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The description of an open quantum system’s decay almost always requires several approximations so as
to remain tractable. In this Letter, we first revisit themeaning, domain, and seeming contradictions of a few of
the most widely used of such approximations: (semigroup) Markovianity, linear response theory, Wigner-
Weisskopf approximation, and rotating-wave approximation. Second, we derive an effective time-dependent
decay theory and corresponding generalized quantum regression relations for an open quantum system
linearly coupled to an environment. This theory covers all timescales and subsumes the Markovian and
linear-response results as limiting cases. Finally, we apply our theory to the phenomenon of quantum friction.
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One of the main challenges in the theory of open quantum
systems is to identify and apply the appropriate approx-
imations to describe their dynamics. For instance, the
description of their dynamics in the large-time limit can
be tackled bymeans of a semigroupMarkovian approach, or
linear response theory (LRT). (In this Letter, both semigroup
and non-semigroupMarkovian dynamics are relevant. If the
semigroupproperty is required,wewillmake this explicit. In
all other cases, we equate the term “Markovian” with the
more general definition of the term as given in Theorem 3.1
of [1].) However, while the former in combination with the
quantum regression theorem (QRT) [2] yields constant
exponential decay of excited states and correlations, the
latter eventually predicts algebraic decay. This semblant
contradiction, which often is not addressed within the open
quantum system community, had led to a long-standing
debate in the field of quantum friction, which concerned the
precise velocity dependence of the friction force experi-
enced by a ground state atom moving parallel to a macro-
scopic body at zero temperature [3–8].
As we illustrate in this Letter, the aforementioned

contradiction is a spurious one. It arises solely if results
of either the Markov approximation or LRT are extended
beyond the respective temporal regimes that they are bound
to. While it is known that both Markovian approaches and
LRT provide large-time limit dynamics [9], little attention
is paid to the fact that the two limits do not coincide. To
complicate things even further, this abuse of terminology
often results in confusion concerning the Markov approxi-
mation and its relation to both the Wigner-Weisskopf (or
“pole”) approximation (WWA) [10] and the rotating-wave
approximation (RWA) [9]. Finally, the realization that the
concept of Markovianity in open quantum systems is
not synonymous with semigroup dynamics [1,11,12]—
whereas in the quantum optics community, these terms are

indeed often used in a synonymous manner—leads to
additional confusion.
The aim of this Letter is hence threefold. First, we

summarize known results to clearly pinpoint the origin of
the apparent contradiction discussed above. Second, we
combine the time-convolutionless projection operator
technique (TCL) with results from LRT in order to develop
an effective theory of a weakly coupled open quantum
system’s decay that is valid on all timescales. Remarkably,
this theory yields single-operator dynamics as well as the
dynamics of two-point correlations via a generalized QRT.
Our approach subsumes the aforementioned approxima-
tions as well-defined asymptotes, where we derive two
explicit transition times demarcating the regimes referred to
by the Markovian large-time limit and the LRT large-time
limit, respectively. Lastly, we relate our formalism to the
case of an atom in a body-assisted vacuum and the
phenomenon of quantum friction as a case in point.
Both the original QRT and LRT constitute means to

arrive at a simplified description of two-point correlations
within an open quantum system—which in the absence of
these simplifications were to remain intractable. Therefore,
we begin by scrutinizing such correlation functions of a
system S embedded in an environment E, described by the
Hamiltonian

Ĥ ¼ ĤS þ ĤE þ Ĥint; ð1Þ

where the ĤS and ĤE are the Hamiltonians of the isolated
system and environment, respectively, and Ĥint comprises
all interactions. All measurements are conducted on S. With
the full state of system and environment being represented
by the density matrix ρ, the expectation values of all
operators Â acting on S are given by hÂi ¼ trSfÂρSg, where
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the reduced density matrix ρS is defined as ρS ¼ trEfρg. In
the following, we consider the scenario of linear coupling
between system and environment. This includes phenom-
ena such as linear dipole coupling of an atom and a
surrounding electromagnetic field [13,14], a quantum dot
and a Fermi bath [15], or the spin-boson model [16]. It
excludes, on the other hand, nonlinear phenomena such as
the Purcell effect [17], Kerr effect [18], and similar non-
linear optical effects [19].
The QRT states that the two-point correlation functions

of a semigroup Markovian system obey the same
dynamical equations as the expectation values of the
system’s single observables [2]. These dynamical equations
are the Gorini-Kossakowski-Sudarshan-Lindblad quantum
master equations for ρS under the influence of an environ-
ment E [20,21]:

