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A semi-device-independent framework for prepare-and-measure experiments is introduced in which an
experimenter can tune the degree of distrust in the performance of the quantum devices. In this framework,
a receiver operates an uncharacterized measurement device and a sender operates a preparation device that
emits states with a bounded fidelity with respect to a set of target states. No assumption on Hilbert space
dimension is required. The set of quantum correlations is investigated and bounded from both the interior
and the exterior. Furthermore, the optimal performance of quantum state discrimination with bounded
distrust is derived and applied to certification of detection efficiency. Quantum-over-classical advantages
are demonstrated and the magnitude of distrust compatible with such advantages is explored. Finally,

efficient schemes for semi-device-independent random number generation are developed.
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Introduction.—Quantum information protocols often
assume the precise control of quantum devices. Precise
control is, however, an idealization that experiments only can
aspire to approximate. In contrast, the device-independent
(DI) approach to quantum information processing uses
violations of Bell inequalities to perform quantum informa-
tion protocols without requiring any characterization of the
involved quantum devices. Nevertheless, this stringent
approach faces substantial experimental obstacles due to
its demanding requirements.

Partly motivated by finding a compromise between the
black-box spirit of device independence and the experimen-
tal advantages of conventional protocols, and partly moti-
vated by understanding quantum communications, much
research attention has been directed at semi-DI quantum
information processing. The semi-DI approach is commonly
investigated in simple prepare-and-measure experiments in
which a sender prepares states and a receiver measures them.
Up to a weak and reasonable assumption, the resulting
correlations are analyzed without requiring any detailed
characterization of the involved devices.

The most thoroughly researched semi-DI setting is that
in which only the Hilbert space dimension is known. This
has led to protocols for quantum key distribution [1,2],
random number generation [3,4], random access coding
[5-7], numerous quantum certification protocols [8—18],
and several experiments [18-24]. More recently, also
alternative settings have been investigated, based on a
bound on the overlap [25-27], energy [28-31], and
information content [32,33] of the states.

Here, we introduce a framework for semi-DI quantum
information processing in which the only assumption is
based on the experimenter estimating a bound on how
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accurately the prepared states correspond to the ideal states
targeted in the lab. We model this through a bound on the
fidelity between the lab states and the target states. Thus,
this tunable distrust (or lack of control) corresponds to a
physically observable quality estimate of the preparation
procedure.

In what follows, we introduce the framework and proceed
to analyze quantum correlations under bounded distrust. We
show that the set of correlations can be efficiently bounded
from both the interior and the exterior via semidefinite
programming (SDP) methods. Then, focusing on quantum
state discrimination, which is the simplest scenario, we
analytically determine the optimal performance under
bounded distrust. This is applied to construct experimentally
friendly semi-DI certification of the detection efficiency of a
memoryless measurement device. Next, we investigate
hybrid models based on classical measurement devices
and show that quantum correlations can elude such models
even at substantial degrees of distrust. Moreover, we inves-
tigate semi-DI random number generation and show that
high rates of randomness can be obtained at experimentally
realistic levels of distrust.

Framework.—Consider a scenario in which Alice and
Bob independently select inputs x and y, respectively. Alice
prepares a quantum state p, which she sends to Bob who
performs a measurement { M, } with outcome 5. When the
experiment is repeated in many independent rounds, the
correlations are described by the probability distribution
p(blx,y) = tr(p.M,,). We may also permit the devices of
Alice and Bob to be classically correlated through a shared
parameter A. This leads to the more general probability
distribution

© 2021 American Physical Society


https://orcid.org/0000-0001-9136-7411
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.210503&domain=pdf&date_stamp=2021-05-25
https://doi.org/10.1103/PhysRevLett.126.210503
https://doi.org/10.1103/PhysRevLett.126.210503
https://doi.org/10.1103/PhysRevLett.126.210503
https://doi.org/10.1103/PhysRevLett.126.210503

PHYSICAL REVIEW LETTERS 126, 210503 (2021)

p(

x.y) =Y pAr(pMy). (1)
A

Suppose that Alice’s intention is to prepare a particular
set of target states {|y,) }. However, her preparation device
is subject to a degree of imperfection due to the lack of
flawless control. Moreover, her device, or the states it emits
(before reaching Bob), could be maliciously influenced. We
quantify the accuracy of the preparation procedure through
the fidelities

