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Ternary quantum processors offer significant potential computational advantages over conventional
qubit technologies, leveraging the encoding and processing of quantum information in qutrits (three-level
systems). To evaluate and compare the performance of such emerging quantum hardware it is essential to
have robust benchmarking methods suitable for a higher-dimensional Hilbert space. We demonstrate
extensions of industry standard randomized benchmarking (RB) protocols, developed and used extensively
for qubits, suitable for ternary quantum logic. Using a superconducting five-qutrit processor, we find an
average single-qutrit process infidelity of 3.8 × 10−3. Through interleaved RB, we characterize a few
relevant gates, and employ simultaneous RB to fully characterize crosstalk errors. Finally, we apply cycle
benchmarking to a two-qutrit CSUM gate and obtain a two-qutrit process fidelity of 0.85. Our results
present and demonstrate RB-based tools to characterize the performance of a qutrit processor, and a general
approach to diagnose control errors in future qudit hardware.
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Introduction.—While the majority of contemporary
quantum processors encode and process information in
quantum two-level systems (qubits), processors based on
d-level qudits (d > 2) could both (i) store exponentially
greater information and (ii) implement certain algorithms
using fewer entangling gates than their qubit-based coun-
terparts [1–4]. Recently, diverse experimental platforms
including optical photons, nitrogen-vacancy centers,
trapped ions, and superconducting circuits have begun to
explore qudit-based information processing [5–14].
In particular, systems based on three-level qutrits are

attracting growing interest. Qutrit-based processors can
enable, in theory, error correction with small code size
[15,16], high-fidelity magic state distillation [17], and
robust quantum cryptography [18,19] and communication
[20] protocols. Experimentally, single qutrits have both
enabled fundamental tests of quantum mechanics [21] and
been used as auxiliary systems to aid various tasks like
implementing Toffoli gate [22] or multiqubit controlled-
phase gates [23]. Multiqutrit algorithms have also been
executed recently, both with a measurement-based photonic
platforms [8,9] and a superconducting five-qutrit processor
[11]. This increase in qutrit processors highlights a clear
need for qutrit-ready quantum characterization, verifica-
tion, and validation (QCVV) techniques.
Randomized benchmarking [24,25] (RB) is a prominent

family of QCVV tools. In standard RB, a limited set of

randomly chosen gate sequences is run on a quantum
processor to characterize the average gate fidelity indepen-
dent of state-preparation-and-measurement (SPAM) errors.
Building on standard RB, interleaved and cycle bench-
marking [26] variants characterize individual gates. While
RB is routinely used to measure qubit gate fidelities,
corresponding protocols generalizing RB to qutrits have
not been demonstrated experimentally [27].
In this Letter, we develop explicit qutrit-capable recipes

for both randomized benchmarking and cycle bench-
marking, and experimentally demonstrate their viability
on a superconducting quantum processor. Specifically, we
report the use of (i) standard RB to measure average gate
fidelity over single-qutrit Clifford gates, (ii) interleaved RB
to measure the fidelity of individual single-qutrit gates,
(iii) simultaneous RB on several qutrits to characterize and
mitigate crosstalk, and (iv) cycle benchmarking to charac-
terize a two-qutrit entangling gate. On our processor,
measured single-qutrit process infidelities are on the order
of 3.8 × 10−3 for an isolated qutrit. Our two-qutrit entan-
gling gate, the controlled SUM, achieves a process fidelity
of 0.85.
Processor and gate set.—Our quantum processor,

detailed in Ref. [11], comprises five superconducting
transmon circuits. We operate these as qutrits,
encoding information in the lowest three energy levels
fj0i; j1i; j2ig. Our elementary single-qutrit gate set
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consists of rotations in both the fj0i; j1ig, and fj1i; j2ig
subspaces. These subspaces can be selectively addressed
with resonant microwave pulses. Additionally, we can add
phases to any state using virtual gates [28] defined in
software. These pulses are calibrated like qubit pulses
with the difference of an added phase correction on the
idle state during the pulse in order to correct the error
induced by the ac-stark shift (see Supplemental Material
[29] for details). Our two-qutrit gate is a controlled-SUM
gate, the qutrit analog of the CNOT gate [2]. Dispersive
measurement allows us to resolve, in a single shot, the
j0i-, j1i-, and j2i-state occupancies.
Single-qutrit randomized benchmarking.—RB relies on