_ρSðtÞ ¼
½Ĥ0; ρS�

iℏ
þ
X
n

γn

�
ÂnρSÂ

†
n −

1

2
fÂ†

nÂn; ρSg
�
: ð2Þ

While the first term in (2) comprises the unitary part of
the reduced dynamics, the non-negative rates γn and their
associated Lindblad operators Ân describe the open system’s
nonunitary channels (such as relaxation in its different decay
modes and decoherence). Both the relaxation rates and the
Lindblad operators Ân are time independent and thereby
guarantee the semigroup property of the dynamics. The
expectation value dynamics of Heisenberg operators Ân
acting on such a semigroup Markovian system S can be
written as a closed system of linear first-order differential
equations [9],

d
dt

hÂnðtÞi ¼
X
n0
Gnn0 hÂn0 ðtÞi; ð3Þ

with some coefficient matrix G, and the two-point correla-
tion functions any Ân and Ân0 satisfy the very same system of
differential equations [9],

d
dτ

hÂnðtþ τÞÂn00 ðtÞi ¼
X
n0
Gnn0 hÂn0 ðtþ τÞÂn00 ðtÞi: ð4Þ

Since the quantum master Eq. (2) generates an exponential
relaxation of the system S with the non-negative and
constant rates γn on all timescales, the quantum regression
theorem implies an equally exponential decay of system
correlations.
If we consider the special case of a two-point correlation

function of the same observable at different times,
CAðτÞ ¼ hÂðτÞÂð0Þi, LRT provides an alternative means
to infer its dependence on the time delay τ. LRT relates
the correlation function CA of the observable A to its
power density spectrum SA, which in turn is related to
the observable’s linear response function χA via the
fluctuation-dissipation theorem (FDT) [22]:

CAðτÞ ¼
Z

∞

−∞
dωSAðωÞe−iωτ ð5Þ

¼ ℏ
π

Z
∞

0

dωIm½χAðωÞ�e−iωτ: ð6Þ

The linear response function describing the open system’s
reaction to the perturbation posed by its environment is
defined by

χAðωÞ≡ i
2πℏ

Z
∞

0

dτh½ÂðτÞ; Âð0Þ�ieiωτ: ð7Þ

For real-valued perturbations and Hermitian operators Â,
the response function in time domain must be real valued
and retarded. These features translate into the Schwartz
reflection property χ�AðωÞ ¼ χAð−ω�Þ of the response
function in the spectral domain. This in turn implies that
the power spectral density SA must be antisymmetric with
respect to ω ¼ 0.
It is precisely here that the semigroup Markovian and

LRT approaches to obtaining correlation functions clash.
Recall that semigroup Markovian dynamics and the QRT
inevitably arrive at a constant exponential decay of corre-
lationsCA at large timescales. To arrive at such a correlation
function within LRT and hence by means of Eq. (5), the
underlying spectral density SA would have to be perfectly
Lorentzian. Such SA, however, is not antisymmetric with
respect to ω ¼ 0, as required by LRT. Hence, the expo-
nential decay stemming from the Markov approximation
and QRT is fundamentally incompatible with the concept
of a response function in the sense of LRT (see Fig. 1).
The incompatibility of the QRT and LRT approaches arises
from the fact that the underlying approximations adhere to
different temporal regimes. This is well known from,
e.g., atomic spontaneous emission theory. There, time-
dependent perturbation theory predicts a Gaussian relax-
ation yet is restricted to timescales much smaller than the
atom’s lifetime [9]. Semigroup Markovian quantum master
equations instead lead to constant exponential decay yet are
restricted to times greater than the atom’s lifetime. And
eventually, on very large timescales, semigroup Markovian

FIG. 1. Semigroup Markovian quantum dynamics are incom-
patible with LRT. According to the QRT, semigroup Marko-
vianity implies exponential decay of correlation functions and
hence Lorentzian power spectra. LRT, however, requires non-
Lorentzian spectra.
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dynamics fail again as exponential relaxation gives way to
power-law decay, predicted by emission spectra obtained
from LRT [23,24]. The three methods rely on mutually
exclusive assumptions and must not be applied beyond the
temporal regime they are bound to. In a more spectral than
temporal language this problem has already been discussed
in Refs. [25–27], where it translates to the notion of a near-
resonance condition implied by the use of the Markov
approximation and the quantum regression theorem.
We now reconcile the QRT and LRT approaches to

obtaining correlations in open quantum systems by
(i) presenting a formalism for heuristically constructing
time-dependent decay rates and level shifts describing
expectation value dynamics of open quantum system
observables across all timescales, and (ii) deriving a gen-
eralized QRT relating these dynamics to two-point correla-
tion functions of these observables. For the sake of
simplicity,we focus on a two-level systemwith level spacing
ℏωS and express the coupling to the environment in RWA,

