respectively.
Upon analyzing the unitary, we find a clear structure that

can be used for any width-four cylinder. The single-particle
orbitals in the bulk of the lattice become a linear combi-
nation over each column of width four, leading to four
creation (annihilation) operators (with implicit spin indices)

0
BBB@

bðn;4Þ
bðn;3Þ
bðn;2Þ
bðn;1Þ

1
CCCA

ð†Þ

¼ 1ffiffiffi
2

p

0
BBB@

0 −1 0 −1
1 0 −1 0

0 1 0 −1
1 0 1 0

1
CCCA

0
BBB@

cðn;4Þ
cðn;3Þ
cðn;2Þ
cðn;1Þ

1
CCCA

ð†Þ

:

ð7Þ

At the left and right edges of the system, despite periodic
boundaries, two consecutive columns are rotated as

0
BBBBBBBBBBBB@

bð2;4Þ

..

.

bð2;1Þ
bð1;4Þ

..

.

bð1;1Þ

1
CCCCCCCCCCCCA

ð†Þ

¼1

2

0
BBBBBBBBBBBBB@

0−1 0 −1 0 1 0 1

1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1

1 0 1 0 −1 0 −1 0

0−1 0 −1 0 −1 0 −1
1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1
1 0 1 0 1 0 1 0

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBB@

cð2;4Þ

..

.

cð2;1Þ
cð1;4Þ

..

.

cð1;1Þ

1
CCCCCCCCCCCCA

ð†Þ

:

ð8Þ

We illustrate this rotation in the inset of Fig. 2(b). Similar to
the structure of the 4 × 4 rotation, the new operators
are linear combinations of nearby sites but lack the original
site with respect to the old basis. However, the bulk is made
of two-site pairs of sites rather than four-site plaquettes, and
the edge plaquettes are not spaced apart in the x̂ direction.
Testing this for a larger system, we observe an average

sign reduction over not rotating on a 32 × 4 cylinder at
n ¼ 0.5 doping of exp½22.5ð4Þβ� and exp½16.0ð3Þβ� for
U=t ¼ 4 and U=t ¼ 6, respectively. These energy dif-
ferences EðIÞ − EðRÞ per site at U ¼ 4 are increasing
with respect to system size (from L ¼ 8 to L ¼ 32),
suggesting in the thermodynamic limit that our rotation
provides a better lower bound to the true fermionic
energy than identity rotation (details can be found in the
Supplemental Material [26]).
Finally, we can take the edge rotation found in Eq. (8)

and apply it both to the 4 × 4 and 8 × 8 lattices. For the
4 × 4 case, we find that the rotation improves the sign
more not than rotating, but not as well as our optimized
4 × 4 unitary, i.e., exp½5.40β� compared to exp½6.27β� for
n ¼ 1 U=t ¼ 1, respectively. When using this rotation to
tile an 8 × 8 unitary, we find that we improve the sign only
for U=t≲ 1; e.g., at U=t ¼ 1 we find an improvement
of exp½−3.0ð1Þβ� and exp½−3.9ð1Þβ� for n ¼ 0.5 and
n ¼ 0.875, respectively.
In addition to the above results, we include in the

Supplemental Material [26] an optimization of a 6 × 6
lattice to show that the original PQMC optimization of
EðRÞ scales beyond what is accessible by exact diagonal-
ization. We also include a study on 4 × 4 systems of how
the rotation affects the average sign in a PQMC simulation
with respect to β and the benefit of introducing annihilation
[22,30] on top of the rotation.
Conclusion.—We have introduced a new approach for

finding a basis that reduces the sign problem in bulk
systems of arbitrary dimensions. For fixed accuracy and
projection time, this improves the calculation speed of a
ground-state QMC simulation by many orders of magni-
tude; a similar approach will also improve finite-temper-
ature calculations. Our method uses a QMC method to
maximize the energy of the “bosonic” version of the rotated
Hamiltonian jHðRÞj; this maximization corresponds to
maximizing the average sign of a QMC calculation in that
rotated basis. In many ways, our sign problem mitigation
approach is similar in flavor to variational Monte Carlo
method [31–37] and many of the tricks from that commu-
nity will be applicable here. Although we used the PQMC
approach in this Letter, any QMC method that works in an
orthogonal basis (world line Monte Carlo method, path
integral ground state, etc.) have the same sign problem and
are equally improved by the rotation. In addition, we
developed a variational optimization approach that instead
optimizes the variational energy of the uniform state
jΨuðRÞi with respect to jHðRÞj over a small number of

FIG. 3. Comparing the results of projector optimization of a
4 × 4 Hubbard model at U=t ¼ 1 and n ¼ 0.5 doping (star) to no
basis rotation (I) at different U and doping values. PQMC
simulations are done in continuous time with a resampling rate
of T ¼ 0.1 to a projection time of β ¼ 20. Inset: relative
ΔEðRÞ=ΔEðIÞ between the optimal rotation and no basis rotation
(R ¼ I).
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configurations, for a significant speed-up and at polynomial
scaling. This heuristic works because of the empirical
observation that this variational energy and the projector
energy track each other closely up to some (slowly varying)
fixed offset.
To illustrate the method, we optimized the single-particle

basis of 4 × 4 and 16 × 4Hubbard model at n ¼ 0.5 doping
and U=t ¼ 1 and U=t ¼ 2, respectively. This resulted in an
exponential increase in average sign, by approximately
exp ½6.278β� and exp ½12.86ð5Þβ�, leading to significant
speed-ups for a typical β ∈ ½10; 100�. The rotations we
found are sparse, generalize to a wider range of U and
n, and the latter rotation generalizes to all width-four
cylinders.
A uniting theme among these optimized rotations is their

structure of rotating into linear combinations of a small
number of nearby sites. The new basis in both cases seem
relatively insensitive to both doping and U=t, with each
bði;jÞ not including the matching cði;jÞ. In addition, a four-
operator plaquette is apparent in both geometries, although
in slightly different forms. Other techniques beyond QMC
simulations may also benefit from this insight, although its
unclear if it extends beyond the Hubbard model itself.
The automatic optimization of our method should be useful
for other sign-plagued models to potentially turn up other
sparse bases.
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Note added.—Recently, a number of related works
appeared on the arXiv [38–40].
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