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We demonstrate that the many-body nonlocality witnessed by a broad family of Bell inequalities is a
resource for ultraprecise metrology. We formulate a general scheme which allows one to track how the
sensitivity grows with the nonlocality extending over an increasing number of particles. We illustrate our
findings with some prominent examples—a collection of spins forming an Ising chain and a gas of
ultracold atoms in any two-mode configuration. We show that in the vicinity of a quantum critical point the
rapid increase of the sensitivity is accompanied by the emergence of the many-body Bell nonlocality. The
method described in this work allows for a systematic study of highly quantum phenomena in complex
systems, and also extends the understanding of the beneficial role played by fundamental nonclassical
effects in implementations of quantum-enhanced protocols.
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The triad of quantum phenomena, i.e., entanglement [1],
Einstein-Podolsky-Rosen steering [2–4], and Bell non-
locality [5,6], plays a pivotal role in our understanding
of quantum mechanics and can improve the performance of
various protocols like quantum cryptography [7–11] or
quantum computing [12,13]. Entanglement drives the other
two phenomena—it is necessary, though not sufficient, to
observe the steering or nonlocality. For instance, the four
two-qubit Bell states are all maximally entangled. For
quantum-enhanced metrology, entanglement is the resource
for breaking the shot-noise limit [14,15] and recently it has
been demonstrated that it is possible to steer a quantum
sensor to improve its sensitivity [16]. In this context, Bell
correlations can also be an asset, as has been shown in some
cases [17–19]. Bell correlations and nonlocality have been
observed with photons [20–30], Josephson qubits [31], or
massive particles [32–35], and quantum-enhanced sensors
operating on many-body systems have been realized in
many configurations [36–41].
Here we develop a general framework which allows one

to link the many-body nonlocality with the sensitivity of a
quantum sensor in a systematic way. We derive a lower
bound for the quantum Fisher information (QFI), the
central object in quantum metrology [42–44], in terms
of a series of Bell correlators of all orders. We demonstrate
that the many-body nonlocality detected by these correla-
tors is sufficient to reach very high sensitivities, i.e., it is a
resource for ultraprecise metrology. These general results
are corroborated by the examples of the QFI and the Bell
correlators calculated with an Ising chain [45,46] and the
Bose-Einstein condensate in the double-well potential
[47–49]. In both examples, we observe that in the proximity
of a critical point the swift gain of precision is driven by the
nonlocality that spreads over an increasing number of
particles. Knowledge of the relation between the

nonlocality and metrology may prove important for these
two areas of research and for our understanding of many-
body quantum mechanics.
We rely on a model of local realism that takes N parties,

and each party independently measures two quantities σðkÞ1=2

which give binary (�1) outcomes. We construct an N-party
(N-body or N-particle) correlator from an ensemble aver-
age of a product of outcomes

En⃗þ;n⃗− ¼
����
�YN

k¼1

σðkÞ�

�����
2

; ð1Þ

where σðkÞ� ¼ 1
2
ðσðkÞ1 � iσðkÞ2 Þ. The labels n⃗þ and n⃗− inform

which nþ parties picked the þ or the − sign
(n− ¼ N − nþ). If this average is consistent with the
postulates of local realism, it can be expressed as

En⃗þ;n⃗− ¼
����
Z

dλpðλÞ
YN
k¼1

σðkÞ� ðλÞ
����
2

≤
Z

dλpðλÞ
YN
k¼1

jσðkÞ� ðλÞj2 ¼ 2−N; ð2Þ

where λ is a hidden variable and pðλÞ is its probability
distribution. Therefore En⃗þ;n⃗− ≤ 2−N is the many-body Bell
inequality well suited to test the nonlocality in multiqubit
systems [50–53].
For quantum systems, the correlator from Eq. (1) is an

average of a product of nþ rising and n− lowering spin-1=2
operators. The information about the nonlocality is encoded
in a single element of the density matrix that governs the
↑ − ↓ coherence of the set of n⃗þ qubits and the ↓ − ↑
coherence of other n⃗− [54,55]. Every off-diagonal element
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ϱnm of the density operator is bounded by jϱnmj2 ≤ 1
4
, so

