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We show that a simple one-dimensional model of spinless fermions with pair hopping displays a phase in
which a Luttinger liquid of paired fermions coexists with a Luttinger liquid of unpaired fermions. Our
results are based on extensive numerical density-matrix renormalization-group calculations and are
supported by a two-fluid model that captures the essence of the coexistence region.
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The search for zero-energy Majorana modes, which
naturally appear in topological superconducting models
[1], has raised remarkable interest in the problem of pairing
in number-conserving models [2–16]. A paired phase is a
phase where two (or more) fermions bind together and
behave as a singular molecular object. In one dimension,
where most attention has concentrated thus far, the char-
acteristic signature of pairing is the absence of any
fermionic order, whereas pairs display quasi-long-range
order. For spin-1=2 fermions, the attractive Hubbard model
naturally favors on-site singlet pairing [17,18]. Increasing
the number of internal degrees of freedom allows a pairing
mode to coexist with a remaining decoupled fermionic
mode [19]. For spinless fermions, pairing requires finite-
range interaction but no coexistence with unpaired fer-
mions is observed [20–23]. Importantly, spatial interfaces
between paired and unpaired phases should host Majorana
zero modes, which could then be realized without resorting
to superconducting proximity effects [24,25].
The difficulty in studying the pairing transition is that it

implies a reshaping of the low-energy sector of the model,
with the appearance (or disappearance) of Fermi points, to
be taken into account by unconventional bosonization
treatments [24,25]. A particularly visual model based on
two fluids, a bosonic one describing the pairs and a
fermionic one describing the unpaired fermions, was
presented recently [26]. These studies agree on the fact
that paired and unpaired phases are separated by a
continuous phase transition with central charge c ¼ 3=2
[24,26] originating from a standard gapless mode and an
additional Ising or Majorana degree of freedom. This
prediction has been verified in several numerical analyses
[20–23].
In this Letter, we show that the phenomenology of the

pairing transition is richer. We revisit a one-dimensional
(1D) spinless-fermion model introduced in Ref. [25] in
which pair hopping competes with single-fermion hopping.
Related electronic models with correlated hopping, such as
the Penson-Kolb-Hubbard model [27–32], have been

proposed in the context of high-Tc superconductors [33]
and lead to rich and complex phase diagrams [34]; our
model also bears some relationship with the folded spin-
1=2model [35,36] and the Bariev model, which are exactly
solvable with the Bethe ansatz [37], and with models for
ultracold gases with synthetic dimension [38,39].
We show the emergence of a coexistence phase com-

prising neighboring paired fermions in a sea of unpaired
fermions that is stable toward phase separation. Since pairs
are composed of two fermions, it is not obvious that they
could coexist with gapless fermionic excitations. Indeed,
semiclassical intuition and the standard Luttinger liquid
(LL) approach lead to the conclusion that all fermions are
either paired or unpaired. Yet, taking superfluids as a
paradigmatic example, phases with two coexisting fluids
are not novel to condensed-matter physics [40]. Our
findings are supported by numerical simulations, which
are fully interpreted with a phenomenological two-fluid
(2F) model inspired by Ref. [26]. In particular, we clearly
pinpoint under which conditions the two kinds of scenarios,
the extended coexistence phase and a c ¼ 3=2 transition
point, take place (see also Ref. [41]). Such a discovery of
the first realization of a 2F model for describing a 1D phase
with a pairing instability opens the path to novel inves-
tigations in the context of number-conserving Majorana
fermions.
Hamiltonian.—We consider a chain of length L with

spinless fermion operators cð†Þj and study the model
introduced in Ref. [25],

H ¼ −t
X
j

½c†jcjþ1 þ H:c:� − t0
X
j

½c†jþ1c
†
jcjcj−1 þ H:c:�;

ð1Þ

in which t is the fermionic hopping amplitude while t0 is the
pair-hopping amplitude. The phase diagram depends only
on the ratio τ ¼ t0=t and the density n ¼ N=L, with N the
total number of fermions. The unusual t0 term favors a gain
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in kinetic energy for paired configurations that naturally
competes at low densities with the single-fermion kinetic
energy term (a similar term has been identified in cold-atom
setups with synthetic dimensions [38,39]). We take n ¼
0.25 in the following and analyze such competition with the
density-matrix renormalization-group (DMRG) algorithm
[42–45] using two implementations, one of which is the
ITensor library [46], both working with a fixed number of
particles. The obtained phase diagram is sketched in Fig. 1.
For small τ a regular fermionic LL phase F extends from
the free fermion point. At large jτj, two fully paired LL
phases P0 and Pπ are stabilized. Their main difference is
that pairs quasicondense around either the k ¼ 0 or the
k ¼ π momenta. All three phases display a central charge
c ¼ 1 corresponding to a single bosonic mode description.
For τ < 0, it has been shown [25] that the transition from F
to P0 is direct and features an extra Majorana degree of
freedom revealed from the c ¼ 3=2 central charge. The
main result of this Letter is to show that for τ > 0, there is
an intervening coexistence phase denoted by C where a LL
of Pπ pairs coexists with a LL of fermions.
Pairedphases.—Wefirst analyze thepaired phases exploit-

