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Magnetic field amplification by relativistic streaming plasma instabilities is central to a wide variety of
high-energy astrophysical environments as well as to laboratory scenarios associated with intense lasers
and electron beams. We report on a new secondary nonlinear instability that arises for relativistic dilute
electron beams after the saturation of the linear Weibel instability. This instability grows due to the
transverse magnetic pressure associated with the beam current filaments, which cannot be quickly
neutralized due to the inertia of background ions. We show that it can amplify the magnetic field strength
and spatial scale by orders of magnitude, leading to large-scale plasma cavities with strong magnetic field
and to very efficient conversion of the beam kinetic energy into magnetic energy. The instability growth
rate, saturation level, and scale length are derived analytically and shown to be in good agreement with fully
kinetic simulations.
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Relativistic streaming plasma instabilities are ubiquitous
in energetic plasma environments. They play an important
role in magnetic field amplification [1–4], particle accel-
eration [5–7], and radiation emission [8,9] in astrophysical
environments such as those associated with collisionless
shocks and relativistic jets. They are also common in
laboratory intense laser- and beam-plasma interactions
connected to studies of laboratory astrophysics [10–15],
electron [16,17] and ion [18] transport in high-energy-
density and inertial fusion plasmas, and novel schemes for
compact, bright gamma-ray sources [19].
Among the different processes that arise in relativistic

streaming plasmas, the Weibel (or current filamentation)
instability [20,21] has garnered significant attention as a
leading mechanism for the rapid amplification of magnetic
fields [1,5,10,22,23]. However, in dilute-beam systems
(beam density ≪ background density) comprising most
astrophysical and laboratory environments of interest, the
magnetic field strength produced is weak [4,19,24,25] and
its spatial scale is limited to the order of the plasma skin
depth [26]. For highly relativistic particles, this scale is
orders of magnitude smaller than the particle gyroradius
and it is unclear how these fields could control energetic
particle dynamics. Nonlinear filament merging [22] can
slowly increase the magnetic field wavelength, but existing
ultrarelativistic particle-in-cell (PIC) simulations show that
saturation remains limited to small spatial scales and low
magnetizations ϵB ≲ 10−3 [4,19] (with ϵB the ratio of the
magnetic energy density to the beam kinetic energy
density). Understanding the long-term nonlinear evolution
and true saturation behavior of these systems, both in terms
of field strength and coherence length, remains a critical
open question.

In this Letter, we report a new nonlinear streaming
instability that arises in relativistic dilute electron beams
after saturation of the linear Weibel instability. This
instability is driven by the magnetic pressure in the beam
current filaments, where the background ions cannot
effectively screen the current due to their large inertia.
The instability can amplify the magnetic field strength and
coherence length by orders of magnitude, generating large-
scale plasma cavities and efficiently converting the beam
kinetic energy into magnetic energy. Analytic theory of
the growth rate, saturation level, and scale length of the
instability agree well with fully kinetic simulations,
revealing a robust mechanism for large-scale magnetic
field amplification in dilute-beam systems.
To study the nonlinear late-time evolution of streaming

instabilities in dilute-beam systems, we performed fully
kinetic one-(1D), two-(2D), and three-dimensional (3D)
simulationswith the relativistic PIC code OSIRIS [27,28].We
study a spatially uniform system containing a cold, dilute,
ultrarelativistic electron beam of density nb0 propagating
in a cold background plasma with a density ratio α ¼
nb0=ne0 ≪ 1 and Zni0 ¼ ne0 þ nb0, where ne0 and ni0 are
the initial densities of the background electrons and ions and
Z the ion charge number. The beam has Lorentz factor
γb0 ≫ 1, and the beam electrons, background electrons, and
ions have initial velocities vb0≈c,ve0 ¼ −αvb0, andvi0 ¼ 0
in the x direction such that the system is current neutral.
A large parameter scan in α and γb0 was performed to

study how the beam parameters affect the long-term
evolution of the system. The simulations covered different
geometries and dimensionality, with box sizes of
60000c=ωp in 1D, 1000 × 1000ðc=ωpÞ2 in 2D x-y, 4000 ×
4000ðc=ωpÞ2 in 2D y-z, and 2800 × 1400 × 1400ðc=ωpÞ3
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in 3D. (In 1D and 2D y-z geometries only the directions
transverse to the beam propagation are captured.) The cell
sizes used ranged between Δx ¼ Δy ¼ Δz ¼ 0.25c=ωp

