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Experiments measuring the Newtonian gravitational constant G can offer uniquely sensitive probes of
the test of the gravitational inverse-square law. An analysis of the non-Newtonian effect in two independent
experiments measuring G is presented, which permits a test of the 1=r2 law at the centimeter range. This
work establishes the strongest bound on the magnitude α of Yukawa-type deviations from Newtonian
gravity in the range of 5–500 mm and improves the previous bounds by up to a factor of 7 at the length
range of 60–100 mm.
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General relativity and the standard model provide an
impressive description of four fundamental forces in nature.
As the attempts to quantize gravity have been plagued with
difficulties, these two theories appear to be essentially
incompatible. For the purpose of unifying gravity with the
rest of standard model physics, theoretical physicists have
proposed many new quantum theories of gravity [1–8].
However, these speculations predict a deviation of the
gravitational inverse-square law (ISL). Any experimental
test of ISL therefore has the potential to offer insight about
the new physics. The standard parameterization of non-
Newtonian physics is usually described by the Yukawa
potential, which can be written as

VðrÞ ¼ −GN
m1m2

r
ð1þ αe−r=λÞ; ð1Þ

where r is the separation between two masses; GN is the
Newtonian gravitational constant independent of r; and α
and λ are the strength and length scale, respectively, of any
new interaction. Up to now, numerous experiments have
been performed searching for ISL deviations [9–31]. In a
short range (λ ≤ 1 cm), inspired by the predictions of many
new non-Newtonian theories, many groups performed
experiments and the constraints for α − λ have been
substantially improved [9–24]. For larger ranges
(λ ≥ 10 m), the constraints on α are dependent on the
geophysical and astronomical data, which may be
improved significantly in the next few years by using
the lunar-laser–ranging (LLR) technology [25–27].
However, for a range of λ ¼ 0.01–10 m, the current
constraints on α have remained essentially unchanged
[28–32] since the publication of Ref. [30]. To improve

the sensitivity of α down to 10−5, Boynton et al. have
proposed their experimental design, but they have not yet
reported their result [31]. Therefore, the current situations
motivate us to conduct further analysis of ISL deviation at
the centimeter range.
Among all the experimental methods, one interesting

option for testing ISL is offered by experiments measuring
the Newtonian gravitational constant G [28,33]. The basic
principle is that the results of measuring G in various
benchtop experiments may have a distance dependence due
to non-Newtonian gravity. In particular, for the form of the
Yukawa potential in Eq. (1), G can be written as

GðrÞ ¼ GN ½1þ αð1þ r=λÞe−r=λ�; ð2Þ

whereGðrÞ is the value obtained from the experiment. That
is to say, one can obtain the information about ISL
deviation by comparing the value of GðrÞ with GN .
However, GN is still the poorest known among all funda-
mental physical constants. To weaken the dependence on
the GN value, it is more appropriate to compare the values
of GðrÞ obtained from two different mass separations. For
example, in Ref. [28], Long conducted an experiment to
test ISL in this way.
The experiments measuring G at Huazhong University

of Science and Technology (HUST) have obtained the
smallest uncertainties by using two independent methods
[34]. Because the distances between masses in these two
experiments are different, the discrepancy between the
obtained values of G may exist in the presence of the
Yukawa effect. Based on this prediction, we present a direct
analysis of the Yukawa effect in these two experiments and
obtain a new test result of ISL at the centimeter range.
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The two methods in Ref. [34] are the time-of-swing
(TOS) method and the angular acceleration feedback
(AAF) method, respectively. As the principles of these
methods are different, we will analyze the Yukawa effect
separately. The TOS method is based on detecting the
change of the angular oscillation frequencies for the source
masses at two configurations (“near” position and “far”
position). The basic design and the operation of this method
are described in Ref. [34]. In this method, an Al-coated
block pendulum is suspended by a thin fused silica fiber
and two stainless-steel spheres are used as the source
masses. The “near” and “far” positions are switched by a
turntable. Considering the Yukawa potential from
interaction between the pendulum and the source masses,
the equation of the pendulum motion can be expressed
as [35]

Iθ̈ þ b_θ þ kθ ¼ τNgðθÞ þ τYgðθÞ; ð3Þ

where I is the moment of inertia of the pendulum; k is the
torsional spring constant of the fiber; b is the damping
coefficient; θ is the torsion angle; and τNgðθÞ and τYgðθÞ are
the Newtonian torque and the Yukawa torque, respectively.
The Yukawa torque (similarly the Newtonian torque) may
be expanded as

