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In this Letter we introduce a novel equation addressing the effect of quantum noise in optical fibers with
arbitrary frequency-dependent nonlinear profiles. To the best of our knowledge, such an endeavor has not
been undertaken before despite the growing relevance of fiber optics in the design of new quantum devices.
We show that the stochastic generalized nonlinear Schrödinger equation, derived from a quantum theory of
optical fibers, leads to unphysical results such as a negative photon number and the appearance of a
dominant anti-Stokes sideband when applied to this kind of waveguides. Starting from a recently
introduced master-equation approach to propagation in fibers, we derive a novel stochastic photon-
conserving nonlinear Schrödinger equation suitable for modeling arbitrary nonlinear profiles, thus greatly
enhancing the study of fiber-based quantum devices.
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Nonlinear waveguides are becoming a fundamental tool in
the design of novel quantum-technology devices. A clear
example of this is found in the interface with quantum
memories [1], performed by the frequency conversion of
single photons in nanowires [2–4], as also in the generation of
entangled photon pairs in nonlinear fibers for quantum key
distribution systems [5–8]. Further examples can be found in
several kinds of nonclassical states of light attainable by
means of nonlinear fibers, such as squeezed and entangled
light [9–11], or in the quantum-state engineering with an
array of nonlinear waveguides recently proposed in Ref. [12].
These applications have triggered a remarkable interest in
highly nonlinear waveguides (HNLWs) manufactured from
emerging materials such as graphene [13–15], nanoparticle-
doped glasses [16], silicon photonic crystals [17], calchoge-
nide glasses [18,19], and several metamaterials [20], allowing
for an enhanced and tailored nonlinear coefficient. All these
incipient technologies are already paving the way towards
commercial integrated quantum devices [21,22].
Interestingly, the large nonlinearity in HNLWs is com-

monly associated with a strong frequency dependence of
the nonlinear profile [16,23,24], leading to very unusual
and intriguing phenomena in nonlinear optics such as the
existence of solitons and modulation instability in the
normal dispersion regime, or to a controllable self-steep-
ening parameter [25,26], among others. Additionally,
HNLWs with a frequency-dependent nonlinearity are also
relevant in the area of solitons in fiber lasers [27,28].
However, as we have recently shown, this frequency
dependence may lead to unphysical results from the

well-established equations used to model propagation in
fibers [29]. In particular, the generalized nonlinear
Schrödinger equation (GNLSE) was shown to produce
unphysical results in fibers with arbitrary nonlinear profiles
(i.e., whenever the fiber nonlinear coefficient is an arbitrary
real function of frequency), such as the nonconservation of
the mean photon number or the pulse energy even in
lossless media. Based on this observation, we derived a
new propagation equation suitable for modeling fibers
with a frequency-dependent nonlinearity. The photon-
conserving generalized nonlinear Schrödinger equation
(pcGNLSE) [30], which can be solved with the same
efficient algorithms used for the GNLSE, produces con-
sistent results even for arbitrary nonlinear profiles, allowing
for the analysis of new kinds of waveguides, such as silver-
nanoparticle-doped fibers, silicon nanowires, and gra-
phene-decorated waveguides. Note, however, that neither
the GNLSE nor the pcGNLSE are suitable for the analysis
of quantum devices as they deal with classical fields.
Quantum effects in fibers are usually modeled by the
stochastic GNLSE (stoGNLSE), derived from a quantum
theory of fibers, in which the different sources of quantum
noise are introduced by means of stochastic processes [31].
Therefore, the simulation of HNLWs in quantum devices
should be performed by resorting to the stoGNLSE rather
than the classical GNLSE. However, given the proven
inadequacy of the GNLSE for modeling a frequency-
dependent nonlinearity, it is only natural to wonder whether
the stoGNLSE may also fail when applied to such wave-
guides. The main goal of this work is to derive a new
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stochastic equation, with a computational complexity
similar to that of the stoGNLSE, but capable to tackle
propagation in HNLWs with an arbitrary frequency-
dependent nonlinearity.
We revisit the analysis of photon-pair generation in

nonlinear waveguides, in order to highlight a shortcoming
of the stoGNLSE in this scenario. We emphasize that
only the positive P representation of the stoGNLSE
[stoGNLSEðþPÞ] produces physical results in highly non-
classical experiments. In addition, we show that the
stoGNLSEðþPÞ is no longer adequate if an arbitrary
frequency-dependent nonlinearity is considered, as stated
in our main hypothesis. Starting from the recently introduced
master-equation approach to propagation in nonlinear
fibers [32], we derive a novel stochastic equation suitable
for such nonlinear profiles. This equation is reminiscent of a
stochastic version of the previously developed pcGNLSE,
resembling a photon-conserving analogue of the stoGNLSE.
We compare simulation results from both the new equation
and the stoGNLSEðþPÞ in order to show that a physically
consistent modeling of HNLWs does require the use of the
novel stochastic equation here derived.
Photon-pair generation via a spontaneous four-wave