(2D x-y) and 1.0c=ωp (in all others), with c the speed of
light, ωp ¼ ð4πne0e2=meÞ1=2 the background electron
plasma frequency,me the electron mass, and−e the electron
charge. We model a hydrogen plasma, mi=Zme ¼ 1836,
except where noted. The time step is chosen according to
the Courant-Friedrichs-Lewy condition. We use 20 (1D),
9 (2D), and 8 (3D) particles per cell per species and periodic
boundary conditions. We tested different resolutions and
numbers of particles per cell to ensure convergence of the
results and used a third-order particle interpolation scheme
for improved numerical accuracy.
We begin by comparing the long-term evolution of the

magnetic field with and without mobile ions. The results are
illustrated in Fig. 1 for α ¼ 0.1 and γb0 ¼ 1000. We model
the 2D x-y plane to capture both electrostatic and electro-
magnetic modes. The system is initially dominated by the
oblique instability [29], which heats the background plasma,
produces very weak magnetic fields [29], and quickly
saturates at t ¼ 500ω−1

p .Weibel-type filamentarymodes then
arise with a transverse wavelength λB ¼ 2πc=ωp, consistent
with linear theory [26], and amplify magnetic fields before
saturating at t ¼ 1750ω−1

p . Up to this point, the stationary and
mobile ion cases are nearly identical, as shown in Figs. 1(a)
and 1(b); both simulations show similar filaments and reach a
magnetization ϵB ¼ B2=ð8πnb0γb0mec2Þ ¼ 4 × 10−4. This
low magnetization level is consistent with existing dilute-
beam theory; the Weibel modes (based on the magnetic
trapping mechanism [26]) and oblique modes [4] saturate
with ϵB ∼ α=γb0 ∼ 10−4.
At late times, corresponding to the nonlinear evolution of

the system, we see dramatic differences in the magnetic
field evolution as illustrated in Figs. 1(c) and 1(d) at
t ¼ 5250ω−1

p . With stationary ions, the filament wave-
length slightly increases due to filament merging [22,30]
but its magnetization is largely unchanged [cf. Fig. 1(e)]. In
contrast, with mobile ions, the magnetization continues to
grow, saturating at nearly two orders of magnitude higher
energy and with roughly 20 times larger wavelength λB.
Furthermore, the rate of magnetic field growth in this
nonlinear phase is exponential as shown in Fig. 1(e)
between t ¼ 3500 ω−1

p and t ¼ 5000 ω−1
p . To our knowl-

edge this fast exponential amplification of the magnetic
field energy and coherence length has not been previously
observed and suggests that an important secondary insta-
bility dominates the nonlinear evolution of the system.
To understand the origin of this nonlinear instability we

examine the corresponding transverse plasma and magnetic
field profile in Fig. 2(a). We observe that the strong
magnetic field resides within a plasma cavity, with ne≈0
and ni ≈ αne0 that charge neutralizes the beam. The beam
density remains relatively uniform, with nb ≈ nb0 ¼ αne0.