randomly generated sequences of gates, sampled from the
Clifford group, to effectively depolarize gate errors. To
implement qutrit RB, one thus needs to sample gates from
the single-qutrit Clifford group [37]. The d-dimensional
Clifford, defined as the normalizer of the Pauli group of
corresponding dimension, is generated by the Hadamard
gateH and phase gate S. For qutrits, with d ¼ 3, these gates
are defined as follows:

H ¼ 1ffiffiffi
3

p

0
BB@

1 1 1

1 ω ω2

1 ω2 ω

1
CCA; S ¼

0
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1 0 0

0 1 0

0 0 ω

1
CA; ð1Þ

where ω is the primitive dth root of unity. Modulo a
global phase, the d-dimensional Clifford group contains
d3ðd2 − 1Þ unitary operations; the single-qutrit Clifford
group thus has 216 gates. Using combinations of our native
applied in sequence, we generate each Clifford gate using a
generalization of the so-called ZXZXZ decomposition for
qubits [28]—see the Supplemental Material [29] for details.
On average, this decomposition requires 3.325 native gates
(not including software-defined phase gates) per Clifford.
Other hardware platforms, with different native gates, will
necessarily use different decompositions; in principle, any
gateset capable of generating bothH and S can generate the
full Clifford group.
We first implement the basic qutrit RB protocol, gen-

erating random Clifford sequences of depth up to 400 (with
a final inversion pulse) and applying them to a single qutrit.
The results are shown in Fig. 1, with Fig. 1(a) displaying
the decay of basis-state populations to their steady-state
value; importantly, the populations of all states decay to
1=3, as expected for a fully depolarized state. This is a
signature of Clifford twirling; using the qubit Clifford
group would not fully depolarize the qutrit—see
Supplemental Material [29]. This depolarization is also
illustrated in Fig. 1(b), which shows the exponential decay
of the expectation value of the Pauli Z operator as a
function of gate depth m. The decay constant p, character-
izing this evolution is related to the average process
infidelity—or Pauli error—per Clifford operation eF via

the relation eF ¼ ð1 − pÞð1 − 1=d2Þ. A couple technical
points: (i) the superconducting processor we use allows
for measuring hZi with a single circuit, since all state
occupancies PðjiiÞ can be measured at once, which
determine hZi,

hZi ¼ Pðj0iÞ þ ωPðj1iÞ þ ω2Pðj2iÞ; ð2Þ

(ii) while the Pauli Z operator is not Hermitian, the phase of
hZi does not change under depolarization; thus the imagi-
nary component, which by preparation was zero initially,
remains zero throughout.
Table I shows the average process infidelities for single-

qutrit Clifford gates on each of the our processor’s qutrits,
extracted via qutrit RB. These errors, on the order of
5 × 10−3, are higher than those associated with single-qubit
pulses.
Understanding single-qutrit error sources.—To under-

stand the sources of error in our single-qutrit gates, we
begin by separating these into incoherent errors and
coherent errors. In the Supplemental Material [29] we
estimate the contribution of known coherent errors, includ-
ing pulse errors leading to over- or underrotations or ac
Stark shifts, and find that are likely not dominant. Here we
present a simple model to estimate the error from
decoherence during the gate operation.
Our model of decoherence in a three-level transmon

includes five total processes: two decay processes
(j2i → j1i and j1i → j0i) and three dephasing processes

(a) (b)

FIG. 1. Randomized benchmarking of a single qutrit. For
depths up to 400, we generate 20 Clifford-random gate sequences
(with a final inversion gate) and measure (a) the resulting Z-basis
state occupancies and (b) the observable hZi. Each measurement
is repeated 1024 times. Individual points correspond to each of
the 20 randomizations, with dashed lines showing fits to a single
exponential decay. As qutrit Clifford twirling effectively maps
gate errors into a depolarizing channel, for long sequences the
populations all tend to 1=3 and the sequence-averaged qutrit state
tends to the maximally mixed state ρ ¼ 1

