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We adapt the robust phase estimation algorithm to the evaluation of energy differences between two
eigenstates using a quantum computer. This approach does not require controlled unitaries between
auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the
energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis
on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a
high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all
quantum phase estimation algorithms ultimately evaluate eigenvalue differences.
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Introduction.—Assessing energy differences, rather than
total energies, is ubiquitous in physics. Whether there is a
gap between the ground and first excited state of a
particular Hamiltonian is related to outstanding problems
in condensed matter [1] and high energy physics [2], and it
is at the heart of deep connections between many-body
physics and theoretical computer science [3]. Myriad
spectroscopic techniques ultimately compare the energies
of two or more eigenstates of a single Hamiltonian as one
among many identifying features of a particular piece of
matter. This Letter is concerned with using a quantum
computer for this purpose. We indicate the Hamiltonian of
interest asH with N ¼ 2n ¼ dimH. The ground state ofH
is labeled by its eigenvalue jE0i, and the ath eigenstate
above it is jEai.
By repeatedly preparing particular superpositions of two

energy eigenstates, allowing them to undergo a unitary
evolution WðHÞ [4–7], undoing the preparation, and
measuring in the computational basis [see Fig. 1(b)], we
can infer the difference in energy between the two
eigenstates without the need for auxiliary qubits [8] or
controlled unitary operations. This differs from other
approaches to quantum phase estimation (QPE) [11] that
use one or more auxiliary qubits to provide a ground
reference for the phase accumulated on the register encod-
ing the physical system [12–21]. Our procedure is inspired
by the robust phase estimation (RPE) algorithm that was
introduced to characterize and calibrate the phase (i.e.,
rotation angle) of a single-qubit gate [22].
A common form for WðHÞ is an approximation to the

exponential map governing Hamiltonian evolution for a
fixed time [23,24], though it may take other forms for
which the phase is a known function of the eigenvalues
[5,25]. While phase estimation is broadly applicable to the
calculation of eigenvalues on quantum computers, the

physical significance of WðHÞ is a consequence of
encoding the degrees of freedom of a system of interest
in the Hilbert space of n qubits. While we consider the
specific encoding of interacting electrons in a molecular
system [26,27], we note that our results can be extended to
others, including those relevant to nuclear matter [28],
quantum field theories [29], and spin systems [30].
In fact, all forms of phase estimation, with or without

auxiliary qubits, are not simply eigenvalue estimation but
eigenvalue difference estimation. The operations WðHÞ
and WðHþ αIÞ are identical up to an undetectable global
phase, exp½iχðαÞ�, where the form of χ depends onW [31].
In order to actually estimate the phase of an eigenstate of
W, one must have access to a known reference energy
level. ΛðWÞ, a singly controlled version ofW, is generated
by a Hamiltonian of the form 0N ⊕ H, where 0N is the
N × N zero matrix. The N-fold degenerate zero-energy
subspace created by 0N allows for the estimation of the
phase of any of the eigenstates of H relative to these
reference eigenstates [see Fig. 1(a)]. This is the structure
of most QPE implementations, which we henceforth generi-
cally refer to as QPE algorithms with auxiliary qubits [32].
Part of what distinguishes RPE is that, instead of relying on
the auxiliary register to relativize the phase of the unitary
evolution, the relative phase is accumulated between two
energy eigenstates in a uniform superposition. This allows us
to avoid using an auxiliary register and controlled unitaries at
the cost of requiring more complicated state preparation.
Three strengths of QPE with auxiliary qubits are (i) the

relativization of the phase accumulated on the j1i branch of
the auxiliary register to the j0i branch, (ii) the projection of
the system register onto an energy eigenstate after a single
round, and (iii) the ability to reuse that eigenstate in
subsequent rounds without having to prepare it again.
Point (i) is a critical advantage if one needs absolute
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energies, but not essential if energy differences will suffice.
Further, if one knows the trace of the Hamiltonian over an
M-dimensional subspace it is possible to reconstruct
absolute energies fromM − 1-independent pairwise energy
differences measured within that subspace. This is evident
in the experimental results in Fig. 2. Points (ii) and (iii) are
critical advantages if state preparation dominates the
Hamiltonian evolution resource requirements, noting that
the depth of the Hamiltonian evolution unitaries for RPE
will be reduced by merit of their not needing to be
controlled unitaries.