Since the cavity ions are slow to screen the beam current, a
strong net current and magnetic field develop in the cavity
that are neutralized in the cavity walls by the background
electron current.
The formation of plasma density cavities is a general

consequence of strong current filaments in plasmas and has
been observed in simulations of a wide variety of systems,
including beam-plasma interactions [25,31,32], collision-
less shocks [10,33,34], and laser-driven ion acceleration
[35,36]. However, previous works have not observed
significant growth of the magnetic energy and did not
identify a secondary plasma instability related to these
structures. We will now discuss how such an instability
can arise.
The first step in cavity formation is saturation of the

Weibel instability as illustrated in Fig. 2(b). The beam

(a)

(c)

(e)

(d)

(b)

FIG. 1. 2D simulation results of a dilute, ultrarelativistic
electron beam propagating through an electron-ion plasma.
Magnetic field profiles for cases with (a),(c) stationary ions
and (b),(d) mobile ions, taken at (a),(b) saturation of the Weibel
instability (t ¼ 1750ω−1

p ) and (c),(d) saturation of a nonlinear
electron streaming instability (t ¼ 5250ω−1

p ). The energy distri-
bution of these simulations is shown in (e), where the solid lines
correspond to the mobile ion simulations in (b),(d) and dashed
lines correspond to stationary ion simulations in (a),(c). The beam
electron (ϵb), background electron (ϵe), and ion (ϵi) kinetic
energy densities as well as the magnetic field energy density
(ϵB) are all normalized to the initial beam electron kinetic energy
density.
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current filaments create magnetic fields that expel the
background electrons until a space-charge field Ex arises
to arrest the deflection [25,29]. Eventually, the ions react
to Ex, exiting the filament and creating a cavity in the
background plasma. A few ions remain to charge neutralize
the beam as shown in Fig. 2(c), but the beam current is now
exposed in the cavity. The magnetic fields strengthen and
the cavity expansion accelerates under increasing magnetic
pressure.
The growth rate associated with this instability can be

calculated as follows. First, we assume an ultrarelativistic,
dilute electron beam (γb0 ≫ 1 and α ≪ 1) and ion mass
mi ≫ Zme. We consider a cavity containing uniform
unscreened beam current Jb ¼ −enb0vb0 in the x direction
and use Ampère’s law (neglecting the displacement cur-
rent) to calculate the magnetic pressure at the cavity walls
PB ¼ B2=ð8πÞ ¼ πJ2bλ

2
B=ð2c2Þ, where λB is the cavity

diameter and dominant wavelength of the magnetic field.
As the cavity expands, we assume the expelled background
plasma accumulates at the wall where PB exceeds the
thermal pressure Pth. We have verified that PB > Pth
locally at the onset of the instability for all of the parameters
tested and the cavity can grow even if ϵB ≪ ϵe globally as
in Fig. 1.
In slab geometry, as in Fig. 1, the ion-dominated wall

mass is mw ¼ mine0AλB=2Z, with A its area in the x-z
plane. The wall momentum is then pw ¼ mwdðλB=2Þ=dt.

The magnetic pressure force will push the wall according to
dpw=dt ¼ PBA, which can be written as

d
dt

�
λB

dλB
dt

�
¼ α2β2b

2

Zme

mi
λ2Bω

2
p; ð1Þ

where βb0 ¼ vb0=c. The solution is exponential growth
λBðtÞ ¼ λB0eΓt with a rate

Γ
ωp

¼ αβb0

ffiffiffiffiffiffiffiffiffi
Zme

δmi

s
; ð2Þ

where δ ¼ 4 in the slab geometry derived here. A similar
calculation for cylindrical geometry yields δ ¼ 3.
Remarkably, for relativistic beams the growth rate is
independent of their Lorentz factor γb0.
The theoretical growth rate agrees well with simulation

results as indicated in Fig. 3(a). We use purely transverse
1D and 2D (y-z) simulations to capture both slab and
cylindrical geometries over a wide range of α and mi=Zme
[including for reduced mass ratios mi=ðZmeÞ < 1836
commonly used in previous numerical studies]. In simu-
lations that resolve the longitudinal (x) dimension similar
agreement is observed [e.g., in Fig. 1(e) the measured
growth rate is within 10% of the theoretical prediction]. In
general, in purely transverse simulations the Weibel insta-
bility grows first and rapidly triggers the nonlinear insta-
bility, whereas when resolving the x axis the oblique modes
first heat the plasma, slowing the growth of the Weibel
instability and delaying the onset of the nonlinear insta-
bility [see Fig. 1(e)]. The slower growth observed in some
cases is primarily due to competition between cavities that
lowers the pressure drop across the cavity wall; overall, the
theoretical growth rate is within 40% of the simulation
results.
A key feature of this nonlinear instability is that the

