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We apply a recently developed thermal form factor expansion method to evaluate the real-time
longitudinal spin-spin correlation functions of the spin-1

2
XXZ chain in the antiferromagnetically ordered

regime at zero temperature. An analytical result incorporating all types of excitations in the model is
obtained, without any approximations. This allows for the accurate calculation of the real-time correlations
in this strongly interacting quantum system for arbitrary distances and times.
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Dynamical correlation functions relate experimental
observables like structure factors and transport coefficients
to the microscopic details of quantum many-body systems.
They are notoriously hard to calculate as they simulta-
neously probe all timescales and length scales. A particular
class of many-body systems are integrable one-dimensional
(1D) systems with short-range interactions. Because of the
existence of a large number of local conserved quantities,
they exhibit a peculiar phenomenology: they do not relax to
a thermal equilibrium and can possess spin and charge
currents which do not fully decay in time. These unusual
properties are not only of fundamental interest but can be
observed in experiments on systems which are almost
integrable. This includes realizations of the 1D Bose gas in
which quench dynamics as well as dynamical correlations
in equilibrium have been studied [1–5]. The Heisenberg
chain can be realized using cold atomic gases in optical
lattices giving direct access to the spin dynamics in the
spatiotemporal domain and to spin transport phenomena
[6–9]. Good realizations of the Heisenberg chain also occur
as substructures in solid state systems [10–12]. Here
they provide access to response functions in the momen-
tum-frequency domain as, for example, the dynamical
spin-structure factor (DSF) [13]. They also allow for the
direct measurement of transport coefficients [14–17].
Recent attempts to devise a general description of 1D
close-to-integrable systems resulted in interesting pheno-
menological theories like the nonlinear Luttinger liquid
[18–22] or generalized hydrodynamics [23–27]. It is highly
desirable to underpin such new phenomenologies with
microscopic calculations. We note, moreover, that dynami-
cal correlation functions in cold atomic gases can now be
tested at timescales which are beyond the reach of modern
numerical techniques. An exact calculation of dynamical
correlation functions of 1D integrable models is therefore
important for our understanding of state-of-the-art

experiments. At the same time, it provides benchmarks
for phenomenological theories and numerical methods.
Exact results on correlation functions are rather rare,

even in low dimensions, and are mostly related to models
belonging to the free fermion (FF) category [28]. For the
Ising model in the scaling limit, a remarkable link to the
Painlevé equations was established [29]. Dynamical corre-
lations were studied for the XY model [30] and interesting
phenomena of thermalization were addressed. An impor-
tant next step was to go beyond FF and deal exactly with
interacting systems. The vertex operator approach (VOA)
opened up a new avenue to do so based on form factor
expansions [31]. The evaluation of the two- and four-
spinon contributions to the transverse DSF of the massive
XXZ chain [32–34] and of the four-spinon contribution in
the XXX limit [35] were important outcomes of this
method. The complexity of the resultant multiple integrals
has, however, hindered any further analysis. A hidden FF
structure in the XXZ model was unveiled in Refs. [36,37],
and its remarkable outcome, the fermionic basis, yields
exact correlation functions up to considerably large dis-
tances [38,39]. The application of this method, however,
has been limited to the static case so far. The quantum
inverse scattering method (QISM) provides a complemen-
tary approach [40,41], based on a determinant formula
for the scalar product of on-shell and off-shell Bethe
vectors [42]. Under restrictions on the possible excitations,
it successfully reproduces the asymptotic correlation
functions [43,44] predicted by conformal field theory
(CFT) [45]. Yet, in order to recover the DSF for the full
range of frequencies and momenta, bound states must
be taken into account, which are neglected in the CFT
limit [46].
In this Letter we employ a recently developed [47,48]

form factor expansion for real-time correlation functions in
equilibrium and obtain a simple, explicit, closed-form
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expression including all orders of excitations. We consider
the XXZ chain with Hamiltonian

H ¼ J
XL
j¼1

fσxj−1σxj þ σyj−1σ
y
j þ Δσzj−1σ

z
jg −

h
2

XL
j¼1

σzj ð1Þ

for length L → ∞. Here σαj are Pauli matrices, and J > 0 is
the exchange constant. We restrict ourselves to the anti-
ferromagnetically ordered regime, characterized by values
Δ ¼ coshðγÞ > 1 of the anisotropy and by magnetic fields
in the range 0 < h < 4J sinhðγÞϑ24ð0jqÞ. Here we have set
q ¼ e−γ, and the ϑa denote elliptic theta functions [49]. The
special functions appearing here and below are summarized
in the Supplemental Material [50].
In the antiferromagnetically ordered regime, the one-

body properties of the elementary excitations are charac-
terized by

pðθÞ ¼ π

2
þ θ − i ln

�
ϑ4ðθ þ iγ=2jq2Þ
ϑ4ðθ − iγ=2jq2Þ

�
; ð2Þ

εðθÞ ¼ h
2
− 2J sinhðγÞϑ3ð0jqÞϑ4ð0jqÞ

ϑ3ðθjqÞ
ϑ4ðθjqÞ

; ð3Þ

where pðθÞ is the dressed momentum, εðθÞ the dressed
energy and θ the rapidity of the quasiparticle. The inter-
action between excitations is described by the soliton
scattering matrix,

