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We provide a closed-form expression for the motivic Kontsevich-Soibelman invariant forM theory in the
background of the toric Calabi-Yau threefold KF0 . This encodes the refined Bogomol’nyi-Prasad-

Sommerfield spectrum of SU(2) 5D N ¼ 1 Yang-Mills theory on S1 ×R4, corresponding to rank-zero
Donaldson-Thomas invariants for KF0, anywhere on the Coulomb branch.
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Introduction and main result.—Quantum field theory
(QFT) enables quantitative descriptions of natural pheno-
mena with remarkable flexibility, ranging from microscopic
to cosmological scales. While the importance of this
framework as a driver of discovery is well established,
QFT still harbors unsolved mysteries of central importance.
Understanding strongly coupled dynamics certainly deserves
a place among the most pressing ones, due to its omnipres-
ence in nature: for example, quark confinement underlies the
existence of stable nucleons, the basic building blocks of
atoms and all ordinary matter.
Many of these questions can be approached fruitfully

within the theoretical laboratory of gauge theories with
supersymmetry (SUSY). This laboratory is both abundant
in examples and rich in tools to address a variety of
questions on strongly coupled phenomena, including
confinement [1]. The hallmark of SUSY gauge theories
is the existence of Bogomol’nyi-Prasad-Sommerfield
(BPS, or protected) sectors, whose properties offer a
window into strong coupling dynamics, well beyond the
reach of conventional perturbation theory based on
Lagrangian or Hamiltonian descriptions. The study of
BPS states has been appreciated as a promising approach
to a variety of deep questions, ranging from confinement to
microscopic models of black hole entropy.
In this Letter we provide an exact description of the BPS

spectrum of minimally supersymmetric five-dimensional
(5D) SU(2) Yang-Mills gauge theory. While this theory is
superficially nonrenormalizable, it is known to flow to a
nontrivial fixed point with enhanced global symmetry [2]. To
our knowledge, this is the first complete description of the
BPS spectrum of a 5D N ¼ 1 gauge theory. The first

important novelty in our approach is that, instead of focusing
on the study of single BPS states, we obtain an exact
characterization of the full spectrum by computing directly
the wall-crossing invariant of Kontsevich and Soibelman [3].
The second novelty in our approach is that we obtain the
invariant by combining partial information obtained at
different choices of stability conditions.
BPS states of 5D theories with eight supercharges are also

interesting from a mathematical viewpoint because their BPS
indices correspond to rank-zero Donaldson-Thomas invar-
iants of certain Calabi-Yau threefolds. The theory considered
here corresponds to the canonical bundle of the Hirzebruch
surface F0 [2,4,5]. Enumerative invariants of geometries with
compact four cycles are notoriously challenging to compute.
Exhaustive results are scarce, except for recent developments
for local P2 based on scattering diagrams [6] and results
based on conjectures for attractor invariants [7].
A given theory typically has not one but many different

BPS spectra, corresponding to different chambers of
moduli space and related by wall crossing [3,8–10]. The
wall-crossing invariant of Kontsevich and Soibelman, also
known as the (motivic) spectrum generator, encodes all
possible spectra. A standard way to compute this invariant,
henceforth denoted by U, requires knowing the full BPS
spectrum at some (any) point in Kähler moduli space.
When this information is unavailable, as in our case, the
only way to obtain the invariant is to look for alternative
definitions. Following [11], one may hope to compute U at
the Roman locus of [12], based on computations with
spectral or exponential networks [13,14]. Unfortunately,
the existence of Roman loci is poorly understood at the
moment, both for 4D N ¼ 2 and 5D N ¼ 1 theories. In
this Letter we introduce a new approach to computing U,
based on leveraging information about BPS states at
different points in moduli space studied in [15,16].
Details of this will be explained below.
Fixing a choice of Kähler moduli determines a unique