magnetic field strength and coherence length grow at the
same rate. The temporal evolution of the dominant mag-
netic field length scale λBðtÞ is shown for 1D and 2D y-z
simulations in Fig. 3(b), with the rate taken from the
magnetic energy growth overlaid on top. The two rates
match closely during nonlinear instability growth starting
at t ¼ 1000 ω−1

p . We note that this λBðtÞ ∝ eΓt growth in
length scale is very different from the λBðtÞ ∝

ffiffi
t

p
expected

due to filament merging [22].
The nonlinear magnetic field growth will saturate when

either the beam electrons or the background ions start to be
significantly affected by the strong fields. We focus on the
case of relativistic beams (γb0 ≫ 1, βb0 ≈ 1), which are
most interesting for high-energy astrophysical environ-
ments and laboratory plasmas associated with intense lasers
and particle beams. In the limit where γb0 < mi=Zme, the
beam electrons respond first; the saturation should occur
when the beam electron gyroradius becomes comparable to

(a)

(b)

(c)

FIG. 2. (a) Cross-sectional profile of the magnetic field and
density structure of Fig. 1(d) taken by averaging the magnetic
field and densities from x ¼ 390 c=ωp to x ¼ 410 c=ωp. The
formation of these cavities is sketched in (b),(c). (b) Fields at
saturation of the Weibel instability before ions have moved.
(c) Subsequent formation of background plasma cavities expand-
ing due to magnetic pressure.

PHYSICAL REVIEW LETTERS 126, 215101 (2021)

215101-3



the cavity radius rgb ≈ λB=2, also known as the Alfvén
limit [37]. Considering that the average saturation magnetic
field experienced by the particles in the cavity, Bsat, is half
of the peak field, we obtain a magnetic field spatial scale at
saturation of λB;sat ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8γb0=α

p ðc=ωpÞ, saturation magnetic

field Bsat ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γb0α=2

p ðmeωpc=eÞ, and associated magneti-
zation ϵB ≈ ð1=2ÞB2

sat=ð8πγb0nb0mec2Þ ≈ 1=8. The factor
of 1=2 in ϵB approximates the fact that roughly half of the
volume is filled with cavities as seen in Fig. 1(d). Notably,
the magnetization is independent of both γb0 and α,
meaning that even for highly relativistic and very dilute
beams a significant fraction of the beam energy is trans-
ferred to the magnetic fields; this is qualitatively different
from previous results for the nonlinear Weibel instability,
which reported saturated magnetic field levels of ϵB < 10−3

for α ≤ 0.01 [4,19].
When γb0 > mi=Zme, the background ions respond

to the presence of the strong magnetic fields before the
beam electrons. The rapid growth of the magnetic field
produces a strong inductive electric field. The ions in the
cavity with density ni ≈ αne0 accelerate due to this
E field and neutralize the beam current as they become
relativistic. The E field in the cavity can be estimated from
Faraday’s law as E ¼ αΓðλB=2Þ2ðmeω

2
p=eÞ. By solving

for the ion momentum pi, we find that the E field
accelerates the ions to relativistic speeds, pi ≈mic, at
the point where the magnetic field reaches a saturation
wavelength λB;sat ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðmi=ZmeÞ=α

p ðc=ωpÞ, amplitude

Bsat ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2αZmeÞ

p ðmeωpc=eÞ, and magnetization
ϵB ≈ ð1=8Þγb0Zme=mi.
Together, these two mechanisms predict in the relativ-

istic regime a saturation magnetic wavelength

λB;sat ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

α
min

�
γb0;

mi

Zme

�s
c
ωp

ð3Þ

and magnetization

ϵB ≈
1

8
min

�
1;

