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Using computer simulations, we explore how thermal noise-induced randomness in a self-assembled
photonic crystal affects its photonic band gaps (PBGs). We consider a two-dimensional photonic crystal
composed of a self-assembled array of parallel dielectric hard rods of infinite length with circular or square
cross section. We find that PBGs can exist over a large range of intermediate packing densities and the
largest band gap does not always appear at the highest packing density studied. Remarkably, for rods with
square cross section at intermediate packing densities, the transverse magnetic (TM) band gap of the self-
assembled (i.e., thermal) system can be larger than that of identical rods arranged in a perfect square lattice.
By considering hollow rods, we find the band gap of transverse electric modes can be substantially
increased while that of TM modes show no obvious improvement over solid rods. Our study suggests that
particle shape and internal structure can be used to engineer the PBG of a self-assembled system despite the

positional and orientational randomness arising from thermal noise.
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An intriguing feature of colloids is their ability to self-
assemble into ordered structures with interparticle distances
commensurate with wavelengths of light [1]. Advances in
synthesis have produced a wide variety of anisotropic
particles, such as polyhedra [2—4], dumbbells [5], spherocy-
linders [6], superballs [7], and octapods [8]. Experiments and
simulations have demonstrated a diverse range of close-
packed superlattices whose structure depends on particle
shape. Simulations of hard colloids (e.g., Refs. [9-17])
predict complex crystals from an even larger variety of
anisotropic shapes, which are versatile in terms of modifi-
cation and functionalization. Colloidal self-assembly is one
route that has been explored to fabricate photonic crystals
with photonic band gaps (PBGs) (e.g., Refs. [5,6,18-20]).
Different from top-down design, this bottom-up method has
advantages such as low cost and low energy consumption,
and crystals can be produced over large areas [21-23].
Moreover, the particle size can be varied from tens of
nanometers to micrometers in experiments, tuning the
periodicity of crystals and consequently the PBG frequency
[21]. Besides the photonic crystals already realized in
experiments, many other promising lattice structures from
self-assembly approaches have been theoretically proposed
(e.g., Refs. [24-32]).

Previous studies of self-assembled photonic crystals
have focused primarily on structure design and self-
assembly pathways. The question of how local structural
disorder arising naturally from thermal noise in a self-
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assembled colloidal crystal affects PBGs has received little
attention. It is well known that entropy plays an important
role in the formation of phases in colloidal dispersions [1].
Below the maximum packing density, an entropy-stabilized
self-assembled crystal has inherent local disorder arising
from thermal noise, compared to a perfectly ordered crystal
at the same packing density. The loss of perfection,
however, does not necessarily lead to the loss of PBGs
as might be expected.

In this work, we study the PBGs of self-assembled two-
dimensional photonic colloidal crystals (Fig. 1 shows some
examples) using computer simulations. We consider self-
assembled lattices of parallel dielectric rods of infinitely long
length that interact through a hard-core potential. We study
rods of circular and square cross section and investigate a
wide range of packing densities ¢ and dielectric constants €.
We find that the widest PBG does not always appear at the
highest packing fraction studied. Counterintuitively, for rods
with square cross section at intermediate packing densities,
we find that the transverse magnetic (TM) band gap of the
self-assembled system can be larger than that of its corre-
sponding perfect system. Further, we show that by consid-
ering hollow rods and optimizing the internal radius, the PBG
of the transverse electric (TE) mode can be substantially
increased while that of the TM mode does not show obvious
improvement. We discuss the possibility of engineering
PBGs in self-assembled colloidal systems by controlling
relevant factors.
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FIG. 1.

Snapshots of cross section of a system of N = 200 self-
assembled rods described in the main text. (a) Rods of square
cross section at packing density ¢» = 1 (homogeneous material,
196 rods shown), 0.85 and 0.4 (left to right). (b) At ¢p = 0.85,
equilibrium configurations of rods of circular, hexagonal, and
triangular cross sections (left to right).

