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Ensembles of composite quantum states can exhibit nonlocal behavior in the sense that their optimal
discrimination may require global operations. Such an ensemble containing N pairwise orthogonal pure
states, however, can always be perfectly distinguished under an adaptive local scheme if (N − 1) copies of
the state are available. In this Letter, we provide examples of orthonormal bases in two-qubit Hilbert space
whose adaptive discrimination require three copies of the state. For this composite system, we analyze
multicopy adaptive local distinguishability of orthogonal ensembles in full generality which, in turn,
assigns varying nonlocal strength to different such ensembles. We also come up with ensembles whose
discrimination under an adaptive separable scheme require less numbers of copies than adaptive local
schemes. Our construction finds important application in multipartite secret sharing tasks and indicates
toward an intriguing superadditivity phenomenon for locally accessible information.
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Introduction.—The second quantum revolution aims to
harness individual quantum systems for storing, trans-
ferring, and manipulating information [1]. In many of
the information protocols, the elementary step is reliable
decoding of the classical information encoded in some
physical system. When involved systems are quantum,
several interesting observations appear that, otherwise, are
not present in the classical world. For instance, the classical
message encoded in the states of a composite quantum
system may not be completely retrieved under local
quantum operations and classical communications
(LOCC) among the spatially separated subsystems. Such
a set of states is called nonlocal as their optimal discrimi-
nation requires global operation(s) on the composite
system. In a seminal paper [2], Bennett et al. provided
examples of orthonormal bases in ðC3Þ⊗2 and ðC2Þ⊗3 that
are not perfectly distinguishable under LOCC. These
examples are quite striking as they contain only product
states and, hence, introduced the phenomenon of “quantum
nonlocality without entanglement.” For the simplest multi-
partite system ðC2Þ⊗2, an example of a LOCC indistin-
guishable ensemble was first identified in [3]. Unlike the
examples of Bennett et al., an orthogonal ensemble in
ðC2Þ⊗2 must contain entangled state(s) for local indistin-
guishability [4]. Historically, a difference between global

and local distinguishability for a two-qubit ensemble
containing only product states was conjectured by Peres
and Wootters [5]. Importantly, Peres-Wootters’ ensemble
contains nonorthogonal states, and recently, their conjec-
ture has been proven to be true [6]. The results in [2–5]
initiated a plethora of studies on the local state discrimi-
nation problem that turn out to be deeply interlinked with
quantum entanglement theory (see [7–24] and references
therein). Subsequently, local indistinguishability has been
identified as a crucial primitive for cryptography protocols,
such as quantum data hiding [25–27] and quantum secret
sharing [28–30]; it also underlies the nonzero gap between
single-shot and multishot classical capacities of noisy
quantum channels [31] and has been shown to have
foundational appeal [32–34]. The mathematical difficulty
of characterizing the class of LOCC operations [35]
motivates researchers to address the state discrimination
problem with a larger class of operations, namely, separable
superoperator (SEP) and/or the set of operations that map
positive partial transposition (PPT) states to PPT states
[36–40].
The problem of local discrimination discussed so far

considers identifying the unknown state from a single
copy of the system. Given many copies of the state
jψ ii⊗k, the probability of knowing the state jψ ii and,
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consequently, guessing the classical message ‘i’ increases;
jψii is sampled from some known ensemble
EN ≡ fpi; jψ iijpii0 &

P
pi ¼ 1gNi¼1. If there is no limita-

tion on the number k, then the state can be identified exactly
even without any prior knowledge from which ensemble it
is sampled. This fact, known as local tomography, has been
axiomatized by many authors in physical reconstruction of
Hilbert space quantum theory [41–43]. However, given the
prior knowledge of the orthogonal pure states ensemble EN ,
only (N − 1) copies are sufficient for perfect local dis-
crimination [8,16]. In this multicopy scenario, the parties
are allowed to invoke adaptive as well as nonadaptive
strategies for discrimination.
Definition 1.—(Local adaptive strategy) Given multiple

copies of the state in an adaptive strategy, each of the copies
are addressed individually, and the maximal possible
information regarding the unknown state is extracted
through LOCC. Depending on the knowledge obtained
from the former copies, strategies on the later copies are
modified adaptively.
Such adaptive strategies have already been studied