3
13. Panel (b) illustrates

the utility of measuring the expectation value of the Pauli operator
Z and taking its real part. The imaginary part of the expectation
value remains at zero throughout, which means that the RB
sequence is effectively depolarizing the noise.
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(in the j0i=j1i, j1i=j2i, and j0i=j2i subspaces). This ladder
structure notably ignores parity-suppressed direct decay
from the second-excited state j2i to the ground state j0i,
consistent with experiments [38]. We denote the rates of the

decay processes by Γ21 ¼ 1=Tð21Þ
1 and Γ10 ¼ 1=Tð10Þ

1 , and

those of the dephasing processes by Γ2 ¼ 1=Tð01Þ
2 ,

Γ3 ¼ 1=Tð12Þ
2 , and Γ4 ¼ 1=Tð02Þ

2 . Here Tð10Þ
1 and Tð01Þ

2

correspond to the usual T1 and T2 parameters used to
describe qubit decoherence. Under this decay model, the
time evolution of the density matrix ρðtÞ in the absence
of external drives is given (in terms of the initial elements
ρij) by

ρðtÞ ¼

0
BBB@

1 − ρ11e−Γ10t − ρ22
Γ10−Γ21

ðΓ10e−Γ21t − Γ21e−Γ10tÞ ρ01e−Γ2t ρ02e−Γ3t

ρ10e−Γ2t ρ11e−Γ10t þ ρ22
Γ21

Γ10−Γ21
ðe−Γ21t − e−Γ10tÞ ρ12e−Γ4t

ρ20e−Γ3t ρ21e−Γ4t ρ22e−Γ21t

1
CCCA: ð3Þ

As shown in the Supplemental Material [29], this model
agrees well with measured dynamics of the transmon on
our processor. Each decay rate in the model is directly
measurable; values for qutrits on our processor are shown
in Table I. Using this model, one can calculate the
theoretical process-infidelity limit eðcÞF for a process of
duration τ. In the limit of short pulses (τ ≪ T1, T2), this
limit is directly proportional to the duration

eðcÞF ≃
1

9
ð2Γ2 þ 2Γ3 þ 2Γ4 þ Γ10 þ Γ21Þτ: ð4Þ

Table I reports the coherence limit for our single-qutrit
pulses of duration τ ¼ 3.325 × ð30þ 2Þ ns, where 30 ns is
the duration of a native pulse and 2 ns the delay between
two consecutive pulses. We use dephasing times measured
from echo experiment as it gives a better estimate for the
RB procedure: RB sequence can present dynamical decou-
pling behavior that decouples from low frequency noise,

like TLS, for instance, that are known to reduce the
dephasing time measured with Ramsey experiment. The
values reported in the table are averaged over one month of
measurements. As the table shows, the calculated coher-
ence-limited process infidelities are within the error bar of
the experimentally measured values, corroborating our
initial estimate that errors from decoherence are dominant
over coherent errors. This implies that the quality of
achievable single-qutrit transmon gates will increase along
with improvements in coherence times. Theoretically, one
could try to achieve better fidelity with shorter gates;
however, we found that the amplitude needed made cross-
talk cancellation impossible.
We now discuss two variations of single-qutrit random-

ized benchmarking interleaved and simultaneous RB,
before moving on to benchmarking two-qutrit gates.
Interleaved randomized benchmarking.—As with qubits,

the basic standard RB protocol measures gate error aver-
aged over the set of Clifford gates. Interleaved RB (IRB)
enables the characterization of specific gates, allowing, for
example, to measure the contribution of each subspace
rotation. In interleaved RB, one interleaves the gate of
interest between the Clifford twirls. While any gate can, in
principle, be characterized by IRB, practically it is helpful
if the interleaved gate is itself a Clifford gate as this makes
the final inversion gate easy to calculate. Comparing the
decay constants measured with and without interleaving,
one can get an estimate of the error associated with the
interleaved gate itself.
In our case, we demonstrate the use of IRB to character-

ize both elementary gates, comprising a single pulse from
our native gate set, as well as a composite gate. The
elementary gates we characterize are rotations by π about
the X axis in both the fj0i; j1ig and fj1i; j2ig subspaces.
These elementary gates are naturally elements of the single-
qutrit Clifford group and are thus easily characterized using
IRB. The composite gate we characterize is the qutrit
Hadamard gate, useful in many algorithms (e.g., quantum
Fourier transform). With our native gates, a Hadamard
requires four microwave pulses.