ing the fact thatmodel (1) can be diagonalized exactly [35,39]
for t ¼ 0. Since the pair-hopping term enhances the kinetic
energy of pairs, we assume that the ground state lies in the
subspace HP spanned by states with the 2Nb fermions
forming Nb nearest-neighbor pairs. Within HP, each fer-
mionic state is mapped onto a spin-1=2 configuration over a
lattice of length Lb ¼ L − Nb via the rules j • •i → j↑i,
j∘i → j↓i. In Lb, the Nb term can be understood as an
excludedvolume.Then, a spinup stands for a pairwhile a spin
down stands for an empty site. The action of Hamiltonian (1)
over HP is equivalent to that of an effective XX spin-1=2
Hamiltonian Heff ¼ t0

PLb
j¼1 ½σþj σ−jþ1 þ H:c:�. Using the

Jordan-Wigner transformation and the Fourier transform,
we readily find the diagonal form Heff ¼

P
k εpðkÞnk, with

the pair band dispersion relation εpðkÞ ¼ 2t0 cosðkÞ. For
t0 < 0, the ground state energy per site eeff ¼ hHeffi=L reads

eeff ¼
1

L

X
jkj<πðNb=LbÞ

εpðkÞ ¼ −
2jt0j
π

�
1 −

n
2

�
sin

�
πn

2 − n

�
;

ð2Þ

whereweuse therelationn ¼ 2Nb=L. For t0 > 0, oneactually
has the same result because the unitary transformation

cj → eiðπ=2Þjcj implements the mapping Hðt ¼ 0; t0Þ →
Hðt ¼ 0;−t0Þ. Equation (2) is validated by the numerics [47].
The nature of the pairs is qualitatively different in each

phase. By inspecting εpðkÞ, we see that the minimum is at
k ¼ π for t0 > 0, whereas it lies at k ¼ 0 for t0 < 0. The two
phases are thus connected by a shift k → kþ π, corre-
sponding to the application of the unitary transformation to
the pair operator: cjcjþ1 → ð−1Þjicjcjþ1. This difference
persists at finite but large jτj. In the inset of Fig. 2, we show
the pair correlations PðrÞ ¼ hc†L=2c†L=2þ1cL=2þrcL=2þrþ1i
for τ ¼ �4. They almost exactly coincide in absolute
value but differ by a staggering factor ð−1Þr. The main
chart of Fig. 2 displays the pair occupation number
PðkÞ ¼ ð1=LÞPj;j0 e

ikðj−j0Þhc†jc†jþ1cj0cj0þ1i. The connec-
tion between Pπ and P0 translates into a shift of the main
peak from k ¼ π to k ¼ 0 when changing τ ¼ 4 into
τ ¼ −4. Notice that the unitary transformation is no longer
valid at nonzero t at the Hamiltonian level. Still, the data
show that it becomes an emergent symmetry due to the
dominant weights of paired states. Since the transition
between the fermionic LL and P0 phases was extensively
discussed in Ref. [25], we now focus on τ > 0 [48].
Coexistence phase.—We now present numerical results

for the intervening coexistence phase C between the F and
Pπ LL. In Figs. 3(a) and 3 (a0), we plot the first and second
derivatives of the ground state energy per site e0ðτÞ. While
constant behaviors are found in F and Pπ , a finite
intermediate region emerges between two finite jumps of
the second derivative. Since the first derivative is continu-
ous up to finite-size effects, we observe two continuous
phase transitions that mark the existence of the C phase, in
contrast to the first-order transition scenario proposed in
Ref. [25] and as will be clear in the following. Within the
grid precision, the boundaries of this C phase are found at
τc1 ≃ 1.53ð1Þ and τc2 ≃ 1.93ð1Þ. Last, increasing the sys-
tem sizes shows that the phase is stable and does not shrink,
as can be seen in the figure.