τYgðθÞ ¼ −αK1Ygθ − αK3Ygθ
3 þ oðθ5Þ; ð4Þ

where K1Yg ¼ f½∂2VYgðθÞ�=ð∂θ2Þg and K3Yg ¼
1
6
f½∂4VYgðθÞ�=ð∂θ4Þg are evaluated at θ ¼ 0 with VYg ¼

−GN ½ðm1m2Þ=r�e−r=λ being the Yukawa potential energy
between the pendulum and the source masses. K3Yg and
higher terms represent the nonlinearity effect of the Yukawa
gravity. If the nonlinearity effect is neglected, we may treat
K1Yg as the effective Yukawa gravitational torsion constants
[35] and we can write K1Yg as GNCYg, where CYg is
determined by the mass distributions of the pendulum and
source masses. In the laboratory coordinate system
ðX; Y; ZÞ, CYg can be written as

CYg¼−m
∂2

∂θ2
Z

ρpe−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1−xÞ2þðY1−yÞ2þðZ1−zÞ2

p
=λdxdydzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1−xÞ2þðY1−yÞ2þðZ1− zÞ2
p

����
θ¼0

;

ð5Þ

wherem is the mass of source mass, ρp is the density of the
pendulum, ðX1; Y1; Z1Þ is the center of the sphere, and
ðx; y; zÞ is the coordinate of the point mass in the pendulum.
We can obtain the corresponding form of CNg for the
Newtonian torque by replacing the Yukawa term in Eq. (5)
with the Newtonian term [36]. Hence, the difference
between the frequency squared of small oscillations of
the pendulum at two configurations is

Δω2 ¼ Δkþ GNΔCNg þ GNαΔCYg

I
; ð6Þ

where Δk denotes the possible change of spring constant of
the fiber at the “near” and “far” positions, which is caused
by the anelasticity of the fiber [35], ΔCNg ¼ CNgn − CNgf

and ΔCYg ¼ CYgn − CYgf, where the subscripts n and f
represent the “near” and “far” source mass positions. Then,
G can be determined by

GTOS ¼
IΔω2 − Δk

ΔCNg
¼ GN

�
1þ α

ΔCYg

ΔCNg

�
; ð7Þ

whereGTOS is the value obtained from the TOS method and
is polluted by the possible Yukawa effect.
The main geometric parameters in the TOS method are

given in Ref. [34]. The coefficients ΔCYg and ΔCNg can be
calculated via an integral over the geometry of the pendulum
and the source masses. The corresponding uncertainties
δΔCYg (δΔCNg) are estimated by calculating the deviations
ofΔCYg (ΔCNg) caused by the geometricalmetrology errors.
After considering all the errors, the value of ΔCNg is
calculated to be 1.1884 kg2 · m−1 and the relative error
δΔCNg=ΔCNg is 12 parts per million (ppm). For the Yukawa
coefficient ΔCYg, we estimate the values with different λ.
The third column of Table I shows the uncertainties caused
by the main error sources with λ ¼ 0.05 m. The calculated
values of ΔCYg and δΔCYg are 0.9547 kg2 · m−1 and
1.0786 × 10−5 kg2 · m−1, respectively (see Supplemental
Material [37]). The results show that the ratios of δΔCYg

to ΔCYg are ≤ 0.58‰ with 0.001 ≤ λ ≤ 10 m, based on
which the Yukawa violation parameters are constrained.
Furthermore, we make an evaluation to the nonlinearity

effect of Yukawa gravity (K3Yg and higher terms). Using the
Krylov-Bogoliubov-Mitropolsky (KBM) method of non-
linear oscillations [38], we can obtain the approximate
solution of Eq. (3). Similar to the calculations of Eqs. (6)
and (7), the influence of the nonlinearity effect onGTOS can
be determined. The results show that the uncertainties due
to this effect are no more than 14 ppm, which can be also
combined to give the constraint on the Yukawa violation
parameter.
The basic design and the operation of AAF method are

described in Ref. [34]. In the AAF method, two turntables
are used to rotate the torsion pendulum coaxially and the
source masses individually. The twist angle of the fiber is
reduced to about zero by means of a high-gain feedback
control system. Then the G value can be obtained from the
angular acceleration of the pendulum. The motion equation
of the torsion pendulum in the rotating frame can be written
as [39]

Iθ̈ þ b_θ þ kθ ¼ ðτNg0 þ τYg0Þ sinðωstÞ − IζðtÞ; ð8Þ
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where I, k, b, and θ have the same expressions as in Eq. (3);
ζðtÞ is the angular acceleration of the inner turntable; ωs is
the signal frequency; and τYg0 and τNg0 are the Yukawa and
Newtonian gravitational torques due to the source masses,
respectively. Because the twist angle of the fiber is reduced
to about zero, the angular acceleration of the pendulum is
equal to the gravitational angular acceleration generated by
the source masses,