extensively in quantum channel discrimination [44–46]
and in noise estimation [47,48]. Perfect local discrimination
of any orthogonal ensemble EN is possible with (N − 1)
copies under such adaptive schemes. The known examples
of the nonlocal ensemble, however, do not even require
(N − 1) copies for perfect discrimination. In fact, the
authors in Ref. [2] found no example where more than
two copies of the unknown state are needed for perfect
discrimination, and thus, they laid down the question: “Are
there any sets of states, entangled or not, for which some
finite number (greater than 2) of copies of the state is
necessary for distinguishing the states reliably?” Even after
more than two decades, to the best of our knowledge, there
is no conclusive answer to this question. In the present
Letter, we address this question and show that, indeed,
there exist ensembles of orthogonal pure states for a
composite system that require more than two copies of
the state for perfect local discrimination under adaptive
strategies. Our explicit constructions form orthonormal
bases for two-qubit Hilbert space. We, in-fact, completely
characterize the two-qubit ensembles that require three
copies of the state for perfect local discrimination under
adaptive strategies. Interestingly, we also find ensembles
that require three copies of the state for perfect discrimi-
nation under adaptive LOCC, whereas two copies suffice if
adaptive SEP protocols are followed. Multicopy consid-
eration of the local state discrimination problem establishes
the “more nonlocality with less entanglement” phenome-
non for ðC2Þ⊗2 ensembles, which was earlier reported for
ensembles in ðC3Þ⊗2 [9]. Our study indicates an intriguing
superadditivity phenomenon for the locally accessible
information of multisite quantum ensembles, and we
discuss a practical application of the present constructions
in a multipartite secret sharing task.

Results.—Throughout the Letter, we follow the
standard notations used in the quantum information com-
munity. For instance, fj0i; j1ig is the computational basis
(eigenkets of the Pauli σz operator) of C2, and jabi
stands for the short hand notation of the bipartite state
jaiA ⊗ jbiB ∈ C2

A ⊗ C2
B. Given the single copy of the

state, the authors in [4] have analyzed LOCC distinguish-
ability of orthogonal ensembles in ðC2Þ⊗2. Here, we will
analyze their multicopy local distinguishability. We will
explore the case where Alice and Bob follow adaptive
protocols for discrimination. An ensemble of three
orthogonal pure states (of an arbitrary composite system)
is always two-copy distinguishable under adaptive
LOCC [8,16]. Therefore, we will focus on the ensembles
E4¼fjψ iig4i¼1⊂ ðC2Þ⊗2, where hψ ijψ ji ¼ δij. Throughout
the Letter, we will consider that the states are uniformly
sampled from the ensemble. Given multiple copies, while
discriminating such a set under adaptive protocol, the
following three situations can arise: (a) the states can be
discriminated after acting on the first copy at an early stage
of the protocol, (b) the protocol on the first copy results
in a conclusion that the given state belongs to the group
Gl ≡ fjψ lig or in its complement group GC

l ≔ E4nGl, for
some l ∈ f1;…; 4g, and (c) the protocol on the first copy
results in a conclusion that the state belongs to the group
Gij ≡ fjψ ii; jψ jig for some i; j ∈ f1;…; 4g with i ≠ j. In
the second and third cases, the discrimination has to be
completed from the subsequent copies. This leads us to our
first result.
Theorem 1.—An orthogonal ensemble E4 ⊂ ðC2Þ⊗2 is

two-copy distinguishable under adaptive LOCC protocol if
and only if one of the following is satisfied: (i) The set is
one-copy distinguishable and a second copy is not at all
required (trivial case). (ii) The protocol on the first copy
leads to a conclusion that the given state belongs to a group
Gl or GC

l for some l ∈ f1;…; 4g such that GC
l contains no

more than one entangled state. (iii) The protocol on the first
copy leads to a conclusion that the given state belongs to
the group Gij for some i; j ∈ f1;…; 4g with i ≠ j, such
that the projectors Pij and PC

ij are separable, where

Pij ≔ jψ iihψ ij þ jψ jihψ jj and PC
ij ≔ I4 − Pij.