FIG. 1. Sketch of the phase diagram of model (1) for density
n ¼ 0.25. Four phases appear: a regular LL fermionic phase F,
paired LL phases P0 and Pπ , and a coexistence phase C with
central charge c ¼ 2 where fermions and Pπ pairs are mixed.
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FIG. 2. Absolute value of the Fourier transform of pair
correlations for an open chain with L ¼ 80 and t0=t ¼ �4. Open
symbols are the t0=t ¼ 4 data shifted by π. Inset: pair correlations.
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A first insight in the nature of the C phase is presented in
Fig. 3(b). We show that the central charge c, estimated from
fits of the entanglement entropy [47], jumps from c ¼ 1 in
F and Pπ to the value c ¼ 2 in the C phase. These values
indicate that the F and Pπ phases have a single effective
bosonic mode, whereas the C phase possesses two bosonic
modes that will be identified in the following. In the rest
of the Letter, we develop an effective model that (i) captures
the low-energy physics of the Hamiltonian (1), (ii) explains
the nature of the C phase, and (iii) elucidates the difference
in stability against effective interactions in the τ < 0 and
τ > 0 branches of the phase diagram.
Two-fluid model.—We start by assuming that the system

is composed of two species of particles, one fermionic (the
unpaired fermions) and one bosonic (the pairs), described
respectively by a free fermion Hamiltonian Hf and an
XX model Hb:

Hf ¼ −t
X
j

d†jdjþ1 þ H:c:; ð3Þ

Hb ¼ þt0
X
j

σþj σ
−
jþ1 þ H:c: ð4Þ

It is important to stress that this is an effective model and
that the dj fermions (satisfying canonical anticommutation

relations) do not coincide with the original ones, because
they describe only the unpaired particles. This assumption
is motivated by the limiting properties of the Hamiltonian
(1) for t ¼ 0 and t0 ¼ 0 that we discussed above. We stress,
however, that there is no exact handy mapping onto Eq. (1):
the 2F model H2F ¼ Hf þHb has a phenomenological
nature.
As a minimal model, we further assume that the two

species interact only through the total density constraint
n ¼ nf þ 2nb, where nf;b ¼ Nf;b=L are the effective fer-
mionic and bosonic densities. The ground state energy per
site e2F is then the sum of the fermionic and bosonic
contributions:

e2F ¼ −
2t
π

�
sin ðπnfÞ þ τ sin

�
π
n − nf

2

��
: ð5Þ

By minimizing e2F with respect to the free parameter nf
using standard techniques [47],we identify three regions that
are depicted in the sketches of Fig. 3: (i) a fully fermionic
region, for 0 < τ < τc1 with τc1 ¼ 2 cosðπnÞ ≃ 1.41, in
which nf ¼ n and nb ¼ 0, that we associate to the F phase;
(ii) an intermediate region, for τc1 < τ < τc2 with
τc2 ¼ 2= cosðπn=2Þ ≃ 2.16, in which both nf and nb are
nonzero, that we associate with the C phase; and (iii) a fully
bosonic region, for τ > τc2, in which nf ¼ 0 while
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FIG. 3. (a) First and (a0) second derivatives of the energy per site e0 as a function of t0=t for three system sizes: L ¼ 56, 136, 200.
Dotted lines are predictions of the 2F model. Arrows point toward typical band structures of the 2F model for t0=t ¼ 0.25, t0=t ¼ 1.7, and
t0=t ¼ 4. (b) Fitted central charges as a function of t0=t. (c) Single-particle kinetic energy Kf and pair kinetic energy Kb probing almost
directly nf and nb.
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nb ¼ n=2, corresponding to the Pπ phase. Incidently, the
natural order parameter through the phase diagram is nf (or,
equivalently, nb). In this two-fluid picture, (ii) is naturally a
region of coexistence of the bosonic and fermionic fluids;
hence the name.
The 2F model thus proposes an interpretation of the two

transition points in terms of two band-filling (band-
emptying) Lifshitz transitions, which are associated with
the appearance (disappearance) of two Fermi points, as
sketched in Fig. 3(a). We are thus in front of two
continuous and second-order quantum phase transitions,
and not of a first-order transition, which is another
scenario that would be a priori possible. In the following,
we show that the two-fluid model provides a good
description of the C phase.
Interpretation of numerical data.—We first observe that

the 2F model describes in a natural way the DMRG data of
Fig. 3. The main difference is that the boundary points are
not quantitatively reproduced. Let us start with the central
charge: in the 2F model, the coexistence phase has c ¼ 2,
which corresponds to two effective low-energy bosonic
fields in LL theory. These modes stem from the effective
existence of two gapless Fermi points kf, leading to a single
bosonic mode in LL theory, and two “hard-core boson"
Fermi points kb adding up to another bosonic mode. On the
contrary, the F and Pπ region have only two effective Fermi
points, leading to standard c ¼ 1 phases. This agrees
perfectly with the numerical data in Fig. 3(b).
Wenow focus on the comparisonwith local observables to

further characterize theC phase. Focusing on the energy, we
superimpose the 2Fmodel prediction for the first and second
derivatives e02FðτÞ and e002FðτÞ to the DMRGdata in Figs. 3(a)
and 3(a0). We observe two jump discontinuities that are
computed exactly in the 2F model [47]. The qualitative
resemblance with the numerical data is impressive given the
simplicity and phenomenological nature of the 2F model.
Furthermore, this total energy splits into two contributions
that are directly connected to the order parameters nf andnb.
We define the single-particle kinetic energy Kf ¼
−ð1=LÞPjhc†jcjþ1 þ H:c:i and the pair-hopping kinetic
energy Kb ¼ −ð1=LÞPjhc†jþ1c

