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We introduce the concept of a Floquet gauge pump whereby a dynamically engineered Floquet
Hamiltonian is employed to reveal the inherent degeneracy of the ground state in interacting systems. We
demonstrate this concept in a one-dimensional XY model with periodically driven couplings and transverse
field. In the high-frequency limit, we obtain the Floquet Hamiltonian consisting of the static XY and
dynamically generated Dzyaloshinsky-Moriya interaction (DMI) terms. The dynamically generated
magnetization current depends on the phases of complex coupling terms, with the XY interaction as
the real and DMI as the imaginary part. As these phases are cycled, the current reveals the ground-state
degeneracies that distinguish the ordered and disordered phases. We discuss experimental requirements
needed to realize the Floquet gauge pump in a synthetic quantum spin system of interacting trapped ions.
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Introduction.—The nontrivial topology of gapped phases
of matter is often manifested in states or modes localized at
the boundary or defects of the system protected by
symmetries and the bulk topological gap. This bulk-
boundary correspondence has been rigorously proven in
certain cases, especially in noninteracting systems [1–7].
Thus, the presence and properties of boundary modes is
used as a telltale experimental signature of bulk topology
[8]. However, boundary modes can arise in many other
topologically trivial cases as well [9]. Moreover, the
structure of boundary modes is far from clear in generic
interacting many-body systems [10–13]. Therefore, more
robust probes of bulk topology are highly sought after
[14–19].
An example is provided by the fractional Josephson

current Js between topological superconductors supporting
Majorana bound states as the phase difference Δϕ
between the superconductors is cycled by changing the
magnetic flux enclosed by the system [20–23]. Unlike the
Cooper-pair-mediated conventional Josephson current
between trivial superconductors Js ∝ sinΔϕ, the fractional
Josephson current is dominated by quasiparticle tunneling
through the Majorana bound states, Js ∝ sinðΔϕ=2Þ. In the
presence of interactions, the fractional Josephson current
probes the topological degeneracy of the interacting ground
state in a given fermion parity sector [11].
In this Letter, we consider a general spatially resolved

probe provided by the variations in the current flowing
through the bridge between two gapped phases as a relevant
gauge field is varied in a cycle. Ground-state degeneracies
through this cycle produce an anomalous periodicity of the
corresponding current on the cycle parameters [24,25].

As energy is pumped through the junction, we call such
probes “gauge pumps.” In a topological phase, degener-
acies are produced by topological boundary modes local-
ized at the bridge. However, it is important to note that the
role of bulk topology here is to guarantee the existence of
degeneracies in the many-body spectrum. While the notion
of topology depends on the choice of the local basis, or
language, the existence of a many-body degeneracy is
independent of this representation. Thus, depending on the
local basis, gauge pumps can detect ground-state degen-
eracies of bulk topological or spontaneous symmetry
broken phases.
We extend the notion of gauge pumps to periodically

driven systems. We introduce the “Floquet gauge pump”
realized by a periodic drive protocol that both imprints and
controls the bridge geometry. As a concrete demonstration,
we study the driven XY model in transverse field and show
how Dzyaloshinsky-Moriya interaction (DMI) terms can be
dynamically generated and tuned by the periodic drive.
Upon Jordan-Wigner transformation [26], the DMI and
exchange couplings map to complex fermion hopping and
pairing amplitudes that realize trivial and topological
superconducting phases of fermions corresponding, respec-
tively, to disordered and ordered phases of the original
spins. The spatial profile of the drive can be used both to
create the bridge geometry of a gauge pump and to cycle its
gauge parameters [27]. In the original spin model, the
gauge current corresponds to the rate of change of
magnetization. Thus, many-body degeneracies are revealed
by an anomalous dependence of magnetization current on
drive parameters. The gauge pump and its Floquet reali-
zation proposed in this Letter offer a powerful and widely

PHYSICAL REVIEW LETTERS 126, 206602 (2021)