TABLE I. Coherence times and single qutrit process infidelity
measured for our 5 qutrits. Coherence times are defined in the
main text. Specific of the measurement is given in the Supple-
mental Material [29]. The coherences are the average of several
measurement over the period of the experiment. The error
indicated in parenthesis indicates the uncertainty on the last
digits by reporting the standard deviation of these measurements.

eðcÞF indicates the coherence limit of the process error calculated
with Eq. (4).

Quantity Unit Q1 Q2 Q3 Q4 Q5

Tð10Þ
1

(μs) 53(7) 60(10) 45(23) 53(3) 57(4)

Tð21Þ
1

(μs) 27(5) 36(3) 28(4) 26(3) 34(5)

Tð01Þ
2

(μs) 50(20) 60(10) 49(26) 52(21) 56(13)

Tð12Þ
2

(μs) 20(5) 27(7) 20(11) 24(8) 26(8)

Tð02Þ
2

(μs) 24(8) 36(11) 34(14) 31(9) 35(7)

eðcÞF
×10−3 3.3(9) 2.5(6) 3.0(1.3) 2.9(8) 2.6(6)

eF ×10−3 4.7(2) 2.8(2) 3.3(3) 4.4(7) 4.0(2)
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Figure 2 shows the decay curves obtained for our native
π rotations gate, and the Hadamard gate, using interleaved
RB. The estimation of the gate error is given by [39]

egate ¼
�
1 −

1

d2

��
1 −

pi

p

�
; ð5Þ

where pi and p are the decay probabilities with and without
interleaving, respectively. For the π pulses, we find errors
around 1 × 10−3 in the fj0i; j1ig subspace and around
4 × 10−3 in the fj1i; j2ig subspace. Though both subspace
rotations have the same duration, their error rate is
significantly different. For the composite Hadamard gate,
we report a process infidelity of eH ¼ ð6.2� 0.4Þ × 10−3,
competitive with other implementations of this gate [40].
This infidelity is close to what one would expect from a
simple scaling of the average Clifford error eF by the ratio
of durations of the Hadamard gate to the average Clifford
duration. These results emphasize that the infidelity mea-
sured by randomized benchmarking is an average over all
the Cliffords, which here are composites gates, but the gate
set basis can have different errors measurable through IRB.
Crosstalk.—Another important application of RB is to

measure the addressability, or single-qudit gate crosstalk,
on a given device [37]. Usually, crosstalk errors are
characterized with a simultaneous RB experiment where
two (or more) qudits undergo a RB sequence at the same
time. Transmon qutrits are more sensitive to crosstalk than
qubits, as the use of the second level increases the

frequency crowding. A significant challenge in the use
of a transmon-based device as a qutrit processor is to
mitigate these unwanted effects [11]. Simultaneous qutrit
RB enables quantifying this crosstalk. Figure 3 shows the
results of simultaneous RB with and without crosstalk
cancellation developed in Ref. [11]. This mitigation tech-
nique is designed to cancel fields incident on other qutrits
when driving a targeted qutrit that results from microwave
crosstalk present in the device. Figure 3 makes apparent the
significant improvement on the crosstalk from such a
procedure. Notably, the gain is not homogeneous over
the whole chip. In the Supplemental Material [29], we give
results for more than 2 qutrits.
Cycle benchmarking for two-qutrit gates.—We now turn

to characterizing two-qutrit gates. While RB is, in principle,
possible here, it would require sampling from the full two-
qutrit Clifford group. This is impractical both due to the
size of the Clifford group (roughly 5 × 106 elements) and
due to the fact that the vast majority of these gates require
multiple elementary entangling gates to implement. To
circumvent these problems and properly characterize two-
qutrit entangling gates, we instead generalize the recently
demonstrated cycle benchmarking technique [26].
Like interleaved RB, cycle benchmarking (CB) sand-

wiches the gate under test between randomly chosen gates;
in CB, however, these random gates are sampled from the
Pauli rather than Clifford group. A key advantage of this
Pauli twirling is that two-qudit Pauli gates are simply tensor
products of one-qudit Pauli gates, and thus do not require
entangling gates. Unlike Clifford twirling, however, Pauli
twirling does not fully depolarize the gate noise; instead, it
maps all errors into stochastic Pauli errors. Normally, this
would result in population survival curves which, unlike