F, = (w.lpclw,). (2)

where p, = >, p(/l)p,({l) is the average state and the target
states |w,) are embedded into the arbitrary, but finite,
dimensional Hilbert space of p,. An ideal procedure
(px = |wy)(wy|) is represented by F,, = 1. In contrast, a
smaller fidelity signifies that the lab states deviate further
from the target states. In our model, we let the experimenter
provide a bound on the degree of distrust in their prepa-
ration procedure. Specifically, we consider that the fidel-
ities are subject to a lower bound of the form

F, >1—¢,, (3)

where ¢, € [0,1] is the distrust in each state prepara-
tion. The fidelity (2) can then be interpreted as the
probability of obtaining the first outcome of the measure-
ment {|y,)(y.[. 1 —[w,)(w,|} when performed on p,.
Therefore, if there are no side channels used to send
information about x, the choice of ¢, can based on direct
observation.

Quantum correlations.—We develop tools to analyze
quantum correlations under bounded distrust. This analysis
is considerably simplified by first identifying three key
properties. (i) The shared parameter A can be absorbed in
the preparations by sending the classical-quantum state

Pr = p(i)py) ® |4)(|. Bob learns A by measuring
the second register and then proceeds to apply {M;’R}

to the first register to generate the correlations (1). The
fidelity is preserved since F, = tr[(|w.)(w.| ® 1)p,] =

S p) (. |p§c’1>|1//x>. (ii) We can w.l.g restrict to consid-
ering only pure states p,. Because of Uhlmann’s theorem
[34], for every mixed p, there exists a pure state |¢,) such
that the fidelity (2) is preserved, ie., F, = |(w,|¢.)|*
Then, by considering measurements that act trivially on the
ancillary space of the purification, we recover the quantum
correlations; tr(pMy),) = (p.|My), ® 1|¢,). (iii) We can
w.l.g restrict to considering only states of dimension 2n,
where n is the number of possible inputs of Alice. This
follows from the fact that m pure states span at most an m-
dimensional subspace of Hilbert space and that our
problem involves a total of 2n such states. Furthermore,
based on systematic numerical evidence discussed in

Supplemental Material (SM) [35], we conjecture that the
dimension can further be restricted to n.

Equipped with these properties, we investigate linear
correlation functions. These are written

W= chyp(blx.y), (4)

b.x,y

where ¢, are real coefficients. For a general function W,
how can we determine the values attainable in quantum
theory for a given set of target states {|y,)} and a given set
of distrust parameters {e,}? We answer this by providing
generally applicable methods to establish both lower and
upper bounds on the extremal (for simplicity, the maximal)
quantum value of the function, which we denote we.
Any set of states {p,} and measurements {M,,} that
respect the constraint (3) imply a lower bound on W2.
Systematic and increasingly accurate lower bounds can be
obtained via alternating convex search. This follows from
the fact that for fixed measurements, the optimization
problem maxy, , ¥V over states p, of dimension 2n subject
to the constraints (3) is an SDP. Similarly, fixing the states
to those found optimal by this SDP, the optimization
maxyy, 1 VW over the measurements also constitutes an

SDP. Since SDPs can be efficiently evaluated [36], this
routine of two SDPs can be iterated to bound W from
below.

The task of bounding W¥ from outside the quantum set
is less straightforward. Nevertheless, this can be achieved
through a hierarchy of SDP relaxations of the task. For this
purpose, we exploit that we can limit the analysis to pure
states of dimension 2n. SDP relaxations of quantum
correlations subject only to such dimensional constraints
were introduced in Refs. [37,38] based on randomly
sampling from the state and measurement spaces. In SM
[35], we show that this method can be extended to also
incorporate the constraints (3). The key adaptation is that
the target states are included in the sampling procedure in
such a way that the fidelities (2), which are merely quantum
probabilities, explicitly appear as elements of the final SDP
matrix. Notably, this algorithm can be implemented
very efficiently by appropriately adapting the methods of
Ref. [39].