mixing (FWM) process is perhaps the most easily observable
quantum phenomenon occurring in nonlinear waveguides.
The basic setup consists of a high-intensity continuous-wave
(CW) laser, the pump, launched into a nonlinear fiber. As the
wave propagates into the fiber, two photons are created by
spontaneous FWM at both sides of the pump following the
simultaneous annihilation of two photons from the CW
pump. A quantum picture of this parametric process can be
expressed as 2ℏωp → ℏωs þ ℏωi, where ωp is the pump
frequency, and ωs and ωi are the signal and idler frequen-
cies, respectively, satisfying ωs þ ωi ¼ 2ωp. As a conse-
quence of this process, the spectrum at the output end of the
fiber is no longer a simple CW, but a CW with correlated
noisy sidebands located at frequencies for which the process
is phase matched. Note that this simple experiment cannot be
reproduced by simulation with the GNLSE, as a CW input
produces a steady-state CW solution but no sidebands due to
the generated photon pairs.
A first approach to spontaneous FWM in fibers can be

performed by resorting to the stoGNLSE [33], a truncated
Wigner representation of the quantum theory of nonlinear
fibers that reads [31]

∂zAt ¼
�
iβ̂ −

α̂

2

�
At þ iγ̂

�Z
∞

0

RðτÞjAt−τj2dτ þ σt

�
At;

ð1Þ

where z is the propagation axis, A is the normalized
complex envelope of the electric field, jAj2 is the optical
power, α̂ and β̂ are linear operators defined by the eigen-
value-equations α̂e−iωt ¼ αωe−iωt, β̂e−iωt ¼ βωe−iωt, αω,

and βω are the frequency profiles of loss and dispersion,
respectively; γ̂ ¼ γ0ð1þ i=ω0∂tÞ is the nonlinear operator,
γ0 is the waveguide nonlinear coefficient, ω0 is the
envelope central frequency, and RðtÞ is the nonlinear
response function including both the instantaneous (elec-
tronic) and the delayed Raman response. Quantum noise is
included by the stochastic process σt, whose frequency-
domain correlations are hσ̃�μσ̃μ0 i ¼ −ℏω0g−μδμμ0=Tγ0,
where T is the envelope period, δ is the Dirac
delta, gμ ¼ 2Im½R̃jμj�ðHðμÞ þ nμÞ, R̃ω ¼ R

∞
−∞ RðtÞeiωtdt,

HðμÞ is the Heaviside step function, and
nμ ¼ ½expðℏjμj=kBTwÞ − 1�−1; kB is the Boltzmann con-
stant and Tw the temperature of the waveguide. It must be
noted that Eq. (1) also includes effects that are highly
detrimental to the generation of photon pairs, such as fiber
loss and Raman scattering. The initial condition for the
simulation of photon-pair generation is Atð0Þ ¼

ffiffiffiffiffiffi
P0

p þ ηt,
where P0 is the pump power and ηt is the stochastic
process representing the phenomenological inclusion of
quantum-limited shot noise [33] with correlation
hη̃μη̃�μ0 i ¼ ℏðω0 þ μÞδμμ0=2T. However, we must emphasize
that this usual approach is not adequate for the analysis of
nonclassical experiments, as in the case of spontaneous
FWM. As a simple example, Fig. 1 displays results of a
simulation for a particular case in which the stochastic
equation fails (simulation details can be found in the
Supplemental Material [34]). In particular, it predicts an
unphysical negative mean photon number in a certain
frequency range. Opposite to the stoGNLSE, the stochastic

FIG. 1. Numerical results of the stoGNLSE and its positive P
representation for a 1-cm standard single-mode fiber pumped by a
high-power CW laser at 1550 nm. Curves were obtained by
averaging 10 000 noise realizations (the pump laser is not shown
for the sake of clarity.) TheþP representation does not display an
unphysical negative photon number as predicted by the
stoGNLSE.
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equation derived as the evolution of the mean value of field
operators from the master equation presented in Ref. [32],
which is the same as Eq. (1) but with frequency-domain
correlations given by

8<
:

hσ̃μσ̃−μ0 i ¼ −i ℏω0

Tγ0
ðR̃μ þ ig−μÞδμμ0

hσ̃�μσ̃μ0 i ¼ − ℏω0

Tγ0
g−μδμμ0 ;