ðτNg0 þ τYg0Þ sinðωstÞ ¼ IζðtÞ; ð9Þ

where we may write τNg0 þ τYg0 as GNIðPNg þ αPYgÞ. By
extracting the amplitude of ζðtÞ at the signal frequency ωs,
the angular acceleration is obtained as

ζðωsÞ ¼ GNðPNg þ αPYgÞ; ð10Þ

Then, G can be determined by

GAAF ¼
ζðωsÞ
PNg

¼ GN

�
1þ α

PYg

PNg

�
; ð11Þ

where GAAF is the value obtained from the AAF method
and is polluted by the possible Yukawa effect. For the
calculations of PNg and PYg, we expand the Newtonian
gravitational torque in spherical multipole moments

PNg ¼ −
8π

I

X∞
l¼0

Xl

m¼0

1

2lþ 1
mql;mQl;m; ð12Þ

where ql;m and Ql;m are respectively the Newtonian multi-
pole moments of the pendulum and the Newtonian multi-
pole fields of the source masses

ql;m ¼
Z

ρpðrpÞYm�
l ðθp;ϕpÞrlpd3rp ð13Þ

and

Ql;m ¼
Z

ρðrsÞYm
l ðθs;ϕsÞ

1

rlþ1
s

d3rs; ð14Þ

where ρpðrpÞ and ρðrsÞ are determined by the mass
distributions of the torsion pendulum and the source
masses, respectively. For the Yukawa potential, we can
obtain the same expression by using Green’s function [40]

PYg ¼ −
8π

I

X∞
l¼0

Xl

m¼0

1

2lþ 1
mqYl;mQ

Y
l;m; ð15Þ

with

qYl;m ¼
Z

ρpðrpÞλlð2lþ1Þ!!il
�
rp
λ

�
Ym�
l ðθp;ϕpÞd3rp ð16Þ

TABLE I. Main error contributions of the Yukawa coefficient ΔCYg (with 1σ, λ ¼ 0.05 m).

Main error sources Measured values δΔCYgðkg2 · m−1Þ
Pendulum:

Mass 68.099 37 (22) g 3.3515 × 10−10

Length 91.005 75 (11) mm 1.7747 × 10−6

Width 11.086 88 (9) mm 9.2529 × 10−7

Height 30.668 46 (12) mm 4.6625 × 10−7

Coating layer:
Mass 4.22 (12) mg 1.9837 × 10−6

Ratio of side face layer thickness to end face 0.824 (100) 1.6645 × 10−6

Source masses:
Mass of sphere 2 778.1629 (6) g 3.6673 × 10−7

Mass of sphere 4 777.9647 (6) g 3.6946 × 10−7

Distance of GCs 157.193 92 (33) mm 9.4856 × 10−6

Relative positions:
Centric height of pendulum 46.699 (17) mm 3.6764 × 10−7

Centric height of sphere 2 46.700 (11) mm 8.8786 × 10−7

Centric height of sphere 4 46.712 (16) mm 1.4769 × 10−6

Position of fiber in X axis 19ð4Þ μm 1.0179 × 10−6

Position of fiber in Y axis 11ð4Þ μm 7.6469 × 10−8

Position of turntable in X axis 0� 12 μm 2.6965 × 10−6

Position of turntable in Y axis 0� 8 μm 3.0945 × 10−7

Total:
ΔCYg 0.9547 kg2 · m−1 1.0786 × 10−5
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being the Yukawa multipole moment of the pendulum, and

QY
l;m ¼

Z
ρðrsÞ

1

λlþ1ð2l − 1Þ!! kl
�
rs
λ

�
Ym
l ðθs;ϕsÞd3rs ð17Þ

being the Yukawa multipole moment of the source masses,
calculated in the lab frame [40]; ilðr=λÞ and klðr=λÞ are the
spherical modified Bessel functions. Therefore, the above
parameters (PNg and PYg) can be calculated by using
Eqs. (12) and (15).
The main geometric parameters in the AAF method can

be obtained from Ref. [34]. The calculation methods for
δPNg and δPYg are similar to those for δΔCNg and δΔCYg.
After considering all the errors, the value of PNg is
calculated to be 6926.41 kg · m−3 and the relative error
δΔCNg=ΔCNg is 11 ppm. We estimate the values of the
Yukawa coefficient PYg with different λ. The third column
of Table II shows the uncertainties caused by the main error
sources with λ ¼ 0.05 m. The calculated values of PYg and
δPYg are 1655.74 kg · m−3 and 3.1320 × 10−2 kg · m−3,
respectively (see Supplemental Material [37]). The ratios
of δPYg to PYg are ≤ 1.80‰with 0.001 ≤ λ ≤ 10 m, which
have been combined in the constraint on the Yukawa
violation.
For a better perspective of the Yukawa effect in these two

experiments, we plot the relative coefficients (ΔCYg=ΔCNg
and PYg=PNg), and the difference between them, as a

function of λ. As shown in Fig. 1, the difference between
these two coefficients increases rapidly while λ ranges from
0.004 m to 0.4 m and decreases rapidly if λ is in the 0.4 m to
1 m range, which can be interpreted as the distance effect.
The separation between the pendulum and the source mass
is about 130 mm in the TOS method and about 40 mm in
the AAF method. Therefore, the Yukawa strength in the