Proof of Theorem 1.—For perfect discrimination, after
the protocol on the first copy, either the state is discrimi-
nated straightaway [case (i)] or some states (at least one)
must be eliminated [the other two cases]. In case (ii), if the
protocol on the first copy leads to the conclusion that the
given set is in some group Gl, then the discrimination is
done. If it leads to a conclusion in the complement group
GC
l (which will be the case with some nonzero probability),

then the unknown state needs to be distinguished from the
second copy. Recall that three orthogonal states in ðC2Þ⊗2

can be exactly locally distinguished if and only if at least
two of those states are product states [4] and, hence, leading
us to assertion (ii). In case (iii), if the protocol on the first
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copy leads to a conclusion that the unknown state belongs
in either some group Gij or in its complement group GC

ij,
then protocol on the second copy perfectly succeeds, as two
orthogonal states (in any dimension) can always be exactly
locally distinguished [8]. Suppose that there is some LOCC
protocol on the first copy that leads us to this desired
conclusion. Such a protocol will perfectly distinguish the
density operators ρ ≔ 1

2
Pij and ρ⊥ ≔ 1

2
PC
ij. Recall that two

rank-two orthogonal density operators ρ, ρ⊥ ∈ DðC2 ⊗
C2Þ are LOCC distinguishable if and only if the projectors
onto the supports of each of the mixed states are separable
[17] and, hence, leads us to assertion (iii).
To complete the argument, let us consider that, after the

protocol on the first copy, none of the states is eliminated,
rather, the knowledge regarding the ensemble gets updated,
i.e., the uniform ensemble E4 ≡ f1=4; jψ iig ends up in
some nonuniform ensemble E0

4 ≡ fpi; jψ iijpi ≠ 0∀ ig. In
such a case, the ensemble E0 must be discriminated from the
second copy of the state. According to Theorem 4 of
Ref. [4], this can be done if and only if all four states are
product. This is because Theorem 4 of Ref. [4] (and, also,
the other theorems therein) is independent of the prior
probability distributions. This completes the proof. ▪
Given the above theorem, naturally, the question

arises which orthogonal ensembles of ðC2Þ⊗2 are two-copy
distinguishable under adaptive LOCC. As an immediate
corollary of Theorem 1, first, we have the following
result (Proof provided in the Supplemental Material [49]).
Corollary 1.—Any orthogonal ensemble of ðC2Þ⊗2

containing no more than two entangled states is two-copy
distinguishable under adaptive LOCC.
Ensembles having more than two entangled states can

not be in category (i) or category (ii) of Theorem 1.
However, they can be in category (iii). For instance,
consider the orthonormal basis B½θ� with basis states

jϕþ
θ i ≔ Sθj00i þ Cθj11i; jϕ−

θ i ≔ Cθj00i − Sθj11i;
jψþ

θ i ≔ Sθj01i þ Cθj10i; jψ−
θ i ≔ Cθj01i − Sθj10i;

where Sθ ≡ sin θ & Cθ ≡ cos θ with 0 ≤ θ ≤ π=2. All the
states are entangled whenever θ ≠ 0, π=2 and, in particular,
θ ¼ π=4 corresponds to the maximally entangled basis or
Bell basis. These entangled bases are two-copy distinguish-
able under adaptive LOCC. The protocol goes as follows:
on the first copy, both Alice and Bob perform σz meas-
urement on their part of the composite system and compare
their measurement results. Correlated outcomes imply that
the given state belongs to the group Gjϕi ≡ fjϕþ

θ i; jϕ−
θ ig

whereas anticorrelated outcomes imply that it is from the
group Gjψi ≡ fjψþ

θ i; jψ−
θ ig. The result of Walgate et al. [8]

assures perfect local distinguishability of the states from the
second copy. Now, let us construct another orthonormal
basis

A½α;β�
γ ≡

( ja1i ≔ jϕ−
α i; ja3i ≔ Sγjϕþ

α i þ Cγjψþ
β i

ja2i ≔ jψ−
β i; ja4i ≔ Cγjϕþ

α i − Sγjψþ
β i

)
;

with α; β; γ ∈ ½0; π=2�. Whenever α, β ≠ 0, π=2, the states
ja1i and ja2i are entangled. However, entanglement of
the other two states demands further restrictions on the

parameters. For instance, the states ja3i; ja4i ∈ A½α;β�
π=4 are

entangled if and only if α ≠ β, π=2 − β. In the rest of
the Letter, we will mainly analyze the case γ ¼ π=4. For
generic consideration of γ, see the Supplemental Material

[49]. We also consider the cases where all the states inA½α;β�
π=4

are entangled. Next, we report an interesting feature of the

set A½α;β�
π=4 .

Proposition 1.—V ½ij� ≔ Spanfjaii; jajig with i ≠ j and

jaii; jaji ∈ A½α;β�
π=4 ; α ≠ β, π=2 − β. For every choice of

i; j ∈ f1; 2; 3; 4g, the projector onto the two dimensional
subspace V ½ij� is entangled.
See the Supplemental Material [49] for the proof.

