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An analytic formula is given for the total scattering cross section of an electron and a photon at order α3

in QED. This includes both the double-Compton scattering real-emission contribution as well as the virtual
Compton scattering part. When combined with the recent analytic result for the pair-production cross
section, the complete α3 cross section is now known. Both the next-to-leading order calculation as well as
the pair-production cross section are computed using modern multiloop calculation techniques, where cut
diagrams are decomposed into a set of master integrals that are then computed using differential equations.
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The scattering of photons off of electrons is perhaps the
most important physical process in nature: essentially all
observable phenomena involve photon-electron inter-
actions. The shift in the wavelength of the scattered
photon, Δλ ¼ ðh=mcÞð1 − cos θÞ, as first observed by
Compton in 1923 convincingly demonstrated that light
comprises particles with energy and momentum [1].
Compton’s paper introduced the Compton wavelength
of the electron, λe ¼ ðh=mcÞ, which governs the effective
cross sectional area of the electron as seen by the photon
σ ∼ πλ2e. The calculation of the Compton scattering cross
section by Dirac [2] and Gordon [3], and later with full
spin and relativistic corrections by Klein and Nishina [4],
provided a convincing case of the correctness of the Dirac
equation. Photon scattering off of electrons is critical to a
wide variety of scientific enterprises, from x-ray crystal-
lography to astrophysics.
Total cross sections at high energy are of interest for both

experimental reasons and theoretical ones. On the exper-
imental side, they are relevant for not just applications like
cosmic rays, but also for estimating luminosity and meas-
uring coupling constants. On the theoretical side, total cross
sections necessarily involve the singular forward-scattering
region, where outgoing particles are collinear to incoming
ones. In this region, off shell Glauber or Coulomb modes
are essential. Studying these modes has led to insights such
as Regge physics and the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [5–7]. For Compton scattering, the

singularities are in a region where the outgoing electron
is collinear to the incoming photon and dominated by
t-channel fermion exchange. Despite their importance, very
few analytic results are known for total cross sections beyond
the leading order.
Bethe and Heitler [8], as well as Racah [9], considered a

related process of pair production in a background electro-
magnetic field by the high-energy photon, γZ → Zeþe−.
This process has a total cross section which scales asymp-
totically like m−2 ln s, rather than s−1, an indication of the
relevance of the Glauber region. Upon formal substitution
Z ¼ −1, the leading high-energy asymptotics of this cross
section also determines the high-energy limit of the e−γ →
e−eþe− process (cf. Ref. [10]). The complete analytical
result for the total cross section of the latter was first
computed only recently [11] (using the same technology
developed for this Letter), confirming the leading high-
energy asymptotics of Bethe and Heitler. The analytic
eþe− → γγ cross section at next-to-leading order (NLO)
has also been completed within the last year by the same
methods [12]. The cross section of γγ → eþe− can, in
principle, be extracted as the Abelian limit of the gg → tt̄
total cross section [13]. Compton scattering is thus the last
pure QED total cross section not known analytically at order
α3 in QED. Even the leading high-energy asymptotics of the
cross section is not known.
The importance of Compton scattering led numerous

investigators to explore corrections beyond the leading
order. The next-to-leading order (NLO) Compton scatter-
ing process includes both loop contributions to e−γ → e−γ
and real double-Compton scattering e−γ → e−γγ. These
two contributions are separately infrared divergent, but the
divergence cancels when they are added, as guaranteed by
the Bloch-Nordsieck theorem [14]. The virtual graphs
were computed by Feynman and Brown in 1951 [15], and
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the cancellation of the infrared divergence in the differ-
ential cross section was shown using a photon mass cutoff.
The double Compton process was studied by Mandl and
Skyrme in 1952 [16]. Recently, the total cross section for
double Compton scattering has been calculated in
Ref. [11]. The asymptotic behavior of Compton scattering
at high energy at the amplitude level has been examined
by numerous authors (e.g., Refs. [17–19]). Polarized
differential Compton scattering at NLO was studied by
Swartz [20] and by Denner and Dittmaier [21]. Although
numerical results for the total NLO cross section can be
obtained by integrating these differential cross sections
over the scattering angle, no analytic formula has yet been
produced. The result of this Letter is that final missing
analytic form.
To compute the total cross section, one approach