SðθÞ ¼ eiðπ2þθÞ Γq4ð1þ iθ
2γÞΓq4ð12 − iθ

2γÞ
Γq4ð1 − iθ

2γÞΓq4ð12 þ iθ
2γÞ

; ð4Þ

where Γq denotes the q-gamma function. Because of the
Yang-Baxter integrability of the model, any multiparticle
scattering can be reduced to multiple two-body scattering
events. One then naturally expects that correlation func-
tions can be described solely by (2)–(4). We will show that
an all-order expansion of the longitudinal dynamical
correlation functions can indeed be described by these
physical quantities with supplemental special functions of
the q-gamma function family.
Our framework combines the QISM and the quantum

transfer matrix (QTM) method [54–56]. The latter has been
devised for the investigation of finite temperature bulk
quantities and static correlation functions [57,58]. It was
generalized in Ref. [47], inspired by Ref. [59], to obtain
form factor expansions of dynamical correlations at finite
temperatures. We thus call it the thermal form factor
expansion method. It has been successfully applied to
the analysis of a FF model, the XX model [47,60].
Although we are interested in the dynamical correlations

in the ground state, we start from finite temperatures and
consider the limits h; T → 0. This may look redundant at
first, but there are advantages of this approach. It is well

known that the diagonalization of the Hamiltonian leads to
string excitations of various lengths [61–63]. These are
solutions of the Bethe ansatz equations which form regular
patterns (“strings”) in the complex plane for L → ∞. Some
quantities which characterize the correlations become sin-
gular if they are evaluated at the ideal string positions, e.g.,
Sð�iγÞ. The variety of string excitations and singularities
leads to serious technical difficulties. The VOA provides an
alternative description, free from string excitations, but its
answer suffers from the high intricacy of multiple integrals.
On the other hand, the QTMmethod, based on a mapping of
the 1D quantum system to a two-dimensional classical
system, does not directly deal with the Hamiltonian but
rather with a transfer matrix acting in an auxiliary space. The
possible excitations are thus different from those in the
Hamiltonian basis. A previous study, using the higher level
Bethe ansatz equations, concludes that only simple excita-
tions are possible for L → ∞ and h; T → 0 with the limit
T → 0 taken first [64]. Their distribution in the complex
rapidity plane can be interpreted as particle-hole excitations.
A rapidity yj of a particle excitation is situated on a curve
located above ½−π=2; π=2� such that Imyj ∼ ðγ=2Þ, while a
hole rapidity xj is located below and Imxj ∼ −ðγ=2Þ. These
excitations are not 2 strings since ℜðyj − xlÞ is generically
nonzero and ℑðyj − xlÞ does not approach γ, even for
L → ∞. Thus, the QTM excitations do not produce the
aforementioned singularities.
For the longitudinal correlation functions

hσz1ðtÞσzmþ1ð0Þi ¼ lim
T→0

trfσz1ðtÞσzmþ1ð0Þ expð−H=TÞg=Z;

where Z is the partition function, the relevant excited states
consist of an equal number of particles and holes. Thus, the
resultant form factor expansion involves a sum over l, the
number of particles and holes, and a sum over their possible
locations. The higher level Bethe ansatz analysis shows
that they obey a one-body equation for T → 0. The sum
over the possible locations is then replaced by simple
integrations [50],

Gðm; tÞ ≔ hσz1ðtÞσzmþ1ð0Þi − ð−1Þm
�
ϑ1

0ð0jqÞ
ϑ2ð0jqÞ

�
2

¼
X
l≥1
k¼0;1

ð−1Þkm
ðl!Þ2

Z
C−

dlx
ð2πÞl

×
Z
Cþ

dly
ð2πÞl e

−i
P

l
j¼1

½mpðxjÞ−εðxjÞt�

× ei
P

l
j¼1

½mpðyjÞ−εðyjÞt�Azzðfxigli¼1; fyjglj¼1jkÞ
¼

X
l≥1

Ilðm; tÞ: ð5Þ

The integer k ∈ f0; 1g labels the degenerate ground states
and we have subtracted the contribution of the staggered
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magnetization. There is some freedom to choose the
contours C�: the simplest choice is to take straight seg-
ments of length π whose imaginary parts are �γ=2þ δ
where δ is positive. We will discuss the optimal choice of
the contours for a numerical evaluation later.
The main purpose of the Letter is to present the explicit

form of Azz. It consists of determinants of two l × l

matrices M and cM and a scalar part. For a compact
presentation, we will use the shorthand notations