†
jcjcj−1 þ H:c:i such that

e0 ¼ tKf þ t0Kb and Kb ¼ e00ðτÞ according to the
Feynman-Hellmann theorem. The 2F model prediction then
simply corresponds to each term of Eq. (5). The comparison
with DMRG data is displayed in Fig. 3(c) with dotted lines.
Kf andKb capture theorder parameter value essentially up to
a sine function.Wedoobserve that they arevery close to zero
in thePπ andF phases, respectively. In theCphase, theyboth
vary following the qualitative behavior obtained within the
2F model. Last, the band-filling interpretation helps one to
understand finite-size effects: in bothFigs. 3(a) andFig. 3(c),
jumping from one plateau to the next corresponds to filling
the systemwith another pair. For instance,withL ¼ 56 there
are between 0 and 7 pairs that are progressively created as t0
increases.

This pair creation is also plainly seen in the density
profile obtained with open boundary conditions with
DMRG, which fully supports our interpretation of the C
phase. We show in Fig. 4 the Fourier transform of the local
density fluctuations hδnji ¼ hc†jcji − n. Indeed, for the F
and Pπ , we expect leading fluctuations at 2kf ¼ 2πn and
2kb ¼ πn, respectively. Such constant behaviors are clearly
observed in Fig. 4 around the coexistence region by
recalling that n ¼ 0.25. Within the C phase, the leading
fluctuations emerge at k ¼ 2πðnf þ nbÞ, with a second
main peak at k ¼ 2πnb and a very small signal at k ¼ 2πnf.
This is understood from the sketch of Fig. 4. In the C phase,
pairs effectively repel each other and add some excluded
volume to the remaining unpaired fermions. Then, if one
equally spaces the total number Nf þ Nb of effective
particles, this corresponds to a mean distance of
1=ðnf þ nbÞ. On top of that, pairs add an extra signal—
since that locally doubles the density—corresponding to a
typical spacing of 1=nb. Consequently, following the
location of the peaks allows one to quantitatively follow
the order parameters. Notice that such excluded volume
effects go beyond the 2F model picture according to which
the fluctuations of the two fluids should be independent.
Phase stability.—If we consider that interactions

between fermions and bosons have been totally neglected,
the effectiveness of the 2F model looks rather surprising. In
reality, as we have seen, these degrees of freedom delo-
calize in the same 1D setup and effectively repel each other
because one site cannot be occupied by one fermion and
one boson at the same time. The main consequence of this
is that single-particle hopping can create one pair by putting
two unpaired fermions close by (and vice versa). At the first
level of approximation, we need to include a term like
−t

P
jðσþj djdjþ1 þ H:c:Þ. Yet one such term is completely

irrelevant because it conserves momentum: the annihilation

FIG. 4. Map of the absolute value of the Fourier transform of
local density fluctuations hδnji as a function of t0=t for an open
chain with L ¼ 200.
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of two fermions with momentum k1 and k2 leads to the
creation of one boson with momentum k1 þ k2 þ 2πm,
where m ∈ Z. As we discussed initially, the fermionic
particles are concentrated around k ∼ 0, whereas the
bosonic ones are located around k ∼ π. This term is thus
ineffective: it fails to hybridize bosonic and fermionic
degrees of freedom and can be safely neglected. On the
contrary, the bosons quasicondense around k ¼ 0 in
between the F and P0 phases. Interactions are then resonant
and hybridize fermionic and bosonic degrees of freedom.
According to the description developed in Ref. [26], one
then expects a direct continuous transition with central
charge c ¼ 3=2, which is in agreement with the numerics
for t0 < 0 [25].
Conclusions.—We have presented a study of the pairing

transition in a model featuring a competition between the
delocalization of fermions and that of pairs. The DMRG
results and their interpretation using a simple phenomeno-
logical model strongly support the existence of an unex-
pected coexistence phase of paired and unpaired fermions.
These remarkable outcomes put on a more solid basis the
2F model presented in Ref. [26] and provide an open route
to wider applications in the context of one-dimensional
models featuring paired phases.
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