Not only does RPE offer overall circuit depth improve-
ment, but it reduces the total number of 2-qubit operations
required. These are a bottleneck in current hardware given
their low fidelities relative to single-qubit gates [33,34].
Given access to a gate-level description of a circuit S that
implements WðHÞ using only arbitrary local gates and
controlled NOTs (CNOTs), the most straightforward way
to implementWð0N ⊕ HÞ is to simply turn every gate G in
S into its singly controlled version ΛðGÞ. Though clever
compilation schemes [35–40] may offer nontrivial
improvements, if G contains s single-qubit gates and t
CNOTs it can be shown [41,42] that the overall CNOT cost
of implementing ΛðGÞmay be as bad as 6tþ 2s. We expect
these benefits to be substantial for hardware with little or no
error correction and restricted connectivity.
One might ask whether the need to repeat the potentially

erroneous state preparation and measurement (SPAM) due
to a lack of projection onto an energy eigenstate after a
single round of auxiliary-qubit-free RPE is a limiting factor.
A central result of this Letter is the observation that RPE’s
robustness manifests as a high tolerance to SPAM errors.
This suggests conditions for which this approach might be
advantageously employed for quantum simulation. In
particular, an advantage might be realized in the inter-
mediate term where adiabatic [26,43] or filtering-based
[44–46] state preparation can be replaced by precompiled
state preparation circuits that exploit classical tractability
and do not appreciably contribute to the total circuit depth.
Methods.—RPE may be thought of as a combination of

Ramsey and Rabi experiments with logarithmic spacing in
the number of gate repetitions [47]. This allows the phase
of the gate to be learned with Heisenberg-like scaling in
accuracy, without requiring any entanglement or auxiliary
qubits. Additionally, RPE will still produce accurate phase
estimates even when there is a significant amount of error in
any of the constituent circuits’ state preparations, measure-
ments, or gates. Accordingly, RPE has been demonstrated
in experimental systems to yield highly accurate phase

FIG. 2. Verification of RPE for evaluating energy differences in
a molecule. Top: the first four energy levels of H2 in a minimal
basis, as calculated using RPE on IBM Vigo (dots) and
diagonalization on a classical computer (lines). Bottom: the error
in the first four energy levels relative to the result evaluated on a
classical computer.

(b)(a)

FIG. 1. Comparison of QPE and RPE circuits. (a) In QPE the system register is prepared in the ath eigenstate of H (Up;a) while
Hadamard gates are applied to each of g auxiliary qubits. For j ∈ ½0; g − 1�, W is applied 2j times with the jth auxiliary qubit as a
control. The inverse quantum Fourier transform (QFT†) is applied to the auxiliary register prior to measurement, which yields g bits of
Ea. Each W acts on a 2N-dimensional Hilbert space in which the control qubit provides an N-fold degenerate zero-energy subspace
relative to which a phase difference accumulates between any of the N energy eigenvalues ofH. (b) In RPE there is no auxiliary register.
First, a superposition of the ath and bth eigenstates of H is prepared (Up;φab¼0). Then W is applied kg times. The superposition is
unprepared (U†

p;φab¼β) and all qubits are measured, yielding a sample from Pc for β ¼ 0 and a sample from Ps for β ¼ π=2. Pc and Ps
encode Eb-Ea in a phase θab, defined in Eq. (2). W acts on an N-dimensional Hilbert space and only energy differences between
eigenstates of H can be extracted from this phase.
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estimates [48] while being robust against various noise
channels [49].
While RPE concerns itself with estimating a single-

qubit gate’s phase [e.g., the angle θ in the gate
RxðθÞ ¼ expð−iθσx=2Þ], this phase is actually the differ-
ence between the two eigenvalues of the Hamiltonian that
generates the unitary rotation [50]. This principle can be
generalized to unitary maps of dimension greater than 2,
allowing for the difference between two eigenvalues of an
arbitrary Hamiltonian to be estimated using RPE.
To adapt RPE to higher dimensions, one simply needs

implementations of (i) WðHÞ and (ii) a state preparation
unitary

Up;φab¼βj0i ¼
1
ffiffiffi

2
p ðjEai þ eiβjEbiÞ ¼ jφab ¼ βi; ð1Þ

where we specifically require Up;φab
for two values of φab

that are separated by π=2 rad. The energy difference
between eigenstates a and b is related to a relative phase,
θab mod 2π, accumulated while evolving with WðHÞ for a
particular time interval that is absorbed into the units. This
relative phase is encoded in the probability distributions