0031-9007=21=126(20)=206602(7) 206602-1 © 2021 American Physical Society

https://orcid.org/0000-0003-3254-4494
https://orcid.org/0000-0003-1834-8286
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.206602&domain=pdf&date_stamp=2021-05-20
https://doi.org/10.1103/PhysRevLett.126.206602
https://doi.org/10.1103/PhysRevLett.126.206602
https://doi.org/10.1103/PhysRevLett.126.206602
https://doi.org/10.1103/PhysRevLett.126.206602


useful probe of symmetry-protected degeneracies of topo-
logical and ordered phases of quantum matter.
Floquet gauge pump.—A gauge pump is realized by a

cyclic Hamiltonian HðϕÞ in the gauge parameters ϕ [31]. A
constant ϕ can be gauged away as U†

gðϕÞHðϕÞUgðϕÞ ¼
Hð0Þ with a unitary gauge transformationUgðϕÞ. The gauge
pump is constructed by “bridging” two such Hamiltonians,
HL and HR, to form Hgp ¼ HLðϕLÞ ⊗ 1R þHLR þ 1L ⊗
HRðϕRÞ, where 1LðRÞ is the identity operator on the left
(right) side of the bridge given by HLR. After a gauge
transformation Ug ¼ UgLðϕLÞ ⊗ UgRðϕRÞ, we have the
gauge-equivalent Hamiltonian U†

gHgpUg ¼ HLð0Þ ⊗ 1Rþ
Hbðϕh;ϕpÞ þ 1L ⊗ HRð0Þ, where ϕh ≡ ϕL − ϕR, ϕp≡
ϕL þ ϕR, and Hb ¼ U†

gHLRUg. Then, the gauge currents
on each side are [33]

jL ≔
�∂Hgp

∂ϕL

�
¼

�∂Hb

∂ϕp

�
g

þ
�∂Hb

∂ϕh

�
g
; ð1Þ

jR ≔
�∂Hgp

∂ϕR

�
¼

�∂Hb

∂ϕp

�
g

−
�∂Hb

∂ϕh

�
g
; ð2Þ

where the expectation values h� � �ig ¼ hUg � � �U†
gi. Note that

the current flow is set with respect to the bridge, so the
positive values have opposite directions on each side. If the
bridge Hamiltonian Hb is a function of ϕh only, the two
currents jL ¼ −jR and no gauge charge is accumulated in
the bridge itself. However, if the bridge Hamiltonian also
depends on ϕp, then jb ≔ jL þ jR ¼ 2h∂Hb=∂ϕpig must
be carried by the bridge itself. If the bridge is “grounded,”
e.g., in a transport geometry of a mesoscopic device, this can
flow through the bridge. Otherwise, the gauge charge will
accumulate in the bridge.
The Floquet gauge pump provides two complementary

functions. First, as we show, periodic drive protocols with
spatial variations may be used both to engineer the
gauge parameters and to imprint the gauge pump geometry
[28–30]. Second, drive parameters can be tuned to engineer
Floquet topological phases of the system [34–46]. The
signatures of both equilibrium and Floquet topological
phases can then be probed by the dependence of the gauge
current pumped through the system on tunable gauge
parameters. To illustrate this, note that the stroboscopic
dynamics of the driven Hamiltonian HgpðtÞ ¼ HLðtÞ ⊗
1R þHLRðtÞ þ 1L ⊗ HRðtÞ ¼ Hgpðtþ 2π=ΩÞ with drive
frequency Ω is governed by the Floquet Hamiltonian
[47–49] HF

gp ¼ iðΩ=2πÞ ln Texp½−i H HgpðtÞdt�≡HF
L ⊗

1R þHF
LR þ 1L ⊗ HF

R, where the time-ordered exponential
Texp is over a full cycle of the drive and we have
set Planck’s constant ℏ ¼ 1. At high frequency up to

OðΩ−2Þ, we may expand [50,51] HF
a ¼Hð0Þ

a þP
n∈N½Hð−nÞ

a ;

HðnÞ
a �=ðnΩÞ for a ¼ L, R and

HF
LR ¼ Hð0Þ

LR þ
X
n∈N

�½Hð−nÞ
LR ;HðnÞ

LR�
nΩ

þ
X
a

�½Hð−nÞ
LR ;HðnÞ

a �
nΩ

þ H:c:

��
; ð3Þ

where OðnÞ ¼ ðΩ=2πÞ H OðtÞeinΩtdt are the Fourier com-
ponents of operator O and H:c: is the Hermitian conju-
gate. We denote the gauge parameters in this Floquet
Hamiltonian as ϕLðλÞ and ϕRðλÞ with λ denoting the drive
parameters, such as frequency, harmonic amplitudes, and
phases. The twofold function of the Floquet gauge pump is
then to provide independent realizations and tuning of ϕL
and ϕR. Figure 1 sketches our setup.
The gauge currents jaðtÞ ¼ h∂HgpðtÞ=∂ϕai are now time