En⃗þ;n⃗− ≤ 1
4
and the values of En⃗þ;n⃗− between 2

−N and 1
4
carry

detailed information about the depth of nonlocality. When
En⃗þ;n⃗− ∈�2−N; 2−ðN−1Þ�, the correlator can be reproduced
with a model, where three out of N qubits are Bell
correlated. When En⃗þ;n⃗− ∈�2−ðN−1Þ; 2−ðN−2Þ�, the nonlocal-
ity extends over four qubits. Finally, when En⃗þ;n⃗− ∈� 1

8
; 1
4
�,

all N qubits are Bell correlated. Following this scheme, the
extension of nonlocality over the many-body system can be
tracked in a systematic way.
We now consider the scenario where the qubits undergo a

metrological transformation, parameterized by θ (such as
the relative phase between the arms of an interferometer or
between the two levels in atomic clocks). We demonstrate
that the sensitivity Δθ with which θ can be estimated is
related to those correlators En⃗þ;n⃗− with all combinations of
n⃗þ and n⃗−. This way, we establish a link between quantum
metrology and the nonlocality.
Consider a quantum system (here in its spectral form)

ϱ̂ ¼
X
j

pjjψ jihψ jj: ð3Þ

The evolution—for instance a passage through an inter-
ferometer that introduced the dependence on θ—in the
parameter space reads

i∂θϱ̂ ¼ ½ĥ; ϱ̂�: ð4Þ

For many quantum sensors the generator ĥ takes the form of

ĥ ¼ 1

2

XN
k¼1

σ̂ðkÞξ ; ð5Þ

where σ̂ðkÞξ is a Paulimatrix of the kth qubit oriented along the

axis ξ⃗ ¼ ðξx; ξy; ξzÞ, namely,

σ̂ðkÞξ ¼ ξxσ̂
ðkÞ
x þ ξyσ̂

ðkÞ
y þ ξzσ̂

ðkÞ
z ; ðξ⃗Þ2 ¼ 1: ð6Þ

This collective generator (5) represents a wide family of
interferometric transformations. For instance ξ ¼ y corre-
sponds to the Mach-Zehnder interferometer with light or
atoms or a Ramsey interferometric sequence employed in
atomic clocks while ξ ¼ z stands for a phase shift.
All protocols of estimating θ have the sensitivity Δθ

bounded by

Δθ ≥
1ffiffiffiffiffiffi
Fq

p : ð7Þ

This is the Cramér-Rao lower bound and the Fq is the QFI
[42–44], which expressed in terms of the eigenstates and
the corresponding eigenvalues of ϱ̂ [see Eq. (3)] reads

Fq ¼ 2
X
i;j

ðpi − pjÞ2
pi þ pj

jhψ ijĥjψ jij2: ð8Þ

By putting ðpi − pjÞ2 under the absolute value and using
ϱ̂jψ ii ¼ pijψ ii [a consequence of Eq. (3)], we get

jhψ ijpiĥ − ĥpjjψ jij2 ¼ jhψ ijϱ̂ ĥ−ĥ ϱ̂ jψ jij2 ð9Þ

and hence

Fq ¼ 2
X
i;j

1

pi þ pj
jhψ ij½ϱ̂; ĥ�jψ jij2: ð10Þ

Since pi þ pj ≤ 1, by neglecting the term in the denom-
inator we obtain the lower bound

Fq ≥ 2
X
i;j

jhψ ij½ϱ̂; ĥ�jψ jij2; ð11Þ

which leads to [54]

Fq ≥ 4ðTr½ϱ̂2ĥ2� − Tr½ðϱ̂ ĥÞ2�Þ: ð12Þ

This relation between the QFI and the Hilbert-Schmidt
quantum statistical speed [56] is a first step towards
establishing a link between the sensitivity and the many-
body nonlocality.
The eigenstates of a single-qubit operator from Eq. (6)

are σ̂ðkÞξ j↑=↓ik ¼ �1j↑=↓ik and we represent the density
matrix with a basis of N-qubit states jni being a product of
such eigenstates

ϱ̂ ¼
X2N
n;m¼1

ϱnmjnihmj: ð13Þ

Here n, m run through all the combinations of ↑ and ↓
independently for each qubit. The basis state jni is an
eigenstate of ĥ,