PcðkgθabÞ ¼ jh0jU†
p;φab¼0W

kgðHÞUp;φab¼0j0ij2 ð2aÞ

¼ 1

2
½1þ cos ðkgθabÞ� and ð2bÞ

PsðkgθabÞ ¼ jh0jU†
p;φab¼π=2W

kgðHÞUp;φab¼0j0ij2 ð2cÞ

¼ 1

2
½1þ sin ðkgθabÞ�; ð2dÞ

where the circuits that sample from these distributions are
evident from Eqs. (2a) and (2c) and the functional forms of
the distributions are given in Eqs. (2b) and (2d). Here kg is
the number of applications of WðHÞ during the gth
generation. kg is chosen with logarithmic spacing, i.e.,
kg ¼ 2g, and experiments proceed by refining the estimate
of θab across generations consisting of increasing numbers
of repetitions of WðHÞ [51].
For a fixed value of kg, the circuits represented by

Eqs. (2a) and (2c) are repeated sufficiently many times to
estimate Pc and Ps from the relative frequencies of 0 and 1
outcomes. Equations (2b) and (2d), then, unambiguously
specify θab on a segment of 2π=kg rad,

kgθab ¼ atan2ð2Pc − 1; 2Ps − 1Þ mod 2π; ð3Þ

where atan2 accounts for the branch cuts of arctan by
tracking the signs of the x and y components. RPE uses
estimates of θab from experiments with kg0 for g0 < g to
select a particular segment. At each successive generation,
if the right branch is chosen, the error in θab will exhibit
Heisenberg-like scaling.

A key feature of RPE is its tolerance to additive errors in
Pc and Ps. In the Supplemental Material [52], we study the
impact of coherent errors on state preparation (h0jUp;φab

)
and “unpreparation” (U†

p;φab j0i). The parameters of the
error channel under consideration are related to the
deviation of the state prepared (or unprepared) relative to
the target state jφabi. These include errors that generate
support with erroneous amplitude (Ec) and phase (Ep) in
the “target subspace,” i.e., spanfjEai; jEbig, but orthogonal
to jφabi. It also includes leakage errors (El) that generate
support outside of that subspace. We indicate equivalent
errors occurring during unpreparation (including readout)
with primed variables (e.g., E0

c).
We derived worst-case bounds on the associated

additive contributions to Pc and Ps and translated them
into worst-case bounds on additive error in the estimate
of kgθab [see Eq. (3)]. This additive error is indicated as
δλ [52]. Combined with bounds on additive errors under
which RPE can succeed [22,59], we identified conditions
on coherent SPAM errors that permit estimation of
energy differences with Heisenberg-like scaling [60].
Our results indicate a high tolerance to these errors.
Prominently, there are conditions for which RPE will still
succeed if as much as ∼9% of the probability in the
prepared (unprepared) state leaks outside of the target
subspace.
Results.—To verify our RPE protocol for evaluating

energy differences in physical simulation, we conducted
a proof-of-concept experiment through the cloud-based
IBM Quantum Experience [61,62]. We computed three of
the independent pairwise energy differences between the
four eigenstates of molecular hydrogen (H2) in a minimal
basis along its dissociation curve. Combined with a knowl-
edge of the trace of the Hamiltonian over this subspace, we
reconstructed the energy eigenvalues themselves. The
results are illustrated in Fig. 2, in which it is evident that
RPE succeeds in accurately computing these eigenvalues
from pairwise differences. All Hamiltonian (and kg)
dependence was precompiled into two- or three-CNOT
circuits for this 2-qubit demonstration, leading to kg-
independent depth circuits of at most 11 CNOTs [52].
We remark that this precompilation approach cannot
provide a quantum advantage as it relies on the
Hamiltonian being classically diagonalizable. A demon-
stration without precompilation is likely to require non-
trivial quantum hardware improvements.
However, by compiling into constant-depth circuits we