Coming back to local distinguishability of the set A½α;β�
π=4 ,

it is neither in category (i) nor in category (ii) of Theorem 1.
Furthermore, Proposition 1 obstructs it from being in
category (iii), as well. Altogether, these guide us to the
following result.
Theorem 2.—The set A½α;β�

π=4 , with α ≠ β, π=2 − β, is
perfectly distinguishable under adaptive LOCC protocol if
and only if three copies of the state are available.
Under the adaptive local discrimination scheme, there-

fore, we have a conclusive answer to the Bennett et al.
question [2] discussed in the introduction—indeed, there
exists an ensemble of states that requires more than two
copies of the state for perfect discrimination under an
adaptive local scheme. Under such schemes, the set A½α;β�

π=4
can be considered as the strongest nonlocal ensemble (of
orthogonal pure states) in ðC2Þ⊗2. Naturally, the question
arises regarding whether such a nonlocal ensemble requires
all of its states to be entangled. Our next theorem (proof
provided in the Supplemental Material [49]) answers this
question.
Theorem 3.—Any orthonormal basis of ðC2Þ⊗2 contain-

ing exactly three entangled states requires three copies of
the state for perfect discrimination under adaptive LOCC.
Theorem 3 is quite interesting, in a sense. It tells that any

basis containing three entangled states is two-copy indis-
tinguishable under adaptive LOCC, whereas some bases
with all entangled states (e.g., Bell basis) are two-copy
distinguishable under a local adaptive scheme. This mimics
the phenomenon of more nonlocality with less entangle-
ment [9], as a set with fewer numbers of entangled states
turns out to be harder to discriminate. Importantly, the
ensemble in Ref. [9] exhibiting this feature lives in ðC3Þ⊗2,
and with single-copy consideration, such a phenomenon is
not possible in ðC2Þ⊗2. Multicopy adaptive discrimination
makes this phenomenon possible for two-qubit ensembles
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and, in fact, introduces a hierarchical strength in the more
nonlocality with less entanglement phenomenon.
Next, we consider multicopy discrimination of nonlocal

ensembles under the adaptive SEP. Recall that this set of
operations strictly includes the set of LOCC operations
[35], even for two-qubit Hilbert space [36]. Our next result,
however, establishes that, given two copies of the state,
even this larger class of operations fails to erase the
nonlocal feature of some ensembles.
Theorem 4.—There exist suitable choices of the param-

eters α, β, and γ such that, under adaptive SEP protocol,

perfect discrimination of the set A½α;β�
γ requires three copies

of the state.
For instance, α, β ≠ 0, π=2, and γ ¼ π=6 constitute such

choices. Generic analysis is referred to in the Supplemental
Material [49]. Similar to Theorem 1, any protocol on the
first copy that just updates the prior probability distribution
without eliminating state(s) does not work well in this case,
either. Theorem 4 is also important from another perspec-
tive. Mathematical characterization of local operations is
extremely hard, in general. While implementation of such
an operation may be done by some finite round of LOCC
protocol, its implementation may also demand an infinite
round of protocol. One can also define topological closure
of such different sets. However, all these different classes of
local operations are strictly included within the set of SEP
protocol [35]. Therefore, the ensembles in Theorem 4
remain two-copy indistinguishable under adaptive protocol
even under an infinite round of LOCC. Arguably, these
are the strongest two-qubit nonlocal ensembles under
any adaptive discrimination scheme—LOCC and/or SEP.

Considering general A½α;β�
γ , we, indeed, find ensembles that

are perfectly two-copy distinguishable under adaptive SEP,
whereas adaptive LOCC requires three copies for
perfect discrimination (ensembles in Theorem 2 are such
examples).
Therefore, we are left with the only possibility whether

the aforesaid ensembles are two-copy distinguishable under
a nonadaptive local protocol. In such a protocol, Alice
(Bob) addresses both the systems at her (his) end simulta-
neously to perform some global measurement and com-
municates the outcomes with the other party. Such
measurement includes SEP as well as entangled basis
measurements. It is important to note that existence of
an ensemble that is distinguishable under a multicopy local
nonadaptive scheme but indistinguishable under an adap-
tive local scheme will establish an intriguing superaddi-
tivity behavior for the locally accessible information of
multisite quantum ensembles [52]. Therefore, our con-
structions are quite interesting—either they will establish
two-copy indistinguishability (under generic protocol), or it
will demonstrate superadditivity of locally accessible
information. In this regard, superadditivity phenomena of
classical capacity of a noisy quantum channel is worth
mentioning [53–56]. There, also, entangled decoding on