ĥjni ¼
�
n↑ −

N
2

�
jni; ð14Þ

where n↑ is the number of j↑i qubits in jni. Each eigenstate
of ĥ is ðNn↑Þ times degenerate, which is a consequence of the

collective character of the generator from Eq. (5). Using the
property Eq. (14), we obtain the expression for the lower
bound of the QFI from Eq. (12) in the following form [54]:

Fq ≥ 2
X
n;m

ðn↑ −m↑Þ2jϱnmj2: ð15Þ

We now focus on a single term of this sum and notice that
every jmi can be obtained from any jni by acting a proper
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number of times with a rising (nþ) and lowering (n−)
operator, namely,

jmi ¼ R̂n⃗þL̂n⃗− jni ð16Þ

so that m↑ ¼ n↑ þ nþ − n−, giving

ϱnm ¼ hnjϱ̂R̂n⃗þL̂n⃗− jni: ð17Þ

By R̂ and L̂ we denote a product of rising or lowering
operators

R̂n⃗þ ¼ σ̂ði1Þþ …σ̂
ðinþÞþ ð18aÞ

L̂n⃗− ¼ σ̂ðj1Þ− …σ̂
ðjn− Þ− ; ð18bÞ

where for two directions orthogonal to ξ⃗, ξ⃗1, and ξ⃗2,

σ̂ðkÞ� ¼ 1

2
ðσ̂ðkÞξ1

� iσ̂ðkÞξ2
Þ: ð19Þ

The vector symbol n⃗� in Eq. (16) indicates that n� qubits
are risen or lowered and that they form a particular ordered
subset of all possible choices from N qubits.
We now pick all the basis states jni and jmi, which are

transformed one into another with given R̂n⃗þ and L̂n⃗− ,
leaving the other N − ðnþ þ n−Þ qubits unaltered. We
denote such set as An⃗þ;n⃗− . A sum over all such

2N−ðnþþn−Þ states has a common prefactor
ðn↑ −m↑Þ2 ¼ ðnþ − n−Þ2. Note that if not for the modulus
square in Eq. (15), such sum would represent a mean of the
product of the two operators, namely,

X
n;m∈An⃗þ ;n⃗−

ϱnm ¼ Tr½ϱ̂R̂n⃗þL̂n⃗− �: ð20Þ

Using

X2n
i¼1

jaij2 ≥
1

2n
j
X2n
i¼1

aij2 ð21Þ

which holds for any 2n complex numbers [54], we obtain

X
n;m∈An⃗þ ;n⃗−

jϱnmj2 ≥
1

2N−ðnþþn−Þ En⃗þ;n⃗− ð22Þ

where in correspondence to Eq. (1) we introduced

En⃗þ;n⃗− ≔ jTr½ϱ̂R̂n⃗þL̂n⃗− �j2: ð23Þ

We plug the inequality (22) into (15) and first sum over all
possible combinations of fixed nþ and n−, and finally over
all nþ and n−, obtaining the central expression of this work:

Fq ≥ 2
XN
nþ¼0

XN−nþ

n−¼0

ðnþ − n−Þ2
2N−ðnþþn−Þ

X
n⃗þ;n⃗−

En⃗þ;n⃗− : ð24Þ

Thus the QFI and hence the metrological sensitivity is
lower bounded by a combination of En⃗þ;n⃗− , i.e., non-
negative Bell correlators of all orders, with non-negative
coefficients. Since En⃗þ;n⃗− ≤ ð1

4
Þnþþn− for separable states

[55], the correlator En⃗þ;n⃗− is also well suited to quantify the
many-body entanglement. Therefore, the result (24) allows
one to understand how the depth of the nonlocality or of
the entanglement impacts the precision of a quantum
sensor [57].
For a pure separable state

jψi ¼ ⊗
N

k¼1

1ffiffiffi
2

p ðj↑ki þ j↓kiÞ; ð25Þ

we have En⃗þ;n⃗− ¼ ð1
4
Þnþþn− for all n⃗þ and n⃗− (this is a

consequence of the spin-permutation symmetry of this
state). Hence, the inequality (21) [and thus (22)] is
saturated. With this En⃗þ;n⃗− the sum over n⃗� in Eq. (24)
can be evaluated, giving the shot-noise scaling of the QFI
with the number of qubits Fq ¼ N [note that for pure states,
also the inequality (11) is saturated, hence the “¼” sign]. To
surpass this shot-noise limit it is sufficient that correlators
such as En⃗þ;n⃗− grow by any amount from the entanglement-
threshold value En⃗þ;n⃗− ¼ ð1