dependent. We show in the Supplemental Material [33]
that, if the expectation value is calculated in Floquet modes
jΨðtÞi ¼ e−iϵtjΦðtÞi, where ϵ is the quasienergy and
jΦðtþ 2π=ΩÞi ¼ jΦðtÞi is the periodic eigenstate satisfy-
ing ½HgpðtÞ − i∂=∂t�jΦðtÞi ¼ ϵjΦðtÞi, then the average
gauge current is

jð0Þa ¼ ∂ϵ
∂ϕa

: ð4Þ

The choice of physical state of the driven system requires
care. Generic driven systems would, at infinitely long
times, settle into a uniform mixed state by absorbing
energy from the drive without bound [52,53], with the
exception of integrable or many-body localized systems
[54–58]. However, at intermediate times that can be
extremely long for sufficiently large systems, the Floquet
state describes the dynamics of the system rather well [59–
63]. At high enough frequency, in particular, an initial
equilibrium state of the average Hamiltonian Hð0Þ

gp is nearly
the same as the Floquet state. In the following, we will
assume that this is indeed the case and calculate gauge
currents from the Floquet spectrum.

(a)

(b)

FIG. 1. Sketch of the Floquet gauge pump and its ion-trap
realization. (a) By periodically driving the left (L) and right (R)
sides of the system with different gauge parameters ϕL and ϕR,
the pump geometry and currents jL and jR can be engineered and
controlled. (b) Trapped ions can realize a Floquet gauge pump
with effective spin degrees of freedom, in which magnetization
currents dhSzL;Ri=dt can be pumped by controlling the drive
protocols on each side.
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Spin model.—To illustrate the concepts, here we
consider a driven XY model in a transverse field
HXYðtÞ¼

P
j ½JxjðtÞSxjSxjþ1þJyjðtÞSyjSyjþ1þhzjðtÞSzj�, where

fSxj ; Syj ; Szjg are spin-1
2

operators, fJxj ; Jyjg are nearest-
neighbor couplings, and hzj is the transverse field at
lattice site j. We take the periodic drive to be independent
and uniform on each side with Jx;yj∈aðtÞ ¼ J̄x;ya þ
δJx;ya cosðΩtþ θJÞ, and hzaðtÞ ¼ h̄za þ δhza cosðΩtþ θhaÞ.
With this choice, the high-frequency Floquet Hamiltonian
takes the form [33] HF

XY ¼ HF
L þHF

LR þHF
R þOðΩ−2Þ,

HF
a ¼ H̄a þ

X
j∈a

ζaðSxjSyjþ1 þ SyjS
x
jþ1Þ; ð5Þ

HF
LR ¼ H̄LR þ ζLRðSxlSyr þ SylS

x
rÞ

þ ξLRðSxlSyr − SylS
x
rÞ: ð6Þ

Here H̄a is the average Hamiltonian on side a and ζa ¼
−δJ−a δhza sinðθha − θJÞ=Ω with δJ�a ¼ ðδJxa � δJyaÞ=2. At
the junction connecting the sites l ∈ L and r ∈ R, H̄LR
is the contribution from the averaged Hamiltonian,
ζLR ¼ −δJ−L½sinðθhR − θJÞδhzR þ sinðθhL − θJÞδhzL�=ð2ΩÞ,
and ξLR ¼ δJþL ½sinðθhR − θJÞδhzR − sinðθhL − θJÞδhzL�=ð2ΩÞ
is the DMI term dynamically generated by the drive. The
z component of the magnetization current on side a is
defined as ja ¼ dhSzai=dt, where Sza ¼

P
j∈a S

z
j.

It is mathematically convenient to analyze the spin
gauge pump in the dual fermionic language. To this end,
we employ the Jordan-Wigner transformation [26]
Sxj þ iSyj ¼ Pjc

†
j , S

z
j ¼ nj − 1

2
, with number operator nj ¼

c†jcj (cj; c
†
j are fermionic operators) at site j, and Pj ¼Q

l<j e
iπnl as the fermion parity to the left of site j. This is

followed by the gauge transformation eiϕac†j → c†j for
j ∈ a, to find, up to a constant, the equivalent fermion
Hamiltonian H̃F