Remark:The methods, for bounding the quantum set
from the interior and the exterior, respectively, have been
explored in several case studies and were almost always
found to produce coinciding bounds, thus identifying /2
up to solver precision. This attests to their usefulness in
practice.

State discrimination with distrust.—The simplest task
relevant to the distrust-bounded framework is that of
quantum state discrimination. Alice has two target states
(x € {1,2}) which, w.L.g, can be chosen as qubit states with
Bloch vectors 71; = (0,0, 1) and 7, = (sin6, 0, cos 6) for
some @ € [0, z]. Bob’s aim is to guess their label, i.e., to
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output b =x. The average success probability is
Wsp = 2 p(1]1) + 1 p(2]2). The well-known textbook sce-
nario corresponds to the special case in which the distrust
parameter € = €; = €, = 0, i.e., Alice’s states are known.
In contrast, when e > 0, Bob attempts discrimination
without knowing the precise set of states sent by Alice.

Correlations in distrust-bounded state discrimination can
be analyzed by solely analytical means, i.e., without
employing the above discussed numerical methods. In
SM [35], the following optimal success probability is
derived for any choice of target state () and any distrust
parameter (€):

1 2 0 0
WSQD :E (1 +SIH§) + {mCOSE_GSinz ’ (5)

for ¢ <3(1—sin(6/2)) and otherwise W¢, = 1. The
expression can be interpreted as an e-dependent correction
(second term) to the Helstrom bound [40] (first term) which
governs conventional state discrimination. Thus, the con-
sequence of not assuming a specific model for how the
allowed distrust is manipulated is that the measured
correlations become increasingly suboptimal as € increases.

Certification of detection efficiency.—The simplicity of
the state discrimination protocol makes it a natural platform
for application in semi-DI certification of detection effi-
ciency. Notably, such certification has previously been
considered in a dimension-based semi-DI framework
[15]; however, the present framework is based on a more
natural assumption, experimentally simpler and gives
stronger certification.

A simple model of a measurement device endows it with
a detection efficiency € [0, 1] which is the probability that
it successfully detects an incoming physical system.
Consequently, the measurement effectively has three out-
comes, {M,, M,, MQ(}, where M(/ represents failed detec-

tion. The most general measurement therefore takes the
form M, = Zz';:l,z.(/p(bw)]r/[l} for some postprocessing
p(b|b) determining the final outcome b € {1,2}. We
assume that the efficiency is independent of the incoming
state, i.e., Vp: tr(pMd) =1-», which implies
MQ/: (I =n)1. In state discrimination, it is optimal to
map the outcome ¥ into one of the outcomes b € {1,2},
while otherwise setting b = b. Therefore, given (0, €, 1),
the optimal success probability is nWSQD +1-n/2.
Upon observing Wsp in the lab, one certifies that
n>2Wsp — 1/2W8, - 1.

We investigate the usefulness of this bound by modeling
realistic imperfections. Suppose that Alice prepares noisy
target states; p, = v|w,)(w,| + 1 — v/21 for some visibil-
ity »€]0,1. This corresponds to a distrust of
e = (1 —v)/2. Also, suppose that Bob’s optimal measure-
ment, when successful, is perturbed by an alignment error

of angle ¢ in the Bloch sphere and that the true detection
efficiency is 7. Then, the certified bound on the detection
efficiency becomes

Ulipye €OS 6 1 a0
B if v > sin3
n > v+V1-2? cot%) 2 (6)

Virue COS O sing otherwise,

which is linear in 7,.. For instance, if our target states
correspond to € = 5z/6 and the imperfections are given
by v=99% (¢=0.5%) and 0 =1 deg, we obtain
n > 0.9631,.,., Which is a nearly optimal bound. In contrast,
with an order of magnitude larger imperfections (v = 90%,
0 =10 deg), the bound remains reasonably good;
n > 0.8557,.. Note that (6) becomes stronger for more
distinguishable target states.

Correlations from classical measurements.—How do we
describe classical correlations in the distrust-bounded
framework? The source is inherently quantum since the
target states generally do not commute. However, we may
consider the situation in which the measurement device is
classical, i.e., all measurements are diagonal in the same
basis. Within the quantum formalism, such measurements
are written My, = >, p(b|y, k)|ey)(ex|, where {|ey)} is
some orthonormal basis of Hilbert space. The correlations
then take the form

p(blx.y) = p(b
k

v, k) (elpilex), (7)

which can be interpreted as a postprocessing of the out-
come obtained from measuring p, in the basis {|e;)}.