Ĥint ¼ −
Z

∞

0

dω½d�σ̂þbðωÞâðωÞ þ dσ̂−b�ðωÞâ†ðωÞ� ð8Þ

and in terms of the dipole moment D̂≡ d�σþ þ dσ−,
associated with the two-level system’s raising and
lowering operators σ̂� and the environment’s conjugated
observable, B̂ ¼ R∞

0 dω½bðωÞâðωÞ þ b�ðωÞâ†ðωÞ�. This
implies individual Hamiltonians ĤS¼ℏωSσ̂þσ̂− and ĤE ¼
ℏ
R∞
0 dωωâ†ðωÞâðωÞ. Instead of the semigroup Markovian

master equation (2), we begin with a time-dependent one
describing the open system’s spontaneous decay in the
interaction picture of quantum mechanics,

d
dt

ρSðtÞ ¼ iδωðtÞ½σ̂þσ̂−; ρSðtÞ�

þ ΓðtÞ½σ̂−ρSðtÞσ̂þ −
1

2
fσ̂þσ̂−; ρSðtÞg�; ð9Þ

where δω and Γ are the level shift and decay rate of the
system’s excited state. Note that generic open quantum
systems dynamics include additional pure dephasing terms
that we here can neglect. Details regarding the choice of this
particular quantum master equation are discussed in the
Supplemental Material [28].
By means of TCL, one may expand the shift and rate in

Eq. (9) in ordered cumulants (oc) of the system’s memory
kernel kðτÞ [29–33],

iδωtclðtÞþΓtclðtÞ¼
XN
n¼1

ð−1Þnþ1

Z
t

0

dt1…
Z

t2n−1

0

dt2n−1

× hkðt− t1Þ…kðt2n−2− t2n−1Þioc ð10Þ

kðτÞ¼jdj2
ℏ2

CBðτÞeiωSτ¼jdj2
ℏ2

Z
∞

−∞
dωSBðωÞe−iðω−ωSÞτ: ð11Þ

Above, CBðτÞ and SBðωÞ denote the autocorrelation func-
tion and spectral density of B̂, respectively. In general, the
full TCL expansion (10) is not known. The series is then
cut off and higher-order contributions are neglected.
Consecutive orders TCL differ by two time integrals and
one memory kernel in the integrand. The expansion
parameter is hence given by the kernel’s magnitude
multiplied with the square of its width. The former is
generally proportional to the open system’s stationary line
width Γ while the latter is given by the rate γ describing the
decay of CB. The expansion parameter of Eq. (10) is hence
proportional to Γ=γ. Thus, truncating the expansion is
justified only in the case of timescale separation—as
equally required for the Markov approximation—and
yields Markovian dynamics in the general sense of
Theorem 3.1 in [1]. The approximate shifts and rates

δωðnÞ
tcl and ΓðnÞ

tcl —where the superscript (n) indicates trun-
cation at nth-order TCL—will be asymptotically constant.
Hence, while capable of capturing nonexponential decay
during the open system’s transient dynamics, as well as the
stationary semigroup Markovian behavior of the open
system after the completion of its transients, they will fail
to reproduce the asymptotic transition to algebraic decay.
This can be remedied with insights from LRT. Once
stationarity is reached, it is meaningful to speak of a
spectral density of the open system. A spectral line has
formed whose central frequency and width are approx-
imately determined by the asymptotic TCL shifts and rates,