L þHb þ H̃F
R,

H̃F
a ¼

X
j∈a

½wac
†
jcjþ1 þ Δac

†
jc

†
jþ1 þ μanj� þ H:c:; ð7Þ

Hb ¼ wbeiϕhc†lcr þ Δbeiϕpc†lc
†
r þ H:c:; ð8Þ

where chemical potential μa ¼ 1
2
hza, hopping amplitudes

wa ¼ 1
2
Jþa and wb ¼ 1

2
jðJþL þ iξLRÞj, and pairing ampli-

tudes Δa ¼ 1
2
jðJ−a þ iζaÞj and Δb ¼ 1

2
jðJ−L þ iζLRÞj, J�a ¼

ðJ̄xa � J̄yaÞ=2 are all real, and

ϕh ¼ ϕhb þ ðϕL − ϕRÞ; ð9Þ

ϕp ¼ ϕpb þ ðϕL þ ϕRÞ; ð10Þ

with ϕa ¼ 1
2
argðJ−a þ iζaÞ half of the pairing phase on each

side, ϕhb ¼ argðJþL þ iξLRÞ and ϕpb ¼ argðJ−L þ iζLRÞ.

This fermionic Hamiltonian is composed of a Kitaev chain
[20] on each side and a bridge Hamiltonian with both
hopping and pairing terms at the junction, thus realizing an
unconventional Josephson junction that can be controlled
by the original drive parameters. In terms of fermions, the
currents ja ¼ dhNai=dt, where Na ¼

P
j∈a nj is the fer-

mion number operator on side a.
The Kitaev chain has two phases. For jμaj < 2wa, there

are unpaired Majorana bound states at the junction and the
spectrum is doubly degenerate. In terms of spins, this
corresponds to the ordered phase of the XY model. By
contrast, when jμaj > 2wa, the spectrum is nondegenerate
and corresponds to a disordered spin chain. The presence or
absence of Majorana fermions at the junction affects the
current across the junction.
Floquet gauge current.—The average Floquet gauge

current is given by Eq. (4), which requires the calculation
of the quasienergies ofHF

XY . We will do so perturbatively in
the bridge Hamiltonian, where the unperturbed system
(without the bridge) has a Floquet spectrum jΦαi with
quasienergies ϵα. The quasienergy of a state jΦα¼0i in
second-order perturbation theory is ϵ ¼ ϵ0 þ ϵb, where
ϵbðϕh;ϕpÞ¼hΦ0jHbjΦ0iþ

P
α≠0 jhΦ0jHbjΦαij2=ðϵ0−ϵαÞ.

We present the details of this calculation in the
Supplemental Material [33] and quote the main results
here.
In the trivial (disordered) phase, the first-order contri-

bution vanishes since Hb projects out of the unperturbed
ground state. Then the current takes the form

jð0ÞL ¼Fc sinð2ϕpÞþFL sinðϕpþϕhÞþFt sinð2ϕhÞ; ð11Þ

jð0ÞR ¼Fc sinð2ϕpÞþFR sinðϕp−ϕhÞ−Ft sinð2ϕhÞ; ð12Þ

where Fc ∝ Δ2
b, FL;R ∝ wbΔb, and Ft ∝ w2

b are second
order in bridge tunneling amplitudes. The parity of the
nondegenerate state is fixed over the entire range of gauge
parameters.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Gauge current processes. In the trivial phase
(a)–(d), second-order virtual processes due to pairing Δbc

†
lc

†
r

(hopping wbc
†
lcr or wbclc

†
r) tunneling are shown by ( or ) in L

and ( or ) in R: (a) Cooper pair cotunneling; (b),(c) Cooper pair
condensation; (d) Cooper pair tunneling. In the topological phase
(e),(f) the direct tunneling via Majorana bound states contributes
by (e) Cooper pair splitting and (f) quasiparticle tunneling.
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We illustrate the processes contributing to gauge currents
in this case in Figs. 2(a)–2(d). For Δb ¼ 0; wb ≠ 0 we have
the conventional Josephson junction and the current jL ¼
−jR ¼ Ft sinð2ϕhÞ mediated by Cooper pair tunneling
across the bridge. When Δb ≠ 0; wb ¼ 0, the currents jL ¼
jR ¼ Fc sinð2ϕpÞ are mediated by Cooper pair cotunneling
to or from the bridge. In the general case, Δb; wb ≠ 0, the
current ja contain cross terms ∼ sinðϕp � ϕhÞ, contributed
by Cooper pair condensation at the bridge. Remarkably, in
this case, the period of the Josephson current in ϕh and ϕp

is doubled, similar to the junction with Majorana fermions
and conserved fermion parity (see below) [64].
In the topological (ordered) phase, the first-order con-

tribution dominates since Hb can now connect the unper-
turbed degenerate states. Then [33]