To be consistent with previous work, we adapt the
method used in Ref. [33] to generate self-assembled
structures of cross sections of N = 200 circular hard rods.
For particles of other shapes, we performed Monte Carlo
(MC) simulations with periodic boundary conditions using
the hard particle Monte Carlo module in HOOMD-blue
[34,35]. Simulations were initialized at very low packing
density (¢p = 0.01) in a random configuration and slowly
compressed to a target packing density using MC simu-
lations. Here, one MC step consists of N + 1 trial moves
including translation (plus rotation for rods of square cross
section) of N particles or rescaling of the box, where during
each compression step the length of the sides of the box are
rescaled to 0.9995 of their current value. At high packing
densities, box rescaling can create unphysical overlaps that
allow us to reach higher densities; these overlaps are
subsequently eliminated with isochoric MC steps [10].
After the system reaches the targeted packing density, it is
further equilibrated for 10® MC steps. We use the supercell
method [36] implemented in the open source code MIT
PHOTONIC BANDS [37] to obtain the photonic band structure
of equilibrated snapshots. All band gap sizes of self-
assembled structures presented in this work are averaged
over five independent runs.

We start from the photonic band structure for electro-
magnetic waves in a periodic array of parallel dielectric
rods of circular cross section, whose intersection with a
perpendicular plane form a perfect triangular lattice. This
system was first studied in Ref. [38]. The band structure can
be calculated from a unit cell and Fig. 2(a) shows an
example for TE polarization at ¢ = 0.5 and dielectric
constant € = 20. The yellow area indicates there is a band
gap between the first and second bands. The relative gap
size is defined as Aw/w,, where Aw is the width of the PBG
and @ is the central frequency. Figures 2(b) and 2(c) show
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FIG. 2. Photonic band structure and band gap for arrays of
parallel dielectric rods of circular cross section with radius r =
0.5a (a is the diameter and the length unit) embedded in air
(e =1). (a)—(c) Rods in a perfect triangular lattice. (a) An
example of the band structure with TE polarization, at ¢p = 0.5
and ¢ = 20. The inset shows the first Brillouin zone for the
periodic structure studied, with the symmetry points indicated.
The yellow area represents the band gap observed. (b) Gap size
(the percentage of Aw/wy) as a function of ¢ and ¢ for the TE
mode. (c) Gap size for the TM mode. (d)—(f) Parallel results for
snapshots of N =200 self-assembled rods of circular cross
section. Parameters in (d) are the same as those in (a). The band
gap (e),(f) is obtained by averaging over five independent
simulation snapshots.

the relative gap size as a function of ¢ and e. We
investigated a wide range of ¢ and with ¢ in the range
from 2 to 20. Some low e materials such as polystyrene and
silica, and some high e materials such as titania, selenium,
and amorphous silicon, fall in this range [21]. For the TE
mode, the largest PBG is at ¢ = 0.6 and ¢ = 20; for the TM
mode, the largest PBG is at much lower packing density,
i.e., ¢ = 0.1 and ¢ = 20. Furthermore, the largest band gap
for the TM mode is much wider than that of the TE mode.
Figures 2(d) and 2(f) show the equivalent results calculated
for simulation snapshots of a self-assembled system of 200
rods [Fig. 1(b) (left)]. Figure 2(d) shows the band structure
with the same parameters as those in Fig. 2(a). The yellow
area indicates the band gap between the Nth and the
(N + 1)th band. The band structure shows that the central
frequency remains nearly constant, but the gap size
decreases. Figures 2(e) and 2(f) show the relative PBG
over the entire range of parameters. Because the bands are
dense near the band edge and the deviation is relatively
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small, a sample size of five independent configurations is
sufficient to obtain good statistics (see the Supplemental
Material [39] for more information). We see that for the TE
mode, the maximal band gap of the self-assembled system
[Fig. 2(e)] appears at about ¢ = 0.6, similar to that in the
perfect triangular lattice [Fig. 2(b)]. At ¢ = 0.9, where the
system is highly ordered (close to the densest packing
fraction 0.907), there is no band gap. We observe that for
the TM mode, the packing fraction at which the maximal
band gap appears shifts from ¢p = 0.1 [Fig. 2(c)] to ¢ = 0.3
[Fig. 2(f)], and there is no obvious band gap at ¢ = 0.1 in
the self-assembled system. This is understandable because
at very low density the system is highly disordered, where
we do not expect a PBG. At the same ¢ and e values, the
self-assembled system always has a smaller PBG compared
to that of the perfect ordered system. This is consistent with
Ref. [33] that used a hard disk system to generate a seed
pattern and placed cylindrical rods with an arbitrary fixed
radius at the points of the seed pattern. In practice, when
rods are long enough and at high packing densities, they
will tend to align parallel to each other [1,40-42].
Experiments have been able to obtain monodomain films
of highly aligned carbon nanotubes from suspension [43].
We expect that similarly, by taking advantage of entropic
effects and using auxiliary experimental skills, it is possible
to align long colloidal rods as well.