δωstat ¼ lim
t→∞

δωðnÞ
tcl ðtÞ;Γstat ¼ lim

t→∞
ΓðnÞ
tcl ðtÞ: ð12Þ

The shape of a stationary quantum mechanical two-level
system’s spectral density comprises the full information on
the system’s spontaneous decay after transients. This is
reflected in the relation

c1ðtÞ ¼
1

jdj2
Z

∞

−∞
dωSDðωÞe−iωt; ð13Þ

linking the interaction-picture amplitude c1 of the system’s
excited state to the spectral density SD of its dipole
operator; see Eq. (2.4) in Ref. [23]. The (nonexponential)
dynamics as prescribed by LRT can be cast into exponential
form by employing a time-dependent frequency and rate,
c1ðtÞ ¼ c1ð0Þ expf−½iωlrtðtÞ þ ΓlrtðtÞ=2�g, with

iωlrtðtÞ þ
ΓlrtðtÞ
2

¼ −
_c1ðtÞ
c1ðtÞ

¼ i
R
dωωSDðωÞe−iωtR
dωSDðωÞe−iωt

: ð14Þ

In an experimental setting, SD can be determined by means
of polarizability measurements. Here, we employ one of the
simplest line shapes satisfying the LRT requirements—
a Drude-Lorentz peak,
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SDðωÞ ∝
2θðωÞ
π

jdj2Γω̃Sω

ðω̃2
S þ Γ2

4
− ω2Þ2 þ Γ2ω2

; ð15Þ

with shifted frequency ω̃S ¼ ωS þ δω. With that, the
Fourier integral (13) can be performed,

c1ðtÞ ∝ e−ðiω̃SþΓ=2Þt

−
2

π

Z
∞

0

dξ
ω̃SΓξe−ξt

ðω̃2
S þ Γ2=4þ ξ2Þ2 − Γ2ξ2

; ð16Þ

and in addition to the exponential pole term that dominates
for small and intermediate t, one obtains a nonresonant
integral from the imaginary-frequency axis that cannot be
solved analytically yet decays as t−2 and takes over for
large times. Hence, while truncated TCL dynamics end
stationary, LRT dynamics begin stationary. As there cannot
exist any discontinuity in the open system’s evolution, we
can (i) insert δωstat and Γstat into Eq. (16) to obtain δωlrt and
Γlrt from Eq. (14), and (ii) match the time-dependent TCL
and LRT level shifts and decay rates, thus forming a
heuristic product shift and rate,

δωproðtÞ ¼
δωtclðtÞδωlrtðtÞ

δωstat
;

ΓproðtÞ ¼
ΓtclðtÞΓlrtðtÞ

Γstat
; ð17Þ

applying to all timescales. This constitutes our first main
result.
As an illustration, consider Drude-Lorentzian shapes for

both SB and SD. Figure 2 displays the corresponding
product rate for n ¼ 2 as well as resulting dynamics of
the excited state population p1 ¼ jc1j2 across timescales.
Only the TCL and product rate capture the Gaussian decay
on transient timescales, while the algebraic decay on
asymptotic timescales is captured by the LRT and product
rate only. The semigroup Markovian rate’s validity is
restricted to the intermediate regime. The difference of
the LRT and product rate dynamics on large timescales
stems solely from different short-time behavior of the two.
The systematic offset in double-logarithmic scale contin-
uously decreases on a linear scale, thus ensuring that
asymptotically both dynamics coincide—as they must.
The Markovian large-time limit is reached when the
transient have decayed at t1 ¼ Γ−1

stat, while the LRT
large-time limit only kicks in at t2 when the nonresonant
term in Eq. (16) takes over at t2, satisfying

e−Γstatt2=2 ¼ 2ðωS þ δωstatÞΓstat

π½ðωS þ δωstatÞ2 þ 1
4
Γ2
stat�2t22

: ð18Þ

These two times t1 and t2 differ drastically. Lastly, note
that while around t2 the system exhibits a momentarily
negative decay rate, once the transition to algebraic decay is

completed and the LRT large-time limit reached, the rate
remains positive again. Hence, while not complying with
the semigroup property, the asymptotic system dynamics
is Markovian in the general sense as discussed in the
Supplementary Material [28].
To infer from the time-dependent product shifts and rates

not only population but also correlation dynamics, one
requires a generalized QRT. The derivation can be found in
the Supplemental Material [28] and results in

d
dτ hσ̂�ðtþ τÞσ̂∓ðtÞi
hσ̂�ðtþ τÞσ̂∓ðtÞi

≃�
�
iωS þ iδωðτÞ ∓ 1

2
ΓðτÞ

�
; ð19Þ

d
dτ hσ̂�ðtþ τÞσ̂�ðtÞi
hσ̂�ðtþ τÞσ̂�ðtÞi

≃�
�
iωS − iδωðτÞ ∓ 1

2
ΓðτÞ

�
; ð20Þ

where the left- and right-hand sides differ by terms of
order d4. This is our second main result. For a ground
state system—as, e.g., discussed in the quantum friction
debate—the above yields

CDðτÞ≡ hD̂ð0ÞD̂ðτÞi ¼ jdj2e−
R

τ

0
½iωSþiδωðτÞþ1

2
ΓðτÞ�; ð21Þ

which on insertion of δωproðτÞ and ΓproðτÞ decays in a
Gaussian manner up until t1, then enters a semigroup
Markovian period that lasts until t2, and finally reaches the
algebraic decay.