Pj ¼ e2iyj ; Hj ¼ e2ixj ; 1 ≤ j ≤ l;

and introduce the basic hypergeometric series [49,65],

Φ1ðPjÞ ¼ 2lΦ2l−1

0
B@ q−2; fq2 Pj

Pi
gi≠j; fPj

Hi
gli¼1

fPj

Pi
gi≠j; fq2 Pj

Hi
gli¼1

;q4; q4

1
CA;

Φ2ðPj; PiÞ ¼ 2lΦ2l−1

0
B@q6; fq6 Pi

Pr
gr≠i;j; q2 Pi

Pj
; fq4 Pi

Hr
glr¼1

fq4 Pi
Pr
gr≠i;j; q8 Pi

Pj
; fq6 Pi

Hr
glr¼1

; q4; q4

1
CA: ð6Þ

They originate from sums of residues of the soliton S
matrix at a particular series of poles. We further introduce

rlðPj;PiÞ

¼
q2ð1−q2Þ2 Pi

Pj

ð1− Pi
Pj
Þð1−q4 Pi

Pj
Þ
Yl
r¼1

1− Pi
Hr

1−q2 Pi
Hr

Yl
r≠i;j

1−q2 Pi
Pr

1− Pi
Pr

ð7Þ

and conveniently write Ψ2ðPj; PiÞ ¼ rlðPj; PiÞΦ2ðPj; PiÞ.
The matrix element Mij is then given by

Mij ¼ δijDij þ ð1 − δijÞEij ð8Þ

with

Dij ¼ Φ̄1ðPjÞ −Φ1ðPjÞð−1Þk
Yl
r¼1

Sðyj − yrÞ
Sðyj − xrÞ

;

Eij ¼ −Ψ̄2ðPj; PiÞ þ Ψ2ðPj; PiÞð−1Þk
Yl
r¼1

Sðyi − yrÞ
Sðyi − xrÞ

: ð9Þ

Here we define for any function gðP1;…; H1; � � �Þ,

ḡðP1;…; H1; � � �Þ ≔ gðP−1
1 ;…; H−1

1 ; � � �Þ:

The matrix element cMij is obtained fromMij by replacing
all yr ↔ −xr. Then Azz is explicitly represented as

Azz ¼ detðMÞ detðcMÞ
�
μlϑ01ð0jqÞ sinP

ϑ1ðΣjqÞ
�

2

×

Q
1≤i<j≤lψDðxi − xjÞψDðyi − yjÞQ

i;jψDðxi − yjÞ
: ð10Þ

We set P ¼ πk
2
þP

lf½pðylÞ − pðxlÞ�=2g, Σ ¼ −ðπk=2ÞþP
lðyl − xlÞ=2,

ψðθÞ ¼ Γq4

�
1

2
−
iθ
2γ

�
Γq4

�
1 −

iθ
2γ

�G2
q4ð1 − iθ

2γÞ
G2

q4ð12 − iθ
2γÞ

; ð11Þ

and ψDðθÞ ¼ ϑ21ðθjq2ÞψðθÞψð−θÞ. The symbol Gq stands
for the q-Barnes’ G function. The overall constant μ is
given by ϑ01ð0jq2Þψð0Þ.
We stress again that the compact formula (10) is valid for

arbitrary l and is free from any approximations. A similar
all order formula has been derived for a quantum field
theoretical model in Ref. [66] but so far not for lattice
models. As an analytic benchmark, we can show that
Eq. (10) for l ¼ 1 successfully reproduces [48] the result
of the VOA for two spinons [67]. Generally, there is a
conjecture [68] about the equivalence of the contributions
from 2l spinons and from l particle-hole excitations,
which will be analyzed in detail in a separate publication.
Our main result (10) is very efficient for the numerical

evaluation of the real-time dynamics. It allows us to obtain
Gðm; tÞ for arbitrary distances and times, thus going far
beyond of what can be achieved by purely numerical
algorithms. In Ref. [68] the static correlation functions
were investigated within the same framework, but using a
Fredholm determinant representation for Azz. This inevi-
tably included a numerical discretization approximation
[69]. Although the results seem highly precise, it is
important to check them independently as the actual
evaluation involves numerical integrations. In the static
case, we can establish results with high precision by a
relatively small number of sampling points np for 2l
multiple integrations, see Table I. Once the system starts to
evolve in time, however, the numerical difficulty rapidly
increases and it becomes necessary to replace the numerical
estimation of the Fredholm determinants by an analytic
one. To assess the accuracy of a truncated thermal form
factor expansion in the dynamic case, we compare results
based on the l ≤ 3 contributions with data obtained by a
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time-dependent density matrix renormalization group algo-
rithm (tDMRG) [71] in Fig. 1. The plots clearly indicate the
importance of including not just the l ¼ 1 but also at least
the l ¼ 2 contribution to obtain results which agree with
the tDMRG data on this scale. Based on this comparison,
we restrict the following numerics to excitations up to
l ¼ 2 and leave a more detailed discussion of the con-
tributions of higher order excitations for a future study.
There are three asymptotic regimes, characterized by

two critical velocities vc1 < vc2 [72], or critical times
tca ¼ m=vca (a ¼ 1, 2). We talk of the space regime if
t < tc2 , the precursor regime if tc2 < t < tc1 , and the time
regime if t > tc1 . The qualitative differences between the
regimes can be better seen for largerm. This is immediately
handled by the form factor expansion approach since m
enters as a mere parameter. The correlation functions stay
largely flat in the space regime, see Fig. 2. Towards the
edge of the regime, there occurs an enhancement. After a
transient behavior in the precursor regime, the correlation
exhibits an oscillatory behavior.
Let us now briefly discuss some technical issues in