How can we bound any given function (4) in such a
model? As shown in SM [35], we can w.l.g restrict to
considering only the finitely many deterministic postpro-
cessing, p(bly,k) € {0,1} (again, we may restrict to
dimension 2n). This simplification allows us to bound
the maximal value of W by largely recycling the SDP
relaxation method previously discussed for bounding
quantum correlations. However, now the SDP relaxation
is based only on a single quantum measurement and must
be considered separately for every deterministic postpro-
cessing (see SM [35]).

Interestingly, there exists a critical value e, =n—1/n
of the distrust parameter ¢ = €,, at which Alice can send
her input to Bob. Then, Bob can classically generate any
distribution p(b|x,y). To show this, consider the
worst-case scenario in which all target states are identical,
lw,) =10), and choose the preparations |¢,) =
1/+/ny202) el2riie=bi/n| ) corresponding to the Fourier
basis of C". The fidelities are |{y ¢ )|* = 1/n =1 — €4
and x is recovered by measuring the basis {|¢,)}.

Quantum advantages.—Quantum correlations that do
not admit the form (7) constitute a certificate of the
impossibility of viewing Bob’s set of measurements as a
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postprocessing of a single measurement. It is therefore
evident that if such an advantage exists, it requires at least
two measurements. This motivates us to go beyond state
discrimination and consider a scenario featuring three
preparations and two binary-outcome measurements. We
choose the function

Wip = Ey1 + Ep + By — Exy — Exp, (8)

where E,, = p(0|x,y) — p(1|x, y) and select the target states
{Jw1), ly2), lws)} as qubits forming an isosceles triangle in
the xz plane of the Bloch sphere. Their Bloch vectors are
i, = (0,0,1), i, = (1,0,0), and 713 = 1/v/2(=1,0,-1).

We have employed an alternating convex search together
with SDP relaxations of the quantum set of correlations in
order to bound Wjs,, from below and above [41], respec-
tively. It is found that these bounds generally coincide, thus
constituting a tight bound. Similarly, we have also
employed SDP relaxations to bound the function in models
with classical measurements. The results are presented in
Fig. 1. It is found that quantum theory allows stronger
correlations for distrust up €~ 33%. This threshold is
marginally lower than the value of ¢ at which the alge-
braically maximal value W;,, = 5 is attained. Moreover,
the maximal quantum value W%z = 1+2v2, which
corresponds to exactly preparing the target states and then
performing the optimal measurements, certifies a quantum
advantage over classical measurement models even if we
supplement the latter with a distrust of up to € = 3.1%. This
illustrates a quantum advantage robust to distrusted models
with classical measurements. Furthermore, in SM [35], we
analogously compare correlations based on a random
access code and find that the value of e required to model
an ideal quantum protocol with classical measurements is
increased to € ~ 4.5%.

Random number generation.—We consider the task of
semi-DI random number generation in the presence of an
external eavesdropper. The eavesdropper can possess a
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FIG. 1. The function Wj,, versus the distrust parameter e for
target states forming an isosceles triangle with angles {90°, 135°}
in the xz plane of the Bloch sphere. The blue curve is the tight
quantum bound. The red curve is an upper bound for hybrid
quantum-classical models.

detailed description of the devices on the level of a hidden
variable A with distribution p(1). For each 4, the eaves-
dropper prepares a quantum realization for Alice and Bob,
thus creating correlations p,(b|x, ), that on average return
Alice’s and Bob’s observed correlations, p = >, p(4)p;.
The task is to certify that Bob’s outcome (for specific
inputs x* and y*) contains some randomness from the
eavesdropper’s point of view. A standard quantifier of
randomness is the conditional minimum entropy
H in = —log,(G), which is based on the eavesdropper’s
highest probability of guessing Bob’s outcome:
G = max ), p(4) max, p,(b|x*,y*), where the first maxi-
mization is over p(4) together with all conditional quantum
realizations compatible with the observed correlations p. If
one does not use p but only a linear function Wip] to
certify randomness, then an upper bound on G can be
obtained in the following handy way. Evaluate the
G'(W) = max max,, p(b|x*, y*), where the first maximi-
zation now is over all quantum realizations consistent with
W[p] = W. The concave hull of G’(W) is an upper bound
on G [42-45]. This method has been used in many previous
semi-DI randomness generation protocols [3,4,20,25,33].