Particle shape affects the PBG of a self-assembled crystal
in two ways: (1) it defines the region of dielectric materials
and (2) it determines the assembled structure and densest
packing structure [44—46]. Some examples are shown in
Fig. 1. As a simple example, although infinite rods of
circular or hexagonal cross section crystallize into triangu-
lar lattices, they have different maximum packing densities.
Rods with square and triangular cross sections crystallize
into square and hexagonal lattices, respectively, below their
maximum packing densities of 1.

To investigate the effect of cross-section shape on PGBs,
we studied rods of square cross section (Fig. 3). The
photonic band structure of rods with square cross section
are similar to those for rods with circular cross section, but
the gap widths are generally different at the same packing
density and with the same dielectric constant, which
suggests the possibility of engineering PBGs using particle
shape [30]. Moreover, the existence of PBGs in the square
rod system suggests that Voronoi particles, which also tile
space at densest packing, can be candidates for three-
dimensional photonic crystals [47]. Another interesting
aspect of the square rod system is that at some intermediate
packing densities, the TM band gap of the self-assembled
system can be larger than that of rods in a perfect square
lattice at the same values of ¢ and ¢. The white dashed line
in Fig. 3(d) indicates the region (¢ = 0.5, € € [6,20])
where both the self-assembled structure and the perfect
square lattice have a nonvanishing PBG, and the gap size of
the former is wider. For example, at ¢p = 0.5 and € = 20,
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FIG. 3. Gap size as a function of ¢ and e for rods with square
cross section in a perfect square lattice (a),(b) and the self-
assembled crystal (c),(d). The white dashed line in (d) indicates
the region where both the perfect square lattice and the self-
assembled crystal have a nonvanishing TM gap, and the gap size
of the self-assembled structure is wider than in the perfect
structure.

the gap size of the self-assembled system is about 10.72%
and that of the perfect system is about 6.94%. To further
demonstrate the TM band gap, we show the electric field
distribution of some TM modes around the PBG edges in
Fig. 4. Localized and extended modes around a PBG gap
have also been observed in other 2D systems (e.g., [48,49]).
At ¢p = 0.6 and e = 20, the gap size of the self-assembled
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FIG. 4. Electric field distribution in the system of N = 500 self-
assembled rods with square cross section for TM polarization:
¢ =05 and ¢ =120. (a) Extended mode before the PBG.
(b) Localized mode before the PBG. (¢) Localized mode after
the PBG. (d) Extended mode after the PBG.
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Band gap for an array of parallel dielectric rods of annular cross section (a)-(d) or hollow square cross section (e)—(h).
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(a) Annular cross section. (b) The optimal r;, value (described in the text) as a function of ¢ and e for TE polarization. Color indicates the
value of ry, /rou. (¢),(d) Gap size at optimal ry, for the self-assembled structure. (¢) Hollow square cross section. (f) The optimal a;, value
for TE polarization. Color indicates the value of a;,/aq,. (g),(h) Gap size at optimal a;, for the self-assembled structure.