FIG. 2. Decay of an initially excited open quantum system as
produced by the semigroup Markovian rate Γmkv, second-order
TCL rate Γtcl, LRT rate Γlrt, and product rate Γpro. The rates—
including the sliding-window time average Γ̄pro of the product
rate—are shown in the top left. The time average merely serves to
guide the eye. The TCL × LRT decay depicted on linear (upper
right), log (lower left), and log-log (lower right) scales is the
result of the original, nonaveraged, and rapidly oscillating rate
ΓproðtÞ. SB and SD are chosen Drude-Lorentzian with zero
detuning and ωS þ δωstat ¼ 100Γstat ¼ 10γ. In all panels tempo-
ral regimes are indicated as color shading: short (red), inter-
mediate (gray), and long (blue).
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Before we conclude, we contrast the RWA, WWA, and
Markov approximation. They all approximate a physical
system by omitting nonresonant effects. The RWA neglects
nonresonant terms in the Ĥint that would otherwise contain
products σ̂þâ† and σ̂−â allowing for the spontaneous
creation and annihilation of pairs of excitations and thereby
enabling a ground state system to fluctuate into its excited
state. The Markov approximation additionally imposes
a Lorentzian spectral density onto the open quantum
system—thereby neglecting nonresonant contributions to
the system’s excited state dynamics (16)—as well as a
decay rate that is correct only up to second order in
coupling strength. Hence, while the Markov approximation
includes RWA, applying RWA does not imply restricting to
Markovian dynamics. The WWA, lastly, is similar to the
Markov approximation in that it only keeps the resonant
contributions in Eq. (16). However, it neither implies RWA
dynamics nor a second-order truncation of the system’s
decay rate. That is, if the correct rate were known, applying
the WWA would lead to semigroup dynamics yet differ
fromMarkov-approximated dynamics in the fourth order in
coupling.
Summarizing, to describe the dynamics of an open

quantum system linearly coupled to an environment, we
have derived effective time-dependent level shifts and
decay rates valid on all timescales. We have demonstrated
how the large-time limits implied by the Markov approxi-
mation and LRT differ, and how ignoring that difference
leads to seemingly contradictory results. Lastly, we have
derived a generalized QRT for two-point correlation
functions. Our results were obtained for a weakly coupled
two-level system (TLS) in RWA. While we cannot let go of
the weak-coupling condition—which ensures separation
of diagonal and off-diagonal dynamics of the system’s
reduced density matrix, and hence is essential for our
derivation—the generalization to multilevel systems and
non-RWA calculations is possible. Mind, however, that the
combination of TLS and RWA reduces the relevant Hilbert
space of full system-environment states to those states with
at most one excitation in the entire system. The reduction to
this finite subspace of the full Hilbert space facilitates the
derivation of dynamics of arbitrary order in coupling
strength. If the TLS is let go, this results in a larger yet
still finite relevant subspace and hence merely more
cumbersome bookkeeping of indices. If instead the RWA
is given up, the full Hilbert space must be explored and
dynamics of arbitrary order in coupling strength can no
longer be derived. Given that we operate in a setting of
converging TCL, however, truncating dynamics at, e.g.,
second order in coupling strength, is a legitimate measure
to take.
Combining our two main results—the aforementioned

effective shifts and rates and the generalized QRT—allows
us to report the final resolution of the quantum friction
debate. Our effective theory enables us to study quantum

friction in settings other than the peculiar case of the (LRT)
large-time limit of a ground state atom moving parallel to a
macroscopic body and thereby shows that the quantum
friction force is linear in relative velocity if any of these
conditions is lifted. That is, it is linear if the atom is either
excited, and/or moving in a nonparallel manner, and/or has
not yet reached the large-time limit in the LRT sense.
This is in agreement with both the Markov theory [3] and
the prediction made with LRT [6], if correct temporal
regimes are taken into consideration, and therefore recon-
ciles the two.
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