4
Þnþþn− [52,55], though not

necessarily crossing the Bell limit En⃗þ;n⃗− ¼ ð1
2
Þnþþn− .

However, many-body nonlocality is sufficient (therefore
it is a resource) to give ultrahigh sensitivity. If
EN;0 > 1

4
ð1=2mþ1Þ, at least N −m qubits are Bell correlated

[54], and then Eq. (24) gives

Fq ≥
N2

2mþ1
: ð26Þ

When the nonlocality extends over the majority of particles,
so that m is small, the QFI scales quadratically with N. In
particular, when all qubits are nonlocally correlated, then
m ¼ 0 and

Fq ≥
N2

2
: ð27Þ

The extreme example is the Greenberger-Horne-Zeilinger
(GHZ) state

jψi ¼ 1ffiffiffi
2

p
�
⊗
N

k¼1
j↑ki þ ⊗

N

k¼1
j↓ki

�
; ð28Þ

which gives EN;0 ¼ E0;N ¼ 1
4
, and the QFI saturates the

Heisenberg level Fq ¼ N2 [15].
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We now illustrate these general considerations with two
prominent examples, the Ising chain and a collection of N
bosonic qubits. For both cases, we generate the ground state
with a corresponding Hamiltonian Ĥ, and take this state as
an input of the interferometer, see Eq. (4). In other words,
the Hamiltonian Ĥ is used at the stage of state preparation,
while the generator ĥ introduces the dependence of θ.
First, we take the antiferromagnetic Ising Hamiltonian

with open boundary conditions, i.e.,

Ĥ ¼ U
XN−1

j¼1

σ̂ðjÞz σ̂ðjþ1Þ
z −

XN
j¼1

σ̂ðjÞx ð29Þ

where U is the strength of the two-body interactions. We
takeN ¼ 6, 8, 10, 12, 14, and 16 and for eachN we find the
ground state for different U < 0. For every U we calculate
the QFI using the formula (8) with the generator (5) aligned
along the ξ ¼ z axis. On top of this, we evaluate theN-body
correlator EN;0 and highlight the values of U for which the
correlator detects the many-body nonlocality of the increas-
ing order, see Fig. 1. Clearly, the growing depth of
nonlocality is linked with approaching the Heisenberg
limit, in accordance to Eq. (26).
As another prominent example we take the collection of

N interacting bosonic qubits, such as an ultracold Bose gas
in a double-well trap. In the two-mode approximation, such
a system can be depicted with the Hamiltonian

Ĥ ¼ −Ĵx þ
U
N
Ĵ2z ; ð30Þ

where the collective spin operators Ĵx and Ĵz are given by
Eq. (5) with ξ ¼ x and ξ ¼ z, respectively. The ground state
of this system undergoes a quantum phase transition as U
passes and drops below −1 [58,59], and whenU → −∞ the
ground state approaches the GHZ state (28), which is well
suited for our purposes. Figure 2 shows the QFI as a
function ofU for N ¼ 50, 100, 250, 500, 750, 1000 and the
correlator EN;0. Again, we observe that when Fq ≃ N2, the
system is highly nonlocal. When N ≫ 1, the Fq ≃ N2

plateau is reached even when n < N qubits are nonlocally
correlated because for large N, if a small number of qubits
remains uncorrelated, the coefficient ðnþ − n−Þ2 from
Eq. (24) is still close to N2. This shows that for
N → ∞, while the many-body nonlocality remains suffi-
cient to have high sensitivity, the correlation does not need
to encompass all the qubits to have Heisenberg-like scaling.
In Figure 3 we display the correlator EN;0, normalized to

the Bell threshold, for the Ising chain (upper panel) and the
bosonic case (lower panel) and for two N’s: 12, 16, and
100, 150—respectively. The figure shows that the many-
body nonlocality emerges in the vicinity of the quantum
transition point U ¼ −1. The appearance of Bell correla-
tions is accompanied by a rapid growth of the correspond-
ing QFI (see the insets) in accordance to Eq. (24), the main
result of this work. Red arrows mark the values of U at
which the nonlocality starts to be witnessed by EN;0. These
findings contribute to the previous results on the metro-
logical gain in quantum critical systems [60–64] and on the