evaluating Eq. (5). In the time regime, the phase factors can
lead to serious numerical instabilities. The ordinary strategy
to overcome this problem is to deform the integration
contours, making them locally identical to the steepest
descendent paths (SDP). This, however, does not work
naively in the present case, since the SDPs for particles and

holes intersect, which leads to kinematic poles due to
ψDðyj − xiÞ in the denominator of Eq. (10). To solve this
problem, we take advantage of the QTM formulation: we
return to finite temperatures and rewrite the formula in such
a way that the contribution from the intersecting part is
multiplied by the exponentially small factor e−1=T. Thus, in
the zero temperature limit, one can neglect contributions
from the kinematic poles. As a result, the two contours
become disentangled and can be treated separately.
Thanks to this trick, stable calculations at long times

become possible, see Fig. 3(a). As a further test in the time
regime, we compare in Fig. 3(b) our results to those
obtained from the two-spinon term in a saddle point
approximation [72], which is expected to be valid asymp-
totically in time. The predicted asymptotic behavior is
given by Gðm; tÞ ∼ eiωt=t for m even with ω ∼ J.
Finally, as a first application of Eq. (10), we evaluate the

longitudinal DSF Szzðq;ωÞ, which is directly measurable in
neutron scattering experiments. In contrast to Sþ− [32], the
evaluation of Szz in the massive regime is technically
difficult and the two-spinon result within the VOA has
only recently been reported [73]. On the other hand,
Eqs. (5) and (10) allow us to obtain the dynamical correla-
tions for large m and t, and we can readily perform a
numerical Fourier transform. We subtract the contribution
of the staggered magnetization and include both l ¼ 1 and
l ¼ 2 excitations. The case Δ ¼ 2 is plotted in Fig. 4
showing that the lineshapes as well as the weights for small
q are well resolved. We have checked that the sum rules
[74] are satisfied with good accuracy. The l ¼ 1 excitations
are constrained to the spinon energy band with lower and
upper boundaries [32] ωlow ∼ 9.06J, ωup ∼ 11.76Jðq ¼
π=2Þ and ωlow ∼ 1.56J, ωup ∼ 16.56Jðq ¼ πÞ, respectively.
Higher l excitations lead to a high-frequency tail that
becomes more prominent for Δ → 1 [75]. For larger Δ, the
peaks will shift to largerω and have smaller amplitudes. For
T ≪ 1, the line shape only weakly depends on the magnetic
field if it is smaller than the lower critical field, in sharp
contrast to the massless case (jΔj < 1).

TABLE I. Contributions to the static correlation Gð2; 0Þ from
small l excitations for Δ ¼ 1.1, 1.3. The last row shows the ratios
of the sums of the first three terms in Eq. (5) and the exact values
[70], demonstrating that keeping only excitations with l ≤ 3
already leads to highly accurate results.

Δ 1.1 1.3

I1ð2; 0Þ 0.2297348 0.2357141
I2ð2; 0Þ 3.913377 × 10−2 6.978269 × 10−3

I3ð2; 0Þ 1.614912 × 10−3 2.120959 × 10−5

ðI1 þ I2 þ I3Þ=exact 0.99951 0.999998

(a)

(b)

FIG. 1. The real part G0ðm; tÞ≡ℜGðm; tÞ for Δ ¼ 1.2 with
(a) m ¼ 2, and (b) m ¼ 4: Contributions of a thermal form factor
expansion (symbols) are compared to tDMRG data (lines).

FIG. 2. The real part G0ðm; tÞ for different m and Δ ¼ 1.2. The
dashed lines indicate the critical times Jtc1 and Jtc2 . For Δ → 1,
tc1 → tc2 so there exists only an extremely narrow precursor
regime (not visible on this scale) for Δ ¼ 1.2.

PHYSICAL REVIEW LETTERS 126, 210602 (2021)

210602-4



To summarize, we have presented a closed-form expres-
sion, incorporating all orders of particle-hole excitations,
for the dynamical longitudinal correlation functions of the
massive XXZ chain. This result opens up a new avenue to
understand the dynamical response of strongly interacting
quantum systems and is directly relevant for recent experi-
ments on cold atomic gases. It does also provide a bench-
mark for the development of numerical algorithms
including, for example, recent attempts to learn quantum
dynamics using neural networks [76]. We note, further-
more, that the isotropic Heisenberg model, Δ ¼ 1 in
Eq. (1), is immediately obtained by rescaling all rapidities
xj, yj by γxj, γyj and by taking γ → 0. As all Il contribute
with equal weight to the long-time asymptotic behavior, the
explicit formula (10) will be an indispensable tool to study
this limit in detail. Extensions to finite temperatures are
promising and explicit expressions are already available
from thermal form factor expansions if T=J ≪ 1 [48].
Further progress in dealing with the kinematic poles along
the lines of Ref. [60] is expected and will make it possible

to access higher temperatures. A detailed analysis of the
dynamical structure factor will also be an important subject
of future studies.