is to use the optical theorem to extract it from the
imaginary part of the e−γ → e−γ forward scattering
amplitude. However, rather than compute the full
two-loop forward amplitude and then take its imaginary
part, it is simpler to compute the cut diagrams
directly. These diagrams are shown in Fig. 1. The cuts
that put e−γ on shell are the virtual corrections, while
those putting e−γγ on shell correspond to real emission.
There are also contributions to the total e−γ cross section
at order α3 from final states with three charged particles.
These were computed in Ref. [11] so we do not consider
them here.
To compute the cuts, we apply integration by parts and

differential equations to two or three particle cuts sepa-
rately. For example, one of the two-particle cut master
integrals of interest looks like

ð1Þ

Applying loop computation technology to cut graphs
significantly simplifies the problem: the extra δ functions
reduce the number of master integrals and, therefore, the
size of the differential system. Even more important, the
cuts relevant for the NLO correction to the Compton
scattering cross section prevent the appearance of the
nonpolylogarithmic master integrals—the massive sunrise
graphs.
The main tool we use for the IBP (integration-by-parts)

reduction is LiteRed [22,23] which allows for the account of
the individual cuts. For the reduction of the differential
system to ϵ form we use the Libra package [24]. It is helpful
to rewrite the integrals in terms of threshold variables like

x ¼ s −m2

m2
; y ¼

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r
: ð2Þ

A variable like y can be used to rationalize the weights of
the appearing iterated integrals. Both x and y vanish at
threshold s → m2. We find that using the threshold limit to

FIG. 1. Cut Feynman diagrams contributing to the NLO cross section. Cuts drawn in blue indicate double-Compton contributions
and red cuts indicate loop contributions. The last eight diagrams involve an insertion of the mass counterterm and require
separate integrals.
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set the boundary conditions of the master integrals provides
a dramatic simplification: in this limit the loop and phase
space integrals factorize, making them much easier to
evaluate. For example, expanding around y ¼ 0, Eq. (1)
has the boundary condition

I1 ¼ −
22d−6π2 cscðπd

2
Þ

ðd − 3Þ2Γðd − 3Þ y
2d−6

−
22d−7π2 cscðπd

2
ÞΓð3−d

2
Þ

Γðd−1
2
Þ y4d−12 þ � � � : ð3Þ

The differential equations couple many different master
integrals. Once they are solved using the boundary con-
ditions, the individual masters may be extracted. For
example, we find

e2ϵγEI1 ¼
πx

ðxþ 1Þϵþ π

�ðx − 1Þ lnð1þ xÞ − 3x ln xþ 5x
xþ 1

þ ln2ð1þ xÞ þ Li2ð1 − x2Þ − π2=6
2x

�
þOðϵÞ:

ð4Þ

We check the results for the master integrals by construct-
ing their sums which determine the imaginary parts of the
corresponding uncut diagrams and evaluating the latter
numerically using FIESTA [25]. More details of related

calculations using the same technology can be found in
Refs. [11,12].
We use dimensional regularization d ¼ 4 − 2ϵ to regu-

late the infrared and ultraviolet divergences. The renorm-
alization in the on shell scheme amounts to the following
relation between the renormalized and bare virtual correc-
tions: σvirt ¼ ðσvirtÞbare þ 2δZψσLO þ δσm, where δZψ ¼
−f½ð4παÞð3 − 2ϵÞΓðϵÞ�=½ð4πÞ2−ϵð1 − 2ϵÞ�gðeγE=4πÞϵ is
the one-loop contribution to the wave function renormal-
ization constant, σLO is the Born cross section defined
below in Eq. (5), and δσm is the sum of the last eight
diagrams in Fig. 1, where a cross denotes the one-loop mass
counterterm iδm ¼ imf½ð4παÞð3 − 2ϵÞΓðϵÞ�=½ð4πÞ2−ϵð1 −
2ϵÞ�gðeγE=4πÞϵ vertex (cf. Ref. [12]). After the renormal-
ization we can put ϵ ¼ 0 in the sum σvirt þ σreal as the
infrared divergences cancel between virtual and real
contributions.
Let us write the cross section for e−γ → e−γðþγÞ to