In our protocol based on Ws,,, using the same target
states as earlier, it is favorable to extract randomness from
the specific inputs (x*,y*) = (3,2). Upper bounds on
G'(W31,) can be obtained systematically using the pre-
viously discussed hierarchy of SDP relaxations of the
quantum set of correlations. In Fig. 2, we show the
trade-off between the generated randomness and the dis-
trust parameter as obtained from three different function

values Wi, = k x (1 +2v/2), for ke {0.97,0.99,1},

where 1 + 2\/§ is the ideal value obtained in a quantum
protocol implementing the precise target states and optimal
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0.2}

0.0 . >
0.00 0.01 0.02 0.03 0.04

Distrust

FIG.2. Randomness versus distrust parameter € for the function
Ws,, based on target states forming an isosceles triangle in the xz
plane of the Bloch sphere. The randomness is evaluated for the
function values VV;;Q22 (blue), 0.991/\/3Q22 (red), and 0.971/\/3Q22

(purple), where W3Qz2 = 1+2v/2 corresponds to the precise
target states. Inset plot: randomness versus distrust based on
the optimal value of the function Wgp, for 6 = z/5.
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measurements. We find that even for suboptimal correla-
tions a large amount of randomness can be generated if the
distrust is small. Moreover, some randomness is still
obtained even when the distrust is around a few percent.
In addition, we have illustrated randomness generation
based on the simpler state discrimination protocol (see
Fig. 2 inset) which is found to give a less robust rate.

The function (8) has been experimentally realized [46]
in the context of dimension witnessing using polarization
qubits. Considering the same target states as here,
the reported experimental value was W55 = 3.7815+
0.0782. While the distrust could be estimated through
explicit additional measurements, let us consider the
drastic case in which all the imperfections are attributed
to white noise in the preparation device. Then, the average
measured value implies €= 0.6% from which we can
extract 0.052 bits of randomness. This may be viewed as a
proof of principle. However, it is relevant to note that
recent experiments have performed similar prepare-and-
measure experiments achieving visibilities well above
99% in the preparation devices (see, e.g., [18,24]).
Such state of the art makes possible substantially higher
rates of semi-DI randomness.

Discussion.—Here, we have introduced a framework for
semi-DI quantum information processing based on a
tunable degree of distrust in the quantum devices, inves-
tigated the correlations that it may give rise to, and
harvested these toward quantum information protocols.
The tools outlined here are versatile as they apply to
general prepare-and-measure scenarios. The introduced
framework has two important conceptual features: (i) it
tailors the analysis directly to the set of states targeted by
the experimenter, and (ii) the notion of distrust is an
observable quantity. The first point distinguishes the
framework from all previous approaches to semi-DI quan-
tum information. The second point distinguishes it from the
standard dimension-based approach [1], the overlap-based
approach [25], and the information-based approach [32],
but not from the energy-based approach [28]. It is then
interesting to note that the energy-based framework
emerges as a special instance of the distrust-based
framework, corresponding to when all target states are
identical.

A few natural avenues for further research are men-
tioned. (i) Exploration of other quantum information
protocols, e.g., in cryptography, that are interesting to
consider in the distrust-bounded framework. How robust
are common quantum information protocols to uncon-
trolled imperfections? (ii) Experimental realization of
efficient random number generators based on bounded
distrust. To this end, it may be relevant to also consider
protocols different from those investigated here. (iii) We
discussed hybrid models based on quantum sources and
classical measurements. Can one define a natural notion of
fully classical models? Is it possible to have a quantum

advantage over such models when the latter are permitted
any degree of distrust smaller than the critical
limit e = (n —1)/n?
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Pironio, and Nicolas Brunner for feedback. This work was
supported by the Swiss National Science Foundation
through Early PostDoc Mobility fellowship P2GEP2
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