BPS spectrum, with BPS states of charge γ ∈ Γ
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characterized by a central charge Zγ ∈ HomðΓ;CÞ. Here
Γ ≃ Z4 is a lattice of charges endowed with a skew-
symmetric bilinear form h·; ·i, the Dirac-Schwinger-
Zwanziger pairing. CPT symmetry implies that if the
spectrum features a state with charge γ, there is a
corresponding state with charge −γ. We henceforth
focus on studying the half of the spectrum with
−π=2 ≤ ArgZγ < π=2, whose charges γ are positive-
integer linear combinations of four basic charges
γ1;…; γ4 fixed by the choice of half-plane. In this, note
γi correspond to exceptional sheaves on KF0 , or fractional
D-branes in IIA string theory:

γ1 γ2 γ3 γ4

Oð0; 0Þ Oð1; 0Þ Oð1; 1Þ Oð2; 1Þ
D4 D2f-D4 D0-D2b-D2f-D4 D2b-D4

;

ð1Þ

where D2b (resp. D2f) denotes a D2-brane wrapping
the base (resp. fiber) P1 in F0 and overlines denote
antibranes. The pairing is hγi; γiþ1i ¼ −2 with i ∈ Z=4Z;
see [16].
The BPS spectrum is encoded by the BPS index

ΩðγÞ ∈ Z. By the no-exotics phenomenon, jΩðγÞj actually
counts states [17–19]. The protected spin character (PSC)
Ωðγ; yÞ is a Laurent polynomial with integer coefficients,
which refines the BPS index by encoding information
about the spin of BPS states. The relation between the two
is ΩðγÞ ¼ Ωðγ; y ¼ −1Þ. Mathematically the BPS index
should coincide with numerical rank-zero Donaldson-
Thomas invariants, while the PSC should correspond to
their motivic version.
Having spelled out necessary conventions, we can

state the main result for the motivic wall-crossing
invariant

U ¼
Y↗

k≥0
ΦðŶγ1þkðγ1þγ2ÞÞΦðŶγ3þkðγ3þγ4ÞÞ

×
Y

n≥1
Φ½ð−yÞ−1Ŷnðγ1þγ2þγ3þγ4Þ�−1Φ½ð−yÞŶnðγ1þγ2þγ3þγ4Þ�−2Φ½ð−yÞ3Ŷnðγ1þγ2þγ3þγ4Þ�−1

×
Y

k≥0
Φ½ð−yÞ−1Ŷγ1þγ2þkðγ1þγ2þγ3þγ4Þ�−1Φ½ð−yÞŶγ1þγ2þkðγ1þγ2þγ3þγ4Þ�−1

×
Y

k≥0
Φ½ð−yÞ−1Ŷγ3þγ4þkðγ1þγ2þγ3þγ4Þ�−1Φ½ð−yÞŶγ3þγ4þkðγ1þγ2þγ3þγ4Þ�−1

×
Y↘

k≥0
ΦðŶγ2þkðγ1þγ2ÞÞΦðŶγ4þkðγ3þγ4ÞÞ; ð2Þ

where ΦðξÞ ¼ Q
s≥0ð1þ y2sþ1ξÞ−1 is a variant of the

quantum dilogarithm function, Ŷγ are quantum-torus
variables obeying ŶγŶγ0 ¼ yhγ;γ0iŶγþγ0 , and↗ (respectively
↘) denotes increasing (decreasing) values of k to the right.
An important clarification is now in order: we did not find a
point in moduli space where central charges have phases
arranged in this configuration and where the spectrum is so
simple: this is an expression for U, not for the BPS
spectrum. Nonetheless, there exists a virtual configuration
of central charges Zγi such that the factors in (2) are ordered
according to the phase of Zγ .
Derivation.—We now explain how (2) is derived.

Suppose we fix a generic choice of moduli, away
from walls of marginal stability. Given any angular sector
∡ ⊂ C, we may define Uð∡Þ as the phase-ordered
product of Φðð−yÞmŶγÞamðγÞ for any γ with Zγ ∈ ∡. Here
amðγÞ ∈ Z are coefficients of the PSC, namely
Ωðγ; yÞ ¼ P

m∈Zð−yÞmamðγÞ. We split the half-plane
−π=2 ≤ ArgZ < π=2 into three sectors: the positive real