order α3 as σtot ¼ σLO þ σNLO where

σLO ¼ πα2

m2ðxþ 1Þ
�
x3 þ 18x2 þ 32xþ 16

x2ðxþ 1Þ

þ ð2x3 − 6x2 − 24x − 16Þ
x3

lnðxþ 1Þ
�

ð5Þ

and

σNLO ¼ α3

m2x3

�
−
xð273x3 − 982x2 − 2960x − 1744Þ

24ðxþ 1Þ2 þ 37x4 − 54x3 − 339x2 − 428x − 184

4ðxþ 1Þ2 lnðxþ 1Þ

þ x2ð14x4 þ 17x3 − 17x2 − 22x − 8Þ
2ð1 − xÞð1þ xÞ3 ln x −

4x6 þ 35x5 − 31x4 − 755x3 − 1765x2 − 1506x − 440

2ðxþ 1Þ2ðxþ 4Þ ln2ðxþ 1Þ

−
x6 þ 7x5 − 28x4 − 239x3 − 449x2 − 338x − 88

ðxþ 1Þ2ðxþ 4Þ Li2ð−xÞ −
1

3
ðx2 − 16x − 23Þln3ðxþ 1Þ

þ ðx2 − xþ 2Þ
�
Li2ð1 − xÞ − π2

6

�
þ x4 þ 7x3 þ x2 − 3x − 2

ðxþ 1Þ2 lnðxþ 1Þ ln xþ ðx2 þ 2x − 6Þ½Li3ðx2Þ − Li2ðx2Þ ln x�

−
4ðx5 þ 26x4 þ 146x3 þ 316x2 þ 288xþ 96Þ

ðxþ 1Þ2ðxþ 4Þ Gð−2;−1; xÞ þ 8ðx2 − 4x − 6ÞGð−1;−2;−1; xÞ

þ 4ð2x2 − x − 6ÞGð−1;−1; 0; xÞ þ 2ð2x2 − 7x − 12ÞGð−1; 0;−1; xÞ − ð5x2 þ 32x − 8ÞGð0;−1;−1; xÞ

− 3ðx − 2Þðxþ 4Þy½Gð0; y;−1; xÞ þ 2Gðy;−1; 0; xÞ� − 8yðx4 þ 3x3 − 18x2 − 68x − 24Þ
ðxþ 4Þx Gðy; 0;−1; xÞ

þ 3yð5x4 þ 14x3 − 96x2 − 352x − 128Þ
ðxþ 4Þx Gðy;−1;−1; xÞ − 16yðx4 þ 2x3 − 24x2 − 80x − 48Þ

ðxþ 4Þx Gðy;−2;−1; xÞ

þ 3x4 þ 18x3 þ 44x2 − 8x − 64

x
yGðy;−1; xÞ − 6yðx3 − 12x − 8Þ

x
Gð−4; y;−1; xÞ þ 3ð3x2 − 8ÞGðy; y;−1; xÞ

�
:

ð6Þ
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The G functions are defined iteratively via

Gða; a1;…; an; xÞ ¼
Z

x

0

dwaðx0ÞGða1;…; an; x0Þ; ð7Þ

where weights are

dwyðxÞ¼
ydx
x

; dwaðxÞ¼
dx
x−a

ða¼−4;−2;−1;0Þ ð8Þ

and Gð0; xÞ ¼ ln x. When y is not among the letters, these
functions are conventional Goncharov polylogarithms as the
notation suggests. The weight dwy can be rationalized by
changing variables from x to y in Eq. (2). Then one can
express the G functions as linear combinations of Gðb1;…;
bn; yÞ with bk ∈ f0;�1;�i;�i=

ffiffiffi
3

p g, or, alternatively, as
linear combinations of Gð…; zÞ, with z ¼ ½ð1 − yÞ=ð1þ yÞ�
and indices being the fourth or sixth roots of unity.
Some of the integrals can be evaluated into

relatively simple forms with an additional judicious vari-
able change. For example, using z ¼ ½ð1 − yÞ=ð1þ yÞ� ¼
f½2þ x −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ 4Þp �=2g, we can compute