multiple copies of noisy channels turns out to be more
efficient than its multiple single-copy use.
An ensemble indistinguishable under a local nonadaptive

scheme will also be indistinguishable under adaptive
LOCC. However, such an ensemble may be perfectly
distinguished with adaptive SEP. Note that physical reali-
zation of both the local nonadaptive scheme as well as
adaptive SEP scheme require entanglement. While, in the
first case, entanglement is across the cut between different
copies, in the later case entanglement is consumed across
the cut between parties (see Fig. 1). However, at present, we
have no intuition for construction of such ensembles and
leave this question open for further research. In the
following, rather, we focus on possible application of the
present constructions.
Multiparty secret sharing.—Secret sharing is an impor-

tant cryptographic primitive [57]. In the ðk;mÞ secret
sharing scheme, an administrator wishes to distribute a
k-bit classical message among m spatially separated parties
in such a way that perfect revelation of the message requires
(classical) collaboration among all m parties. In a quantum
scenario, the administrator encodes the k-bit massage in
some m-partite state, i.e., i ↦ ρi ∈ DðH⊗mÞ such that
fρig2ki¼1 is a mutually orthogonal set of states [28]. Our
construction turns out to be efficient for a (2,6) pure
quantum protocol (encoded states are pure). The admin-
istrator encodes her 2-bit message into an ensemble E4 ≡
fjψ iig4i¼1 which is indistinguishable under two-copy adap-
tive LOCC, prepares three copies of the state, and distrib-
utes those among the six separated parties. In short,
i ↦ jψ ii ↦ jψ iiA1B1

⊗ jψ iiA2B2
⊗ jψ iiA3B3

. No four par-
ties can exactly decode the message through classical
collaboration among them [58].
In a stronger variant of the aforesaid task, even the

classical collaborations among the parties are insufficient

FIG. 1. Alice and Bob share multiple copies of an unknown
state jψ ii belonging to a known ensemble EN . Availability of
additional entanglement resources across the vertical (party-cut)
and/or horizontal (copy-cut) dotted lines give rise to different sets
of allowed operations performed by Alice and Bob. (a) No
additional entanglement across the vertical and horizontal lines
gives adaptive LOCC, (b) adaptive SEP (more generally entan-
gling operation) requires additional entanglement across vertical
line but no entanglement across horizontal line, (c) additional
entanglement across horizontal line but no entanglement across
vertical line gives nonadaptive LOCC, (d) nonadaptive SEP
requires entanglement across both vertical and horizontal lines.
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for a perfect revelation of the message—the parties need to
come together to decode the information. It is also possible
to come up with such a (1,2) protocol from our construc-
tion. Recall that the result of Walgate et al. [4] prohibits any
such ð1; mÞ pure quantum protocol. So, the administrator
chooses some pair of index i, j as in Proposition 1
and then encodes her message into the density operators
σðλÞ ≔ λjaiihaij þ ð1 − λÞjajihajj supported on the sub-
space V ½ij� and its orthogonal pair σ⊥ðμÞ supported on the
complementary subspace. Whenever λ; μ ∈ ð0; 1Þ, the per-
fect revelation of the message demands that both the parties
come together to apply a global discrimination measure-
ment. At this point it may be interesting to find the values of
λ and μ that will ensure the least amount of information
accessible by LOCC.
Discussion.—We have discussed the problem of local

state discrimination when multiple copies of the unknown
state are available. Our study is a major advancement in this
direction as it establishes that there exist ensembles of pure
composite orthogonal states that are not two-copy distin-
guishable under adaptive LOCC protocol. Under a multi-
copy adaptive scheme, we have completely characterized
the nonlocal behavior of the orthogonal ensembles of two-
qubit Hilbert space. Such two-copy indistinguishable sets
find useful applications in multiparty secret sharing tasks.
Our study also raises a number of interesting questions.

A conclusive answer to the possible superadditivity behav-
ior for locally accessible information is worth discussing.
A nonadaptive protocol is still missing for the example of
ensembles where adaptive SEP protocol extracts more
classical information than local. A study of multicopy state
discrimination for higher dimensional and multipartite
Hilbert spaces might reveal several other interesting fea-
tures. One can consider more exotic adaptive protocols that
allow us to interact back and forth with the different copies
by means of nonprojective measurements. We believe that,
even under this more exotic protocol, our two-copy
local indistinguishable ensembles will remain indistin-
guishable. Formal proof of this assertion demands further
research.
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