mi

γb0Zme

�
; ð4Þ

where minfa; bg is the smaller of a and b. We can see that
the two saturation mechanisms predict the same values
when γb0 ¼ mi=Zme. Interestingly, when saturation is
determined by the ion response, both ϵB and λB;sat increase
with ion mass, in contrast to the growth rate.
Figures 3(c) and 3(d) compare our theoretical predictions

for the saturation magnetic wavelength and magnetization
with 1D and 2D x-y simulations over a wide range of
α and γb0. The results agree well with Eqs. (3) and (4) and
clearly show the transition between the two saturation
mechanisms.

This nonlinear instability is also robustly observed
in 3D. Figure 4 shows simulation results for α ¼ 0.05,
γb0 ¼ 4000, and mi=Zme ¼ 1836. The development of
the instability proceeds similarly to that of Fig. 1. The
measured growth rate Γ ¼ 4.4 × 10−4ωp, magnetization
ϵB ¼ 3.9%, and saturation magnetic field length scale
λB;sat ¼ 400c=ωp are in good agreement with the theoreti-
cal predictions of Γ ¼ 6.8 × 10−4ωp, ϵB ¼ 5.7%, and
λB;sat ¼ 540c=ωp and confirm that our analysis and the
development of this new instability is robust in 3D systems.
The simulations presented consider initially uniform

beam-plasma systems, which is a reasonable approxima-
tion for kinetic scales associated with astrophysical
plasmas. We have performed additional simulations with
finite-size beams (not shown here). This is motivated by the
possibility of using picosecond kJ-class lasers to produce
high-charge (≳μC) electron beams [38,39], which could
enable the study of this instability in the laboratory.
For example, for an electron beam with peak energy
ϵb ¼ 25 MeV, energy spread Δϵb=ϵb ¼ 1, 5 μC charge,

(a)

(c) (d)

(b)

FIG. 3. Comparison of analytic theory (solid lines) with 1D
(circles) and 2D y-z (squares) simulations for a dilute, ultra-
relativistic electron beam propagating through an electron-ion
background. We use slab geometry theory given that the theo-
retical cylindrical growth rate differs only by 15%. (a) Nonlinear
instability growth rate. (b) Temporal evolution of the dominant
magnetic field length scale λBðtÞ for density ratio α ¼ 0.1, beam
Lorentz factor γb0 ¼ 1000, and mass ratio mi=Zme ¼ 1836, with
the growth rate taken from the magnetic energy overlaid as dotted
(1D) and dashed (2D) lines. (c) Saturation magnetic field length
scale λB;sat compared to Eq. (3). (d) Saturation magnetization ϵB
compared to Eq. (4). All parameter scans in (a),(c),(d) use as fixed
parameters α ¼ 0.01, γb0 ¼ 1000, and mi=Zme ¼ 1836.
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1 ps duration, 50 μm diameter, and 50 mrad divergence
propagating in a hydrogen plasma with ni0¼2×1020 cm−3

we observe that the nonlinear instability grows as predicted
by theory and produces 100 MG magnetic fields in the
plasma after a 300 μm distance. A more detailed study of
the applications of this instability to both laboratory and
astrophysical plasmas is deferred to future work.
In conclusion, we have shown that a new electron

streaming instability in relativistic dilute-beam systems
can generate magnetic fields with orders of magnitude
larger strength and spatial scale than previously reported.
This can have important implications for both astrophysical
and laboratory scenarios. For example, in gamma-ray
bursts, it could mediate the amplification of magnetic
fields upstream of the external relativistic shock to scales
much larger than the plasma skin depth and help explain the
observed synchrotron emission spectra [8,9,40,41]. It could
also lead to enhanced particle scattering in blazar jets and
potentially impact constraints on the intergalactic magnetic
field [3,4]. In the laboratory, this instability could allow for
more efficient transfer of electron beam energy to dense

inertial fusion plasmas [16,42] and enable high-energy
compact radiation sources [19].
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