We thank Andreas Klümper for his continuous encour-
agement. C. B., F. G., and J. Sirker acknowledge financial
support by the German Research Council (DFG) in the
framework of the research unit FOR 2316. K. K. K. is
supported by CNRS Grant No. PICS07877. J. Sirker
acknowledges support by the Natural Sciences and
Engineering Research Council (NSERC, Canada). J.
Suzuki is supported by JSPS KAKENHI Grants
No. 18K03452, No. 18H01141.

[1] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I.
Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch,
Tonks-Girardeau gas of ultracold atoms in an optical lattice,
Nature (London) 429, 277 (2004).

[2] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J.
Schmiedmayer, Non-equilibrium coherence dynamics in
one-dimensional Bose gases, Nature (London) 449, 324
(2007).

[3] T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum
Newton’s cradle, Nature (London) 440, 900 (2006).

[4] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Relaxation and prethermalization in an
isolated quantum system, Science 337, 1318 (2012).

[5] V. Guarrera, D. Muth, R. Labouvie, A. Vogler, G. Barontini,
M. Fleischhauer, and H. Ott, Spatiotemporal fermionization
of strongly interacting one-dimensional bosons, Phys. Rev.
A 86, 021601(R) (2012).

[6] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P.
Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi,
C. Gross, I. Bloch, and S. Kuhr, Quantum dynamics of a
single, mobile spin impurity, Nat. Phys. 9, 235 (2013).

[7] T. Fukuhara, P. Schauss, M. Endres, S. Hild, M. Cheneau, I.
Bloch, and C. Gross, Microscopic observation of magnon
bound states and their dynamics, Nature (London) 502, 76
(2013).

[8] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E.
Demler, I. Bloch, and C. Gross, Far-From-Equilibrium Spin
Transport in Heisenberg QuantumMagnets, Phys. Rev. Lett.
113, 147205 (2014).

[9] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W.W. Ho, E.
Demler, and W. Ketterle, Spin transport in a tunable
Heisenberg model realized with ultracold atoms, Nature
(London) 588, 403 (2020).

[10] N. Motoyama, H. Eisaki, and S. Uchida, Magnetic Suscep-
tibility of Ideal Spin 1=2 Heisenberg Antiferromagnetic
Chain Systems, Sr2CuO3 and SrCuO2, Phys. Rev. Lett. 76,
3212 (1996).

[11] M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida,
Field-induced staggered magnetization near impurities in
the s ¼ 1=2 one-dimensional Heisenberg antiferromagnet
Sr2CuO3, Phys. Rev. B 55, 14129 (1997).

[12] K. R. Thurber, A. W. Hunt, T. Imai, and F. C. Chou, 17O
NMR study of q ¼ 0 Spin Excitations in a Nearly Ideal

FIG. 4. Szzðq;ωÞ with Δ ¼ 2 for various wave numbers q. Note
that subsequent curves are shifted vertically by 0.5. Inset: The
l ¼ 1 contribution is nonzero only within the two-spinon
continuum ½ωlow;ωup� while l ¼ 2 excitations contribute also
for ω > ωup.

FIG. 3. (a) Gð1; tÞ at long times for Δ ¼ 1.2. (b) Comparison of
G0ð2; tÞ obtained by using the form factor expansion (symbols)
with the two-spinon asymptotics (line) for Δ ¼ 1.4.

PHYSICAL REVIEW LETTERS 126, 210602 (2021)

210602-5

https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature06149
https://doi.org/10.1038/nature06149
https://doi.org/10.1038/nature04693
https://doi.org/10.1126/science.1224953
https://doi.org/10.1103/PhysRevA.86.021601
https://doi.org/10.1103/PhysRevA.86.021601
https://doi.org/10.1038/nphys2561
https://doi.org/10.1038/nature12541
https://doi.org/10.1038/nature12541
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevLett.76.3212
https://doi.org/10.1103/PhysRevLett.76.3212
https://doi.org/10.1103/PhysRevB.55.14129


S ¼ 1=2 1D Heisenberg Antiferromagnet, Sr2CuO3, up to
800 K, Phys. Rev. Lett. 87, 247202 (2001).

[13] M. Mourigal, M. Enderle, A. Klöpperpieper, J.-S. Caux, A.
Stunault, and H. M. Ronnow, Fractional spinon excitations
in the quantum Heisenberg antiferromagnetic chain, Nat.
Phys. 9, 435 (2013).

[14] A. V. Sologubenko, K. Giannó, H. R. Ott, A. Vietkine, and
A. Revcolevschi, Heat transport by lattice and spin ex-
citations in the spin-chain compounds SrCuO2 and
Sr2CuO3, Phys. Rev. B 64, 054412 (2001).

[15] A. V. Sologubenko, K. Berggold, T. Lorenz, A. Rosch, E.
Shimshoni, M. D. Phillips, and M.M. Turnbull, Magneto-
thermal Transport in the Spin-1

2
Chains of Copper Pyrazine

Dinitrate, Phys. Rev. Lett. 98, 107201 (2007).
[16] N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G.

Roth, G. Behr, B. Büchner, and C. Hess, Ballistic heat
transport of quantum spin excitations as seen in SrCuO2,
Phys. Rev. B 81, 020405(R) (2010).