FIG. 1. The QFI, calculated with the ground state of the

Hamiltonian (29) and using the generator ĥ ¼ 1
2

P
N
k¼1 σ̂

ðkÞ
z , as a

function of U for N ¼ 6, 8, 10, 12, 14, 16 (the higher the plateau
the bigger theN) and normalized to the shot noise limit. On top of
each curve we marked the regions where the correlator EN;0

detects at least k-partite nonlocality. Therefore, the darkest patch
corresponds to EN;0 >

1
8
, when all qubits are Bell correlated. Next,

when EN;0 ∈� 1
16
; 1
8
�, so the nonlocality encompasses at least N − 1

qubits, and so forth. The plot shows that the Fq increases
monotonically as the number of nonlocally correlated qubits
grows. The red lines separating the regimes with different
strength of nonlocality are added for clarity.

FIG. 2. The QFI, calculated with the ground state of the
Hamiltonian (30) and using the collective generator ĥ ¼ Ĵz, as
a function of U for N ¼ 50, 100, 250, 500, 750, 1000 (the higher
the plateau the bigger the N) and normalized to the shot noise
limit. On top of each curve, the full N-body correlator of the
highest order is presented with shades of gray, analogically to
Fig. 1. For higher N, the Heisenberg level is approached even
when n < N qubits are nonlocally correlated.
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emergence of strong quantum correlations in the vicinity of
the transition point [65,66].
In conclusion, we have shown that a many-body non-

locality witnessed by the broad family of Bell inequalities
from Eq. (2) is a driving mechanism for ultraprecise
metrology. We expressed the quantum Fisher information
in terms of a combination of a particular set of correlation
functions of all orders—such that detect the nonlocality
extending over many particles. This central result allows us
to provide the lower bound for the sensitivity and identify
the necessary condition to reach the Heisenberg scaling of
the Fq. These general considerations were illustrated with
some prominent examples of multiqubit systems: a collec-
tion of spins forming an Ising chain and a gas of ultracold
atoms in any two-mode configuration, for instance trapped
in a double-well potential. For both cases, we have shown
that in the vicinity of a critical point the fast growth of
sensitivity is driven by the emerging nonlocality that
encompasses an increasing number of particles. Our

findings shed some light on the highly nonclassical proper-
ties of many-body systems and their implementations.
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red arrows mark the point at which the correlators cross the
nonlocality threshold. Lower panel: same as the upper one, but
calculated for the bosonic case and the Hamiltonian (30) (solid
black line: N ¼ 100; dashed grey line N ¼ 150).

PHYSICAL REVIEW LETTERS 126, 210506 (2021)

210506-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevA.86.023626
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1088/0256-307X/22/5/006
https://doi.org/10.1088/0256-307X/22/5/006
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1103/PhysRevLett.105.070501
https://doi.org/10.1103/PhysRevLett.105.070501
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1038/s41467-021-22353-3
https://doi.org/10.1038/s41467-021-22353-3
https://doi.org/10.1103/PhysRevA.99.040101
https://doi.org/10.1103/PhysRevA.99.062115
https://doi.org/10.1103/PhysRevLett.120.020506
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevA.57.3229
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1103/PhysRevLett.81.5039
https://doi.org/10.1038/35000514
https://doi.org/10.1038/35057215
https://doi.org/10.1038/35057215


[28] S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M.
Żukowski, M. Aspelmeyer, and A. Zeilinger, Nature
(London) 446, 871 (2007).

[29] D. Salart, A. Baas, J. A. W. van Houwelingen, N. Gisin, and
H. Zbinden, Phys. Rev. Lett. 100, 220404 (2008).

[30] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M.
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