system decreases to about 5.96% [Fig. 3(d)] while that of
the perfect system vanishes (at ¢p = 0.6, the perfect square
lattice has no TM band gap for all € values) [Fig. 3(b)]. To
gain insight into why the self-assembled system might have
a larger TM band gap, we studied how lattice inclination
and particle rotation affect the TM band gap of a perfect
system. We find that when the lattice has nonzero shear
(compared to a perfect square lattice) and/or when particles
do not align with the crystal axes, the gap size tends to
increase (see the Supplemental Material [39] for more
details). We therefore expect in the parameter space of our
case, the perfect square lattice and particles without rotation
can be a minimum for the TM band gap size. Randomness
in particle positions and orientations in the self-assembled
system introduces fluctuations around this minimum,
which tends to increase the gap size. Lattice inclination
and particle rotation thus appear to be sufficient factors to
compensate for any decrease in band gap size arising from
thermal noise, and even produce an increase. Additional
factors may include lattice shape, particle shape, packing
fraction and amount of randomness (in terms of both
particle position and particle orientation). More systematic
studies are encouraged. Thus, although randomness due
to fabrication errors in traditional lithography-based
approaches is usually regarded as detrimental, here instead
we find a counterintuitive example where randomness
actually benefits the PBG.

The PBGs for rods with circular or square cross section,
however, are not large. In an attempt to increase the PBGs,
we consider the design of the internal structure of the rods.
Hollow or double-layer rods of various shapes and on
various perfect lattice structures have been explored in
previous studies [50-56]. Here, we consider the simplest

situation of hollow rods as indicated in Fig. 5(a). We
optimize the value of the inside radius r;, to that which
maximizes the TE(TM) band gap when the rods are in a
perfect triangular lattice; the optimal r;, for the TE mode is
shown in Fig. 5(b). Figures 5(c) and 5(d) show the band gap
of the self-assembled structure at the optimal radius for the
TE and TM modes, respectively. Compared with solid rods
Figs. 2(e) and 2(f), the band gap of the TE mode is largely
increased while that of the TM mode remains nearly the
same. The value of ¢ at which the maximal PBG of the TE
mode occurs changes from ¢ = 0.6 to ¢ = 0.9. Note that
the band gap of the self-assembled structure with the
optimal 7;, is smaller than that of the perfect lattice with
the optimal r;, (see the Supplemental Material [39]). For
rods with square cross section [Fig. 5(e)], making the rods
hollow also increases the PBGs of the TE mode while
hardly changing the TM mode [Figs. 5(f)-5(h)]. The
optimal value of the inside side length a;, maximizes
the band gap when the rods are in a perfect square lattice.

We studied the PBGs of a self-assembled system con-
sisting of parallel dielectric colloidal rods with circular or
square cross section and interacting through a hard-core
potential. For the square rod system, we found that
although the system has no PBGs when it is highly or
perfectly ordered, i.e., close to or at the densest packing
fraction, there is a wide range of intermediate packing
fractions where a PBG exists in the self-assembled (noisy)
structures. Interestingly, at some intermediate packing
densities, the “randomness” of the self-assembled system
improves the TM band gap compared to that of rods in the
corresponding perfect lattice (provided a PBG exists). The
width of the PBG is packing-density dependent, suggesting
that in experiments the PBG can be adjusted through, e.g.,
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changing the concentration of colloidal particles in sus-
pension by adding or decreasing solvent. A comparison of
rods with circular and square cross section suggests that
shape can be used as another control factor to engineer the
PBG of a self-assembled system. Further, we showed that
by making rods hollow and optimizing the internal radius,
the PBG of the TE mode can be significantly increased.
Internal rod structure is but one “dimension” (examples of
other dimensions are illustrated in Refs. [9,57]) available to
engineer particles that can produce a PBG. In all, our study
suggests that by suitably choosing the packing density,
particle shape, and engineering other dimensions such as
particle internal structure, self-assembly can indeed be a
promising method to make photonic crystals with large
band gaps despite the inherent thermal noise (randomness).
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