line Rþ, the sector ∡þ corresponding to 0 < ArgZ < π=2,
and the sector ∡− corresponding to −π=2 ≤ ArgZ < 0.
This defines a decomposition of the wall-crossing invari-
ant U ¼ Uð∡þÞ · UðRþÞ · Uð∡−Þ.
The wall-crossing formula of Kontsevich and Soibelman

asserts that Uð∡Þ is invariant under changes of stability
conditions (i.e., central charges [20,21]), as long as no BPS
rays enter or exit the sector ∡. By a BPS ray we mean any
locus ZγRþ ⊂ C such that Ωðγ; yÞ ≠ 0. We will take
advantage of this invariance property to compute different
factors of U at different points in the moduli space of
stability conditions: in particular we will compute Uð∡�Þ
for a certain configuration of central charges andUðRþÞ for
a different one. All we need to ensure is that these
configurations of central charges are connected by a
variation of central charges that never causes a BPS ray
to cross the boundaries of sectors ∡�.
A path in the moduli space of stability conditions.—We

consider the mirror geometry of KF0 , described by a conic
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bundle over the algebraic curve 1 −Qbðxþ x−1Þ þ
Qfðyþ y−1Þ ¼ 0 in C�

x × C�
y. The four basic charges

are identified with homology cycles on this curve; see
[16] for a detailed description. Central charges are deter-
mined by periods of the 1 form λ ¼ ð2πÞ−1 log yðdx=xÞ
and can be evaluated numerically. For Qb ¼ −1, Qf ¼ 2

one finds that π=2 > ArgZγ3 > ArgZγ1 > 0 and ArgZγ2 ¼
ArgZγ4 ¼ −π=2, and in particular

Zγ1þγ2 ; Zγ3þγ4 ∈ Rþ: ð3Þ

Numerical evaluation yields Zγ1 ≈ 2.59433 þ 0.349113i,
Zγ2 ≈ −0.349113i, Zγ3 ≈ 3.68886 þ 1.03718i, Zγ4≈
−1.03718i. The reality condition (3) can also be verified
by plotting the exponential network at ϑ ¼ 0, where both
saddles of γ1 þ γ2 and of γ3 þ γ4 appear; see Fig. 1. The ray
Rþ contains central charges of all states in the span of
γ1 þ γ2 and γ3 þ γ4. Note that these are mutually local, i.e.,
hγ1 þ γ2; γ3 þ γ4i ¼ 0 (the same holds for charges in their
span); this ensures we are not on a wall of marginal
stability. This is the starting point t ¼ 0 of the path in the
moduli space of central charge configurations Z̃γ1ðtÞ ¼
ð1 − tÞZγ1 þ tZγ3 , Z̃γ2ðtÞ ¼ ð1 − tÞZγ2 þ tZγ4 Z̃γ3ðtÞ ¼ Zγ3 ,
Z̃γ4ðtÞ ¼ Zγ4 . The path ends at t ¼ 1, where

Z0
γ1 ¼ Z0

γ3 ∈ ∡þ Z0
γ2 ¼ Z0

γ4 ∈ ∡−: ð4Þ

The path has the crucial property that Z̃γ1ðtÞ þ Z̃γ2ðtÞ is real
and positive for all t ∈ ½0; 1�, thanks to (3). The configu-
ration of central charges for t ¼ 0 is realized at a point in
the moduli space of the (mirror) geometry, and we refer to it
as a physical stability condition. On the other hand, the
configurations Z̃ðtÞ for t > 0 are not necessarily realized in
moduli space, and we refer to them as virtual stability
conditions. Configurations analogous to t ¼ 0 and t ¼ 1
were considered in [16] and [15], respectively.
Computing Uð∡�Þ at t ¼ 1.—The virtual stability con-

dition for t ¼ 1 was analyzed by Closset and Del Zotto
[15], whose approach we review. The BPS spectrum admits
a description in terms of a BPS quiver with four nodes [22]
labeled by γi; our conventions are adapted to [16]. For the
choice of half-plane considered in this note, the structure of
the quiver is cyclic, with two arrows from the ith node to