[17] Y. Kohama, A. V. Sologubenko, N. R. Dilley, V. S. Zapf, M.
Jaime, J. A. Mydosh, A. Paduan-Filho, K. A. Al-Hassanieh,
P. Sengupta, S. Gangadharaiah, A. L. Chernyshev, and C. D.
Batista, Thermal Transport and Strong Mass Renormaliza-
tion in NiCl2-4SCðNH2Þ2, Phys. Rev. Lett. 106, 037203
(2011).

[18] A. Imambekov and L. I. Glazman, Universal theory of
nonlinear Luttinger liquids, Science 323, 228 (2009).

[19] A. Imambekov, T. L. Schmidt, and L. I. Glazman, One-
dimensional quantum liquids: Beyond the Luttinger liquid
paradigm, Rev. Mod. Phys. 84, 1253 (2012).

[20] R. G. Pereira, S. R. White, and I. Affleck, Exact Edge
Singularities and Dynamical Correlations in Spin-1=2
Chains, Phys. Rev. Lett. 100, 027206 (2008).

[21] R. G. Pereira, Long time correlations of nonlinear Luttinger
liquids, Int. J. Mod. Phys. B 26, 1244008 (2012).

[22] J. Sirker, The Luttinger liquid and integrable models, Int. J.
Mod. Phys. B 26, 1244009 (2012).

[23] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura,
Emergent Hydrodynamics in Integrable Quantum Systems
Out of Equilibrium, Phys. Rev. X 6, 041065 (2016).

[24] A. Urichuk, Y. Oez, A. Klümper, and J. Sirker, The spin
drude weight of the XXZ chain and generalized hydro-
dynamics, SciPost Phys. 6, 005 (2019).

[25] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E.
Moore, Bethe-Boltzmann hydrodynamics and spin transport
in the XXZ chain, Phys. Rev. B 97, 045407 (2018).

[26] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti,
Transport in Out-of-Equilibrium XXZ Chains: Exact Pro-
files of Charges and Currents, Phys. Rev. Lett. 117, 207201
(2016).

[27] J. D. Nardis, D. Bernard, and B. Doyon, Diffusion in
generalized hydrodynamics and quasiparticle scattering,
SciPost Phys. 6, 49 (2019).

[28] E. H. Lieb, T. Schultz, and D. Mattis, Two soluble models of
an antiferromagnetic chain, Ann. Phys. (N.Y.) 16, 407
(1961).

[29] T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-
spin correlation functions for 2-dimensional Ising model—
exact theory in scaling region, Phys. Rev. B 13, 316 (1976).

[30] T. Niemeijer, Some exact calculations on a chain of spins 1
2
,

Physica 36, 377 (1967).

[31] M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki, Corre-
lation functions of the XXZ model for Δ < −1, Phys. Lett.
A 168, 256 (1992).

[32] A. H. Bougourzi, M. Karbach, and G. Müller, Exact two-
spinon dynamic structure factor of the one-dimensional s ¼
1=2 Heisenberg-Ising antiferromagnet, Phys. Rev. B 57,
11429 (1998).

[33] A. Abada, A. H. Bougourzi, and B. Si-Lakhal, Exact four-
spinon dynamical correlation function of the Heisenberg
model, Nucl. Phys. B497, 733 (1997).

[34] J.-S. Caux, J. Mossel, and I. P. Castillo, The two-spinon
transverse structure factor of the gapped Heisenberg anti-
ferromagnetic chain, J. Stat. Mech. (2008) P08006.

[35] J.-S. Caux and R. Hagemans, The 4-spinon dynamical
structure factor of the Heisenberg chain, J. Stat. Mech.
(2006) P12013.

[36] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama,
Hidden Grassmann structure in the XXZ model II: Creation
operators, Commun. Math. Phys. 286, 875 (2009).

[37] M. Jimbo, T. Miwa, and F. Smirnov, Hidden Grassmann
structure in the XXZ model III: Introducing Matsubara
direction, J. Phys. A 42, 304018 (2009).

[38] J. Sato, B. Aufgebauer, H. Boos, F. Göhmann, A. Klümper,
M. Takahashi, and C. Trippe, Computation of Static Heisen-
berg-Chain Correlators: Control Over Length and Temper-
ature Dependence, Phys. Rev. Lett. 106, 257201 (2011).

[39] T. Miwa and F. Smirnov, New exact results on density
matrix for XXX spin chain, Lett. Math. Phys. 109, 675
(2019).

[40] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quan-
tum Inverse Scattering Method and Correlation Functions
(Cambridge University Press, Cambridge, England, 1993).

[41] N. Kitanine, J. M. Maillet, and V. Terras, Form factors of the
XXZ Heisenberg spin-1

2
finite chain, Nucl. Phys. B554, 647

(1999).
[42] N. A. Slavnov, Calculation of scalar products of the wave

functions and form factors in the framework of the algebraic
Bethe ansatz, Teor. Mat. Fiz. 79, 232 (1989).

[43] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov,
and V. Terras, A form factor approach to the asymptotic
behavior of correlation functions in critical models, J. Stat.
Mech. (2011) P12010.

[44] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov,
and V. Terras, Form factor approach to dynamical correla-
tion functions in critical models, J. Stat. Mech. (2012)
P09001.