(a) (b)

FIG. 2. Interleaved RB of three single-qutrit gates: (i) π rotation
in the fj0i; j1ig subspace (blue), (ii) π rotation in the fj0i; j1ig
subspace (orange), and (iii) the qutrit Hadamard gate H.
(a) Depolarization decay for standard (no interleaving) qutrit
RB (gray) as a reference, and interleaved sequences for each of
the three gates under test. As in Fig. 1, each point represents a
single random sequence measured 1024 times. (b) Process
infidelities (dots) of each gate calculated from the data in (a).
Also plotted for comparison (stars) is an estimation of the process
infidelity from the Clifford-averaged value computed in the
previous section: Our decomposition used an average of 3.325
native gates per Clifford, so a simple estimate for gate error for an
n-pulse gate is n=3.325 times the Clifford average. For a
Hadamard, n ¼ 4; for the π rotations, n ¼ 1.

FIG. 3. Average error per Clifford while simultaneously run-
ning RB sequences on two qutrits. The solid bars indicate the
average error per Clifford with the crosstalk cancellation applied
to the system; transparent bars are corresponding errors without
cancellation. The gray bars indicate isolated qutrit results. Note
that the large uncertainties are for noncancelled crosstalk.
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RB, do not follow a single exponential decay. However, in
CB, the initial state is chosen to be a Pauli eigenstate, and
the final measurement basis is the Pauli basis. This recovers
a single exponential decay. Averaging over the measured
decay parameters for each initial state and measurement
basis yields the average error per gate.
The protocol for a qutrit system is quite similar to the

qubit protocol for the main twirling part: the gate of interest
is interleaved in a random sequence of qutrit Pauli gates.
However, differences appear in the measurement and the
state preparation necessary to measure a single exponential
decay at a time. The most notable difference comes from
the fact that each Pauli operator commutes with its
Hermitian conjugate P† ¼ P2 which is also a Pauli oper-
ator. Hence, they share the same eigenbasis and qutrit CB
only uses 4 state preparation and measurement operators
BQ for a single qutrit—compared to 3 for the qubit case—
leading to a total of 4N for an N-qutrit system for the choice
of the initial gate. The four basis rotations are given in the
Supplemental Material [29]. Another important point arises
from this observation: the expectation values of a Pauli
operator and its Hermitian conjugate are complex con-
jugates, i.e., hP†i ¼ hPi implying that the Pauli decay
associated with these two operators is the same. A more
detailed analysis is given in the Supplemental Material
[29]. This allows us to report the decay associated with only
half of all the N-Pauli channels. As these statements follow
from the structure of the Pauli group, they generalize to all
qudit systema.

We have applied this qutrit CB protocol without any gate
(as a control) and the two-qutrit controlled-SUM gate [11].
The results are shown in Fig. 4. It is a slow gate of duration
of 1.5 μs that rely on the always-on coupling between
the two qutrits. We measure an average process fidelity of
0.98 for the control experiment and 0.82 for the CSUM
gate. Using Eq. (5), this corresponds to a gate fidelity
of 0.85.
Conclusion.—We have demonstrated the characteriza-

tion of a qutrit processor by extending randomized bench-
marking and cycle benchmarking to qutrits. With the
protocols developed in this Letter, qutrit processors can
be meaningfully compared to their qubit-based counter-
parts. As RB has become a workhorse in characterizing
qubit processors, we anticipate that qutrit RB will see
similarly widespread use. In addition to developing qutrit
RB protocols, we have demonstrated the viability of qutrit
processors based on transmon circuits: specifically, single-
qutrit gates—both in isolation and simultaneous—achieve
fidelities comparable to qubit-based devices.
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