the iþ 1th node. Tilting the choice of half-plane clockwise
induces a periodic sequence of mutations, respectively on
nodes 1,2,3,4. This leads, by the mutation method of [23],
to an infinite tower of hypermultiplets with charges
γ1 þ kðγ1 þ γ2Þ and γ3 þ kðγ3 þ γ4Þ for k ≥ 0. Similarly,
counterclockwise rotations of the half-plane lead to
a second tower of BPS hypermultiplets with charges
γ2 þ kðγ1 þ γ2Þ and γ4 þ kðγ3 þ γ4Þ. Note that the central
charges of these towers both asymptote to Rþ, but from
opposite sides; hence there is a single “accumulation” ray
along Rþ.
Since the clockwise (resp. counterclockwise) tilting

of the half-plane covers the whole angular sector ∡þ

(resp. ∡−), we deduce that Uð∡�Þ coincide respectively
with the first and last line in (2). One should worry
that ArgZ0

γ1þkðγ1þγ2Þ ¼ ArgZ0
γ3þkðγ3þγ4Þ may cause ordering

ambiguities in the above formulas. But since hγ1 þ kðγ1 þ
γ2Þ; γ3 þ k0ðγ3 þ γ4Þi ¼ 0 and hγ2 þ kðγ1 þ γ2Þ; γ4 þ
k0ðγ3 þ γ4Þi ¼ 0 when k ¼ k0, the corresponding factors
commute.
As we move from t ¼ 1 to the physical stability condition

t ¼ 0, the BPS rays that contribute to Uð∡�Þ begin to move
within ∡�; however, they never exit these sectors. As BPS
rays move around within ∡� they may cross each other and
generate new BPS rays by wall crossing. Any new rays
generated in this way must lie in the cone of the two BPS
rays that generated them, ensuring that even these descend-
ants (and their own descendants) must be confined within
one of ∡� as well. Furthermore, any BPS rays within Rþ at
t ¼ 1 are confined there also for 0 ≤ t < 1, never crossing
into ∡�. A direct way to see this is to notice that the quiver
has a Z4 symmetry, which must be inherited by U [11].
Enforcing this, withUð∡�Þ as determined here, fixesUðRþÞ
and establishes that it only contains contributions from BPS
rays that remain in Rþ for all t. These facts imply that
Uð∡�Þ, UðRþÞ obtained for the virtual stability condition at
t ¼ 1 must coincide with their counterparts for the physical
stability conditions at t ¼ 0.
Computing UðRþÞ at t ¼ 0.—What is left out by the

above analysis is to determine the part of U corresponding
to the accumulation ray. This can actually be obtained
quite easily, by plotting the exponential network at
Qb ¼ −1, Qf ¼ 2 (corresponding to t ¼ 0) for ϑ ¼ 0;
see Fig. 1.
To determine the BPS spectrum encoded by the saddle

one may use the machinery of [14,16,24,25]. But in
this case one can take a shortcut. Note that saddles are
divided into two disconnected parts. Each set has the
same topology as the exponential BPS graph of
Oð0Þ ⊕ Oð−2Þ → P1, shown in Fig. 1. More precisely,
this is the exponential network at ϑ ¼ 0 for 1þ yþ xyþ
Qy2 ¼ 0 with Q ¼ 6. It is equivalent (up to framing,
which has no effect on BPS states) to the curve studied
in [25], Eq. (4.3). Recall that (exponential) BPS graphs

FIG. 1. Left: exponential network of local F0 at ϑ ¼ 0 for
Qb ¼ −1, Qf ¼ 2. Right: exponential BPS graph for Oð0Þ ⊕
Oð−2Þ → P1 in quadratic choice of framing.
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encode the whole BPS spectrum of a theory [11]. In the
case of the half-geometry, the spectrum is known to
consist of ΩðnD0Þ ¼ −2 for n ≥ 1, ΩðD2-kD0Þ ¼ −1
for k ≥ 0, and ΩðD2-kD0Þ ¼ −1 for k ≥ 1 plus CPT
conjugates; see, e.g., [25], Eq. (4.34).
To translate this result into the BPS states in UðRþÞwe

simply have to identify D2 with D2f (cf. [16], Sec. V).
Noting that γ1 þ γ2 ¼ D2f and γ3 þ γ4 ¼ D0-D2f, and
taking into account that the left frame in Fig. 1 contains
two disconnected copies of the saddle in the right frame,
we arrive at the following BPS indices:

Ωðnðγ1 þ γ2 þ γ3 þ γ4ÞÞ ¼ −4 n ≥ 1;

Ωðγ1 þ γ2 þ kðγ1 þ γ2 þ γ3 þ γ4ÞÞ ¼ −2 k ≥ 0;

Ωðγ3 þ γ4 þ kðγ1 þ γ2 þ γ3 þ γ4ÞÞ ¼ −2 k ≥ 0: ð5Þ

To promote BPS indices to PSCs, we note that states with
Ω ¼ −2 are vector multiplets (seen, e.g., by the topology of
their saddles; cf. [26]), whose PSC isΩðγ; yÞ ¼ yþ y−1. For
the states with Ω ¼ −4 one should instead note that γD0 ¼
γ1 þ γ2 þ γ3 þ γ4 is the charge of a pure D0-brane. The
motivic DT invariant of nD0-branes in KF0 was recently
argued to be Ωðγ; yÞ ¼ y−1ð1þ y2Þ2 in [7]. This completes
the description of BPS states with real central charge, leading
to UðRþÞ given by the three central lines in (2) As discussed
earlier, all charges appearing in this expression are mutually
local, ensuring no ordering ambiguities.
Refined spectrum at a fiber-base symmetric point.—The

mirror geometry of KF0 has a symmetry under exchange of
fiber and base moduli whenever Qb ¼ �Qf. The point
Qb ¼ −1, Qf ¼ 1 was studied extensively in [16], where
central charges were evaluated to be Zγ1 ≈ 12.1717,
Zγ2 ≈ 3.15831i, Zγ3 ≈ 27.3067, Zγ4 ≈ −3.15831i. It is tedi-
ous but straightforward to compute the corresponding
factorization of U; see [11], Appendix E for an algorithm.
Eventually we obtain the invariants listed in Table I, where
ðn1; n2; n3; n4Þ is the shorthand for

P
4
i¼1 niγi. The full

spectrum is infinite; this list includes all states up to jγj ≤ 7.
On specialization y → −1, the spectrum in Table I recovers
the unrefined spectrum obtained in [16] up to degree jγj ≤ 6
and predicts several new states for jγj > 6.
Discussion.—In this Letter we provided an exact expres-

sion for the motivic wall-crossing invariant of Kontsevich
and Soibelman for the BPS spectrum of M theory on KF0 .
This operator encodes the spectrum of BPS states for any
generic choice of Kähler moduli. In terms of gauge theory,
U is the motivic spectrum generator for BPS monopole
strings and instanton particles of 5D N ¼ 1 SU(2) Yang-
Mills theory on S1 ×R4. From a geometric viewpoint, it
encodes the spectrum of rank-zero (generalized)
Donaldson-Thomas invariants for KF0.
The derivation is based on data on BPS states at two

different points in the moduli space of stability conditions,

closely analogous to those studied in [16], Sec. 5.3 and
[15], Sec. 7.2. Let us comment on how the expression U
obtained here compares with these works.
The difference with [15], Sec. 7.2 is the factor UðRþÞ,

where we find additional infinite towers of states Ωðγ1 þ
γ2 þ kγD0; yÞ ¼ Ωðγ3 þ γ4 þ kγD0; yÞ ¼ yþ y−1 for all

TABLE I. Protected Spin Characters at a fiber-base symmetric
point.