[45] J. L. Cardy, Operator content of two-dimensional confor-
mally invariant theories, Nucl. Phys. B270, 186 (1986).

[46] J.-S. Caux and J. M. Maillet, Computation of Dynamical
Correlation Functions of Heisenberg Chains in a Field,
Phys. Rev. Lett. 95, 077201 (2005).

[47] F. Göhmann, M. Karbach, A. Klümper, K. K. Kozlowski,
and J. Suzuki, Thermal form-factor approach to dynamical
correlation functions of integrable lattice models, J. Stat.
Mech. (2017) 113106.

[48] C. Babenko, F. Göhmann, K. K. Kozlowski, and J. Suzuki,
A thermal form factor series for the longitudinal two-point
function of the Heisenberg-Ising chain in the antiferromag-
netic massive regime, J. Math. Phys. (N.Y.) 62, 041901
(2021).

PHYSICAL REVIEW LETTERS 126, 210602 (2021)

210602-6

https://doi.org/10.1103/PhysRevLett.87.247202
https://doi.org/10.1038/nphys2652
https://doi.org/10.1038/nphys2652
https://doi.org/10.1103/PhysRevB.64.054412
https://doi.org/10.1103/PhysRevLett.98.107201
https://doi.org/10.1103/PhysRevB.81.020405
https://doi.org/10.1103/PhysRevLett.106.037203
https://doi.org/10.1103/PhysRevLett.106.037203
https://doi.org/10.1126/science.1165403
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/PhysRevLett.100.027206
https://doi.org/10.1142/S0217979212440080
https://doi.org/10.1142/S0217979212440092
https://doi.org/10.1142/S0217979212440092
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.21468/SciPostPhys.6.1.005
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevB.13.316
https://doi.org/10.1016/0031-8914(67)90235-2
https://doi.org/10.1016/0375-9601(92)91128-E
https://doi.org/10.1016/0375-9601(92)91128-E
https://doi.org/10.1103/PhysRevB.57.11429
https://doi.org/10.1103/PhysRevB.57.11429
https://doi.org/10.1016/S0550-3213(97)00285-X
https://doi.org/10.1088/1742-5468/2008/08/P08006
https://doi.org/10.1088/1742-5468/2006/12/P12013
https://doi.org/10.1088/1742-5468/2006/12/P12013
https://doi.org/10.1007/s00220-008-0617-z
https://doi.org/10.1088/1751-8113/42/30/304018
https://doi.org/10.1103/PhysRevLett.106.257201
https://doi.org/10.1007/s11005-018-01143-x
https://doi.org/10.1007/s11005-018-01143-x
https://doi.org/10.1016/S0550-3213(99)00295-3
https://doi.org/10.1016/S0550-3213(99)00295-3
https://doi.org/10.1007/BF01016531
https://doi.org/10.1088/1742-5468/2011/12/P12010
https://doi.org/10.1088/1742-5468/2011/12/P12010
https://doi.org/10.1088/1742-5468/2012/09/P09001
https://doi.org/10.1088/1742-5468/2012/09/P09001
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1103/PhysRevLett.95.077201
https://doi.org/10.1088/1742-5468/aa9678
https://doi.org/10.1088/1742-5468/aa9678
https://doi.org/10.1063/5.0039863
https://doi.org/10.1063/5.0039863


[49] https://dlmf.nist.gov.
[50] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.126.210602 for some
background material and a derivation of Eq. (10), which
includes Refs. [51–53].

[51] E. T. Whittaker and G. N. Watson, in A Course of Modern
Analysis, 4th ed. (Cambridge University Press, Cambridge,
England, 1963), Chap. 21.

[52] M. Dugave, F. Göhmann, and K. K. Kozlowski, Thermal
form factors of the XXZ chain and the large-distance
asymptotics of its temperature dependent correlation func-
tions, J. Stat. Mech. (2013) P07010.

[53] N. Kitanine and G. Kulkarni, Thermodynamic limit of the
two-spinon form factors for the zero field XXX chain,
SciPost Phys. 6, 076 (2019).

[54] M. Suzuki, Transfer-matrix method and Monte Carlo sim-
ulation in quantum spin systems, Phys. Rev. B 31, 2957
(1985).

[55] J. Suzuki, Y. Akutsu, and M. Wadati, A new approach to
quantum spin chains at finite temperature, J. Phys. Soc. Jpn.
59, 2667 (1990).

[56] A. Klümper, Free energy and correlation length of quantum
chains related to restricted solid-on-solid lattice models,
Ann. Phys. (Leipzig) 1, 540 (1992).

[57] F. Göhmann, A. Klümper, and A. Seel, Integral representa-
tions for correlation functions of the XXZ chain at finite
temperature, J. Phys. A 37, 7625 (2004).

[58] H. Boos, F. Göhmann, A. Klümper, and J. Suzuki,
Factorization of the finite temperature correlation functions
of the XXZ chain in a magnetic field, J. Phys. A 40, 10699
(2007).

[59] K. Sakai, Dynamical correlation functions of the XXZ
model at finite temperature, J. Phys. A 40, 7523 (2007).