ð2Þ

produces a physically sound result. Moreover, the initial
conditions for this equation do not require the ad hoc
addition of shot noise to the pump. It must be noted that the
stochastic terms given by Eq. (2) agree with the positive P
representation of the quantum theory of fibers put forth by
P. D. Drummond and J. F. Corney [31], where the differ-
ence between the two representations is pointed out. Here
we simply remark about the overlooked fact that whenever
quantum noise plays a significant role, as in the case of
quantum devices, the usual form of the stoGNLSE is
rendered inadequate and the positive P representation must
be used.
As we have recently shown in Refs. [29,30], the GNLSE

[i.e., Eq. (1) without the stochastic term] may produce
unphysical results when applied to fibers with a frequency-
dependent nonlinear profile. This fact suggests that, like-
wise, the stoGNLSE may not be suitable for modeling such
waveguides, as it will be demonstrated. Indeed, in Ref. [31]
the fiber nonlinear coefficient was assumed constant.
In order to find an adequate stochastic equation for the
case of an arbitrary nonlinearity, we start from the quantum
theory of nonlinear fibers recently introduced in Ref. [32],
where the evolution of the reduced density matrix ρ of
the complex envelope is proposed to follow the master
equation

∂zρ ¼ i
T
ℏ
½P̂; ρ�

þ T
ℏ

X2
m¼1

X
μ

L̂ðmÞ
μ ρL̂†ðmÞ

μ −
1

2
fρ; L̂†ðmÞ

μ L̂ðmÞ
μ g; ð3Þ

where P̂ represents processes of dispersion and four-wave

mixing [35], and L̂ð1Þ
μ and L̂ð2Þ

μ represent the waveguide
linear loss and the Raman scattering process [36], respec-
tively. Unlike in Ref. [32] these operators are expressed in
the more convenient form [30],

P̂ ¼
X
ω

βωÂ
†
ωÂω

ω0 þ ω

þ 1

4

X
ω1;ω2;μ

ðĈ†
ω1
Ĉ†
ω2
B̂ω1−μB̂ω2þμ þ B̂†

ω1
B̂†
ω2
Ĉω1−μĈω2þμÞ

þ 1

2

X
ω1;ω2;μ

ðRe½R̃μ� − 1ÞB̂†
ω1
B̂†
ω2
B̂ω1−μB̂ω2þμ; ð4Þ

L̂ð1Þ
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αμ

ω0 þ μ

r
Âμ; ð5Þ

and

L̂ð2Þ
μ ¼ ffiffiffiffiffi

gμ
p X

ω

B̂†
ω−μB̂ω; ð6Þ

where we introduced the nonlinearity-dependent field
operators B̂ω ¼ rωÂω and Ĉω ¼ r�ωÂω, being
rω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γω=ðω0 þ ωÞ4
p

. It is easy to prove that these oper-
ators are equivalent to those proposed in Ref. [32] when a
conventional nonlinear profile, γω ¼ γ0ω with γ0 > 0, is
assumed. However, this formulation allows for a straight-
forward inclusion of arbitrary nonlinear profiles, while
preserving the correct modeling of the various quantum
processes in terms of the creation and the annihilation of
photons. As explained in Refs. [27,28], the operators in
Eqs. (4) and (6) allow for a consistent quantum modeling of
a frequency-dependent Kerr coefficient by means of a
straightforward generalization of Miller’s rule. In a similar
fashion to that in Ref [32], it can be shown that the
evolution of any normally ordered quantum operator can be
calculated as

hÂ†
ω1
Â†
ω2
…Âω3

Âω4
…i ¼ hA�

ω1
A�
ω2
…Aω3

Aω4
…i; ð7Þ

where Aω are c numbers whose evolution follows the
stochastic equation

∂zAω¼
�
iβω−

αω
2

�
Aω

þ i
γ̃ω
2
F ½ðC�

t Btþσð1Þt ÞBt�þ i
γ̃�ω
2
F ½ðB�

t Ctþσð2Þt ÞCt�

þ iγ̃�ωF
��Z

∞

0

½RðτÞ−δðτÞ�jBt−τj2dτþσð3Þt

�
Bt

�
;

ð8Þ

where γ̃ω ¼ ðω0 þ ωÞrω, Bt and At are the time-domain
version of the fields Bω ¼ rωAω and Cω ¼ r�ωAω, respec-

tively, and σðiÞt are stochastic processes with frequency-
domain correlations given by

8>>><
>>>:

hσ̃ð1Þμ σ̃ð1Þ−μ0 i ¼ hσ̃ð2Þμ σ̃ð2Þ−μ0 i ¼ −2i ℏT δμμ0

hσ̃ð3Þμ σ̃ð3Þ−μ0 i ¼ −i ℏT ðR̃μ − 1þ ig−μÞδμμ0
hσ̃ð3Þ�μ σ̃ð3Þμ0 i ¼ − ℏ

T g−μδμμ0 :