are able to verify that our protocol achieves the ideal scaling
with kg. This is illustrated in Fig. 3, in which we also
compare the experimentally observed scaling to that
predicted by circuit simulations with and without noise.
Our noisy simulations are based upon calibration data
furnished by IBM at the time of the experiment. The
noiseless simulations provide a benchmark for the optimal
performance of our circuits, with the noisy simulations
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suggesting that experiment will realize a relatively small
deviation from this. The fact that the experiment realizes a
mean error that scales with 1=2g indicates that we are
choosing the correct branch between successive genera-
tions, even using noisy hardware. However, the fact that the
noisy simulations predict errors that are almost an order of
magnitude smaller than those that are experimentally
observed suggests that the furnished noise model is
insufficient to predict actual hardware behavior, highlight-
ing both the utility of more expressive noise models [63]
and the relatively loose relationship between average gate
infidelities and worst-case error rates [34,71]. Nevertheless,
that the procedure still works in the presence of “hidden”
error processes also highlights RPE’s resilience to such
hidden errors.
Finally, we illustrate the denominative robustness of

RPE to SPAM errors. Figure 4 presents a particular two-
dimensional slice of our error model in which Ec ¼ E0

c and
El ¼ E0

l vary. All other parameters of the model are
optimized to produce a worst-case bound on the additive
error in Fig. (3). This worst-case additive error is then
compared to the upper bound for which the success of RPE
is guaranteed. We find that, for Ec ¼ E0

c ¼ 0, RPE can
tolerate a probability of leakage out of the target subspace
in each of the preparation and measurement circuits up to
∼9%. The sensitivity to coherent state preparation errors
within the target subspace is apparently higher, only
tolerating individual coherent error probabilities of just

∼4%, partially due to the selection of worst-case phase
error within that subspace (Ep).
Conclusion.—We have adapted RPE from its original

application in efficiently estimating the phase of a single-
qubit gate to efficiently estimating energy differences in
quantum simulation. This approach to phase estimation
does not require any auxiliary qubits or controlled imple-
mentations of WðHÞ. While approaches using auxiliary
qubits benefit from projection into an energy eigenstate
after each round, we have shown that RPE is tolerant to
errors in SPAM. We expect the long-term utility of such a
protocol to be eclipsed by auxiliary-qubit-based approaches
in future fault-tolerant quantum computers. However, we
expect this approach to be impactful in the intermediate
term, specifically, for verifying and validating quantum
simulation algorithms in the era between the noisy, inter-
mediate-scale quantum present and the fault-tolerant quan-
tum-error-corrected future.
The in-between epoch in which we expect RPE to be

most useful is one in which the capabilities of quantum
computers will be typified by a number of features. A few
error-corrected logical qubits might be available, but with
logical error rates and connectivities that are sufficiently
limited that the implementation of one-to-many controlled
WðHÞ is not possible for the desired precision. There might
also be sufficiently few logical qubits that it is possible to

FIG. 3. Simulated and experimental distributions of errors in
the H2 energy calculation with 1024 repetitions per circuit. A
swarm plot with errors from all internuclear separations and
energy differences, for each generation of RPE. Experimental
results on IBM Vigo are compared to results from circuit
simulations without noise and using the calibration-based noise
model supplied by IBM. Scaling of the error with 1=2g is
observed, consistent with Heisenberg-like scaling and indicating
that the correct branch is predominantly chosen in these sequen-
ces.

FIG. 4. Robustness against SPAM errors. The maximum
additive error jδλj in the measured angle λ used in the RPE
protocol is plotted as a scaled function of the strength of state
preparation errors within (Ec) and outside (El) the target subspace
(see Supplemental Material for derivation [52]). We have set
Ec ¼ E0

c and¼ El ¼ E0
l to get a two-dimensional slice of the error

bound in the four-dimensional parameter space. The upper limit
for RPE protocol success jδλj < ðπ=3Þ is plotted as a white line
[59]. The region below this line corresponds to conditions for
which RPE will succeed in spite of coherent SPAM errors. Values
of jδλj ≥ ðπ=2Þ are plotted in black.
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classically diagonalize the Hamiltonian over a particular
subspace, in which case straightforward compilation of the
state preparation unitaries will be possible. Finally, RPE
might be useful in diagnosing adiabatic state preparation
algorithms that rely on finding a pathway between a
noninteracting and interacting Hamiltonian in which the
gap between the ground and first excited state remains as
large as possible. As RPE allows us to efficiently evaluate
this gap with limited resources, we see this as a promising
application.
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