γ Ωðγ; yÞ
ðn; n; n; nÞ y3 þ 2yþ y−1ðn > 0Þ
(0,0,0,1) 1
(0,1,0,0) 1
(1,0,0,0) 1
(0,0,1,0) 1
(0,0,1,1) yþ y−1

(0,1,1,0) yþ y−1

(0,0,1,2) 1
(0,0,2,1) 1
(0,1,2,0) 1
(0,2,1,0) 1
(0,1,1,1) y2 þ 2þ y−2

(0,1,1,2) yþ y−1

(0,2,1,1) yþ y−1

(0,1,2,1) y3 þ yþ y−1 þ y−3

(0,0,2,3) 1
(0,0,3,2) 1
(0,1,2,2) y4 þ 2y2 þ 4þ 2y−2 þ y−4

(0,2,2,1) y4 þ 2y2 þ 4þ 2y−2 þ y−4

(0,2,3,0) 1
(0,3,2,0) 1
(1,1,2,1) y2 þ 2þ y−2

(0,2,1,2) 1
(0,1,2,3) y3 þ yþ y−1 þ y−3

(0,1,3,2) y5 þ 2y3 þ 4yþ 4y−1 þ 2y−3 þ y−5

(0,2,3,1) y5 þ 2y3 þ 4yþ 4y−1 þ 2y−3 þ y−5

(0,3,2,1) y3 þ yþ y−1 þ y−3

(1,1,2,2) yþ y−1

(1,2,2,1) yþ y−1

(0,2,2,2) y5 þ 2y3 þ 4yþ 4y−1 þ 2y−3 þ y−5

(0,0,3,4) 1
(0,0,4,3) 1
(0,1,2,4) 1
(0,1,3,3) y6 þ 2y4 þ 4y2 þ 6þ 4y−2 þ 2y−4 þ y−6

(0,1,4,2) y4 þ y2 þ 2þ y−2 þ y−4

(0,2,2,3) y4 þ 2y2 þ 4þ 2y−2 þ y−4

(0,2,3,2) y8þ2y6þ4y4þ4y2þ5þ4y−2þ4y−4þ2y−6þy−8

(0,2,4,1) y4 þ y2 þ 2þ y−2 þ y−4

(0,3,2,2) y4 þ 2y2 þ 4þ 2y−2 þ y−4

(0,3,3,1) y6 þ 2y4 þ 4y2 þ 6þ 4y−2 þ 2y−4 þ y−6

(0,3,4,0) 1
(0,4,2,1) 1
(0,4,3,0) 1
(1,1,3,2) y2 þ 2þ y−2

(1,2,2,2) y4 þ 3y2 þ 6þ 3y−2 þ y−4

(1,2,3,1) y2 þ 2þ y−2
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k ≥ 0, as well as additional states ΩðnγD0; yÞ ¼ y−1ð1þ
y2Þ2 for all n ≥ 1 directly in Fig. 1. Here γD0 is the charge
of a D0-brane, while γ1 þ γ2 is the charge of D2f and γ3 þ
γ4 the charge ofD0-D2f. A resolution of this discrepancy is
that Closset and Del Zotto [15] studied stable quiver
representations, while our results indicate that U includes
contributions from threshold states such as D2-D0. These
additional states can be expected correspond to Kaluza-
Klein modes of an M2-brane wrapping the fiber P1 [27],
and can also be seen by studying the Z4 symmetry of U
inherited from the BPS quiver [11]. Pure D0 states
are also expected from previous works, e.g., [7,16,28].
However, since networks only compute the unrefined
index ΩðnγD0Þ ¼ −4, we adopted the motivic refinement
ΩðnγD0; yÞ ¼ y−1ð1þ y2Þ2 from the recent work [7]. (The
counting of D0 branes of [7], which agrees with expo-
nential networks in the unrefined limit, differs from the
physical counting of [28]. The relation between the two has
been discussed in [7].)
Comparing with [16] we find direct agreement for the

BPS spectrum at a fiber-base symmetric point, recovering
and extending their results in the limit y → −1. At generic
y, our results agree with predictions from the Coulomb
branch and attractor flow formulas of [29,30], computed
with [31]. By extension our results should also agree with
recent computations [32], confirming earlier predictions
of [33].
After this Letter appeared, we were informed that

Mozgovoy and Pioline [7] obtained an exact expression
for the generating function of unframed stacky invariants of
the BPS quiver associated to the model we study. This,
together with related conjectures on attractor invariants,
would provide an alternative derivation of (2).
Interesting applications include a relation to the 5D

superconformal index [34], as well as comparing with
computations of Vafa-Witten invariants with different
techniques [35–37].
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