[60] F. Göhmann, K. K. Kozlowski, J. Sirker, and J. Suzuki,
Equilibrium dynamics of the XX chain, Phys. Rev. B 100,
155428 (2019).

[61] O. Babelon, H. J. de Vega, and C. M. Viallet, Analysis of the
Bethe Ansatz equations of the XXZ model, Nucl. Phys.
B220, 13 (1983).

[62] A. Virosztek and F. Woynarovich, Degenerated ground
states and excited states of the S ¼ 1

2
anisotropic antiferro-

magnetic Heisenberg chain in the easy axis region, J. Phys.
A 17, 3029 (1984).

[63] M. Takahashi, Thermodynamics of One-Dimensional Solv-
able Models (Cambridge University Press, Cambridge,
England, 1999).

[64] M. Dugave, F. Göhmann, K. K. Kozlowski, and J. Suzuki,
Low-temperature spectrum of correlation lengths of the
XXZ chain in the antiferromagnetic massive regime, J.
Phys. A 48, 334001 (2015).

[65] G. Gasper and M. Rahman, Basic Hypergeometric Series
(Cambridge University Press, Cambridge, England, 2004).

[66] F. A. Smirnov, A general formula for soliton form factors in
the quantum sine-Gordon model, J. Phys. A 19, L575
(1986).

[67] M. Lashkevich, Free field construction for the eight-vertex
model: representation for form factors, Nucl. Phys. B621,
587 (2002).

[68] M. Dugave, F. Göhmann, K. K. Kozlowski, and J. Suzuki,
Thermal form factor approach to the ground-state correla-
tion functions of the XXZ chain in the antiferromagnetic
massive regime, J. Phys. A 49, 394001 (2016).

[69] F. Bornemann, On the numerical evaluation of Fredholm
determinants, Math. Comput. 79, 871 (2010).

[70] M. Takahashi, G. Kato, and M. Shiroishi, Next nearest-
neighbor correlation functions of the spin-1=2 XXZ chain at
massive region, J. Phys. Soc. Jpn. 73, 245 (2004).

[71] T. Enss and J. Sirker, Lightcone renormalization and
quantum quenches in one-dimensional Hubbard models,
New J. Phys. 14, 023008 (2012).

[72] M. Dugave, F. Göhmann, K. K. Kozlowski, and J. Suzuki,
Asymptotics of correlation functions of the Heisenberg-
Ising chain in the easy-axis regime, J. Phys. A 49, 07LT01
(2016).

[73] I. P. Castillo, The exact two-spinon longitudinal dynamical
structure factor of the anisotropic XXZ model, arXiv:2005
.10729.

[74] G. Müller, Sum rules in the dynamics of quantum spin
chains, Phys. Rev. B 26, 1311 (1982).

[75] R. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J. M. Maillet,
S. R. White, and I. Affleck, Dynamical structure factor at
small q for the XXZ spin-1=2 chain, J. Stat. Mech. (2007)
P08022.

[76] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

PHYSICAL REVIEW LETTERS 126, 210602 (2021)

210602-7

https://dlmf.nist.gov
https://dlmf.nist.gov
https://dlmf.nist.gov
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210602
https://doi.org/10.1088/1742-5468/2013/07/P07010
https://doi.org/10.21468/SciPostPhys.6.6.076
https://doi.org/10.1103/PhysRevB.31.2957
https://doi.org/10.1103/PhysRevB.31.2957
https://doi.org/10.1143/JPSJ.59.2667
https://doi.org/10.1143/JPSJ.59.2667
https://doi.org/10.1002/andp.19925040707
https://doi.org/10.1088/0305-4470/37/31/001
https://doi.org/10.1088/1751-8113/40/35/001
https://doi.org/10.1088/1751-8113/40/35/001
https://doi.org/10.1088/1751-8113/40/27/007
https://doi.org/10.1103/PhysRevB.100.155428
https://doi.org/10.1103/PhysRevB.100.155428
https://doi.org/10.1016/0550-3213(83)90131-1
https://doi.org/10.1016/0550-3213(83)90131-1
https://doi.org/10.1088/0305-4470/17/15/020
https://doi.org/10.1088/0305-4470/17/15/020
https://doi.org/10.1088/1751-8113/48/33/334001
https://doi.org/10.1088/1751-8113/48/33/334001
https://doi.org/10.1088/0305-4470/19/10/003
https://doi.org/10.1088/0305-4470/19/10/003
https://doi.org/10.1016/S0550-3213(01)00598-3
https://doi.org/10.1016/S0550-3213(01)00598-3
https://doi.org/10.1088/1751-8113/49/39/394001
https://doi.org/10.1090/S0025-5718-09-02280-7
https://doi.org/10.1143/JPSJ.73.245
https://doi.org/10.1088/1367-2630/14/2/023008
https://doi.org/10.1088/1751-8113/49/7/07LT01
https://doi.org/10.1088/1751-8113/49/7/07LT01
https://arXiv.org/abs/2005.10729
https://arXiv.org/abs/2005.10729
https://doi.org/10.1103/PhysRevB.26.1311
https://doi.org/10.1088/1742-5468/2007/08/P08022
https://doi.org/10.1088/1742-5468/2007/08/P08022
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302