TABLE II. Main error contributions of the Yukawa coefficient PYg (with 1σ, λ ¼ 0.05 m).

Main error sources Measured values δPYgðkg · m−3Þ
Pendulum:

Mass 40.0379 (3) g 1.3642 × 10−6

Width 91.052 43 (29) mm 4.1550 × 10−4

Thickness 4.002 40 (8) mm 2.5269 × 10−4

Height 49.924 41 (24) mm 9.5018 × 10−5

Coating layer:
Mass 57.9 (4) mg 3.2922 × 10−5

Ratio of side face layer thickness to end face 0.75 (17) 3.3906 × 10−3

Source masses:
Mass of sphere 09 8541.4183 (52) g 2.5303 × 10−4

Mass of sphere 07 8543.5812 (53) g 2.5791 × 10−4

Mass of sphere 10 8540.5288 (52) g 2.5300 × 10−4

Mass of sphere 12 8541.5593 (52) g 2.5297 × 10−4

Horizontal distance of GCs 07-09 342.2874 (19) mm 1.9620 × 10−2

Horizontal distance of GCs 10-12 342.3074 (19) mm 1.9610 × 10−2

Vertical distance of GCs 09-12 139.7997 (15) mm 9.2870 × 10−3

Vertical distance of GCs 07-10 139.7822 (17) mm 1.0526 × 10−2

Relative positions:
Offset of two turntables 0� 56 μm 6.4853 × 10−4

Centric height of sphere 09 0� 31 μm 2.2558 × 10−4

Position of sphere in pendulum axis 0� 0.121 mm 1.4392 × 10−3

Total
PYg 1655.74 kg · m−3 3.1320 × 10−2

FIG. 1. The relative coefficients of the TOS method
(ΔCYg=ΔCNg, black and dot) and the AAF method (PYg=PNg,
red and square) and the difference of the relative coefficients
between these two methods (blue and triangle) for different
values of λ.
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TOS method is greater than that in AAF method, which
corresponds well with our calculation. Thus, we can obtain
information about ISL deviation through the comparison of
the values of G in the above methods.
Combining Eqs. (7) and (11), the difference between

these two methods can be written as

ΔG
GN

¼ GTOS − GAAF

GN
¼ α

�
ΔCYg

ΔCNg
−
PYg

PNg

�
: ð18Þ

In Ref. [34], the results of GTOS and GAAF are
6.674 184ð78ÞG0 and 6.674 484ð78ÞG0, respectively,
where G0 ¼ 10−11 m3 kg−1 s−2. Combining the sensitiv-
ities in previous experiments at the centimeter range
[19,28–30], we assume GN as 6.67 × 10−11 m3 kg−1 s−2

and make a conservative estimation to the constraint. Then,
the difference between two values of G is

ΔG
GN

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ ð2 × 0.78Þ2 þ ð2 × 0.78Þ2

p
× 10−15

GN

¼ 5.58 × 10−5; ð19Þ

where 3 × 10−15 m3 kg−1 s−2 is the fixed difference
between these two methods, 0.78 × 10−15 m3 kg−1 s−2 is
the uncertainty in each method, and we calculate the
constraint at the 2σ level. Thus, the constraint on α can
be obtained through Eq. (18), as shown in Fig. 2. The
curves labeled HUST and Maryland are taken directly from
Refs. [19] and [30]. The original results in Ref. [29] are
determined at the 1σ level. For a better comparison, we
convert these into the data at 2σ level. Our work sets the
strongest bound on α in the range of 5–500 mm. At the

length range 60–100 mm, we improve the previous bounds
by up to a factor of 7.
The current constraint on α can be further improved once

the discovery of new error sources can reduce the difference
of G in Ref. [34]. It is concluded that the continuous
improvement of the accuracy of measuring G will contrib-
ute to the test of ISL. In summary, the increase in sensitivity
in the constraint on α has the potential to motivate the
development of the area of searching new physics and can
draw attention to the problem of the substantial discrep-
ancies between the results of G values.
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