Gðy;−1; xÞ ¼
Z

x

0

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ 4Þp

Z
x0

0

dx00

x00 þ 1

¼ −
Z

z

1

d ln z0
Z

z0

1

d ln
z003 þ 1

z00ðz00 þ 1Þ

¼ 1

3
Li2ð−z3Þ − Li2ð−zÞ þ

1

2
ln2z −

π2

18
: ð9Þ

In the Supplemental Material [26] we present the expres-
sions for all the G functions entering Eq. (6) in terms of the
classical polylogarithms Lin. The same expressions, as well
as the total cross section, are given in a Mathematica
notebook included with the arXiv submission of this Letter.
As a check, we compare to the numerical values given in
Table 3 of Ref. [21], and find perfect agreement.
Figure 2 plots the size of the NLO correction relative to

the leading order as a function of center-of-mass energy
ECM ¼ ffiffiffi

s
p

, using α ¼ 1=137.036. At threshold s → m2,
the NLO correction vanishes. This is guaranteed by
Thirring’s theorem [21,27,28], and is a nontrivial check
on our computation. More precisely, using PolyLogTools [29],
we find that near threshold ðs ∼m2Þ, the cross section
behaves as

σtot¼
πα2

m2

�
8

3
−
8

3
xþ���

�
þ α3

m2
x2
�
−
16

9
lnxþ 7

15
þ���

�
ð10Þ

with the α3 term vanishing like ðs −m2Þ2.
We see from Fig. 2 that the NLO correction to the cross

section grows with energy, providing a 30% correction
already at 1 TeV (pair production and electroweak correc-
tions are also increasingly important at high energy [30]).
At high energy, the asymptotic behavior is

σtot ¼
πα2

s

�
2 ln

s
m2

þ 1þ � � �
�

þ α3

s

�
1

3
ln3

s
m2

−
1

2
ln2

s
m2

þ 17

4
ln

s
m2

−
75

8
−
π2

2
þ 4ζ3

�
:

ð11Þ

This is a new result. The ð1=sÞln3ðs=m2Þ behavior of the
NLO result dominates over the ð1=sÞ lnðs=m2Þ behavior at
LO; this explains the growth of their ratio at high energy
in Fig. 2.
To summarize, we have calculated the Compton

scattering total cross section with accuracy Oðα3Þ. The
result can be represented in terms of the Goncharov’s
polylogarithms of the argument z ¼ ½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 3m2

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s −m2
p

Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 3m2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −m2

p
Þ� with letters involving

the sixth and fourth root of unity [31], or in terms of
classical polylogarithms. The analytic form of the total
cross section may be of use in numerous applications, from
cosmic ray astrophysics to particle colliders as well as to
theoretical investigations into factorization and forward or
backward scattering.
Our analytic results reveal some remarkable features. For

one, when continued to a multivalued analytic function, the
cross section manifests a branch point at s ¼ 2m2, due to
terms like Li3ðx2Þ. Although the singularity is on an
unphysical sheet and the cross section is smooth around
s ¼ 2m2, the presence of this branch point affects the
threshold and high-energy expansions: both diverge from
the exact result near s ¼ 2m2 no matter how many terms
one retains. Moreover, these divergences cannot be elim-
inated by any rational variable change. This is in sharp
contrast to the cross section of e−γ → e−eþe− [11] which is
nicely approximated after only a few terms of high-energy
asymptotics, or a few terms of threshold asymptotics when
expanding in r ¼ ½ðs − 9m2Þ=ðs −m2Þ�. One might hope to
give a physical interpretation to the branch point by
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FIG. 2. NLO corrections to the Compton scattering cross
section, as compared to the leading order. At ECM ¼ 1 GeV
the correction is 8.2% growing to a 30% correction at 1 TeV.
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connecting sequential monodromies to multiple cuts, as
was done at the amplitude level in Ref. [32].
Another intriguing feature is the appearance of a double

log lnðs2=m2Þ in the NLO cross section over the LO cross
section. Normally, double logarithms are due to overlapping
soft and collinear Sudakov singularities. However, the soft
singularities are expected to cancel in QED cross sections
due to the Block-Nordsieck theorem [14] leaving at most
single logarithms at each order in α. It would be interesting
to understand the origin of this double logarithm, and its
connection to Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) or BFKL evolution both of which are single
logarithmic.
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