ð9Þ

We refer the interested reader to the Supplemental
Material for details of these calculations. While σð1Þt

and σð2Þt model spontaneous FWM in the context of a

frequency-dependent Kerr coefficient, σð3Þt introduces a
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consistent model of Raman scattering for arbitrary non-
linear profiles. If stochastic processes were not considered,
Eq. (8) is equivalent to the pcGNLSE proposed in Ref. [30],
an equation that allows for the correct modeling of
classical-light propagation in nonlinear fibers with an
arbitrary frequency-dependent nonlinearity. As a conse-
quence, the strict conservation of the photon number is
ensured by Eq. (8), referred to as the stochastic photon-
conserving generalized nonlinear Schrödinger equation
(sto-pcGNLSE). It is easy to prove that for the particular
case of a conventional nonlinear profile, γω ¼ γ0ω, with
γ0 > 0, the sto-pcGNLSE reduces to the stoGNLSEðþPÞ
[Eq. (1)]. In addition, Eq. (8) can be solved by means of the
same efficient numerical algorithms used for solving the
stoGNLSEðþPÞ and allows for the consistent modeling of
arbitrary higher-order nonlinear terms in novel and relevant
schemes [37].
Figure 2 portrays a comparison between numerical

results obtained with the stoGNLSEðþPÞ and with the
sto-pcGNLSE, and for a waveguide with the nonlinear
profile shown in the top panel (see the Supplemental
Material for technical details about the simulation and
waveguide parameters). This particular nonlinear profile
combines negative and positive values displaying a zero-
nonlinearity wavelength, a feature commonly observed in

silver-nanoparticle-doped photonic crystal fibers and
other metamaterials [16]. As it can be observed in
Fig. 2, the standard stoGNLSEðþPÞ produces an unphys-
ical outcome (i.e., a negative photon number) despite
considering the positive P representation. On the other
hand, results obtained with the proposed sto-pcGNLSE
are consistently positive all across the spectrum, resem-
bling the comparison shown in Fig. 1. This fact suggests
that, in the same way that the positive P representation is
crucial for a correct modeling of highly nonclassical
experiments, the sto-pcGNLSE is instrumental for a
suitable simulation of waveguides possessing arbitrary
frequency-dependent nonlinear profiles. In addition, we
compare these two equations by way of a relevant
example: a HNLW with a negative nonlinear coefficient,
a feature found, for instance, in graphene-decorated
nanowires [15]. Figure 3 shows the output spectra
obtained by numerically solving Eqs. (1) and (8) (see
the Supplemental Material for details.) In this case, and as
suggested by the spectrum asymmetry with respect to the
pump frequency, most of the energy in the spectral
sidebands is produced by Raman scattering instead by
four-wave mixing. Even though this scenario is not a
suitable setup for the generation of photon pairs, it clearly
illustrates another problematic aspect of applying
the stoGNLSEðþPÞ to model arbitrary nonlinear profiles,
as it predicts an unphysical prevalence of the anti-Stokes
over the Stokes sideband. The novel sto-pcGNLSE,
however, predicts a reasonably higher Stokes sideband
even in the presence of a negative fiber nonlinear
coefficient.

FIG. 2. (top panel) Frequency-dependent nonlinear profile.
(bottom panel) Numerical results of the positive P stoGNLSE
and the proposed sto-pcGNLSE. Curves correspond to the
average of 10 000 noise realizations (the CW is not shown for
the sake of clarity.) The sto-pcGNLSE avoids the unphysical
negative photon number as predicted by the stoGNLSEðþPÞ.

FIG. 3. Numerical results of the positive P stoGNLSE and the
sto-pcGNLSE for a HNLW with a negative nonlinear coefficient.
Curves were obtained as an average of 1000 noise realizations.
Unlike the sto-pcGNLSE, the stoGNLSEðþPÞ predicts an un-
physical growth of the anti-Stokes sideband.
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In conclusion, we investigated predictions of well-
established stochastic propagation equations when applied
to waveguides with arbitrary frequency-dependent
nonlinear profiles. Numerical simulation of relevant
cases strongly supports our main hypothesis: The
stoGNLSEðþPÞ is not adequate to correctly modeling this
kind of waveguides as it may produce unphysical results.
Consequently, we derived a novel propagation equation,
the sto-pcGNLSE, starting from a master-equation
approach to nonlinear optical fibers. This original proposal,
whose numerical simulation does not involve a higher
degree of computational complexity, was shown to reduce
to the usual stoGNLSE when a standard nonlinearity is
considered, and to reduce to the recently introduced
pcGNLSE when the effect of quantum noise is neglected,
ensuring strict conservation of the photon number. In
addition, the sto-pcGNLSE produces physically sound
results in cases where the stoGNLSEðþPÞ fails. Finally,
we believe to have put forth a powerful tool for the
modeling and design of novel quantum devices based on
highly nonlinear waveguides.
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