jð0ÞL ¼ P0ðFcs sinϕp þ Fqt sinϕhÞ; ð13Þ

jð0ÞR ¼ P0ðFcs sinϕp − Fqt sinϕhÞ; ð14Þ

where Fcs ∝ Δb and Fqt ∝ wb are linear in the bridge
tunneling amplitudes, and P0 ¼ hΦ0jPjΦ0i, where
P ¼ Q

j e
iπnj , is the parity of the state jΦ0i in the doubly

degenerate manifold. Note that ϵb=P0 ¼ −ðFcs cosϕp þ
Fqt cosϕhÞ switches sign in the cycle [33]. The term
∼ sinϕh is the fractional Josephson current mediated by
Majorana quasiparticle tunneling across the bridge [22].
The term ∼ sinϕp is an unconventional Josephson current
mediated by Cooper pair splitting at the bridge [65]; see
Figs. 2(e) and 2(f).
The two phases of the spin system can thus be distin-

guished by the Floquet gauge current in two ways: (i) the
linear (ordered) vs quadratic (disordered) dependence of
the gauge current on the bridge tunneling amplitudes, and
(ii) the dependence of the current on ϕh and ϕp. The latter is

often formulated as doubling of the periodicity of the
current in the topological vs trivial phase of fermions. This,
in turn, relies on the conservation of the parity P0 of the
fermionic ground state. If, instead, the system is prepared
with the same sign of ϵb, the parity of the ground state
exhibits switches accompanied by discontinuities in the
gauge current at topologically protected degeneracies in the
topological phase, which are absent in the trivial phase.
In terms of spins, the parity operator P ¼

exp½iπPjðSzj þ 1=2Þ� ¼ Q
jð−2SzjÞ. Therefore, the total

fermion parity is the maximal multipoint spin-z correlator.
If the spin state is independently prepared for each value of
ϕh and ϕp, we should expect the state with the lowest
energy is chosen. Therefore, the gauge current would show
the same periodicity in both phases, while in the ordered
phase it will show discontinuities accompanied with parity
switches reflected in the sign reversals of the maximal
multipoint spin-z correlator.
Numerical results.—To demonstrate these effects con-

cretely, we have calculated the gauge current by exact
diagonalization of the Floquet Hamiltonian in (7) and (8).

In Fig. 3, we plot the average current jð0Þb ¼ jð0ÞL þ jð0ÞR
through the bridge for a representative set of parameters
realizing the trivial and topological phases of fermions as a
function of gauge parameters ϕh and ϕp. Here, we have
chosen jΦ0i as the lowest energy state of the whole system.
In the trivial phase, the current scales with w2

b and since
both wb;Δb ≠ 0, compared to the conventional Josephson
junction with Δb ¼ 0, the periodicity in ϕp and ϕh is
doubled. In the topological phase, the current scales with
wb and its discontinuities coincide with parity switches, as
expected. Note that except for discontinuous jumps due to
parity switches in P0, jb ¼ 2P0Fcs sinϕp has no other
dependence on ϕh.
The magnetization current of the Floquet gauge pump

realized in the driven XY model is shown in Fig. 4 as a

(a) (b)

FIG. 3. The gauge current jb ¼ jL þ jR through the bridge,
scaled as jb=w2

b in the trivial phase (a) and jb=wb in the
topological phase (b). The parity of the ground state is fixed
in the trivial phase (a), but switches sign in the topological phase
(b). The parameters are wL ¼ wR ¼ 1 (units of energy),
ΔL ¼ ΔR ¼ 0.5;Δb ¼ wb ¼ 0.2; μL ¼ μR ¼ 2.15 in (a) and
μL ¼ μR ¼ 1.8 in (b).

(a) (b)

FIG. 4. The magnetization current dhSzbi=dt in units ofΩ, at the
bridge, Szb ¼ SzL þ SzR, for (a) disordered and (b) ordered phases
of the driven XY model. The correlator hQjð−2SzjÞi is fixed in (a)
and switches sign in (b). In units of Ω, the parameters are
J̄xL ¼ J̄xR ¼ 1.1× 10−4; J̄yL ¼ J̄yR ¼ 10−5;δJxL ¼ δJxR ¼ 3.2× 10−2;
δJyL ¼ δJyR ¼ 2× 10−3;θJ ¼ 0;δhzL ¼ −δhzR ¼ 0.03. In (a) h̄zL ¼
h̄zR ¼ 3 × 10−4; in (b) h̄zL ¼ h̄zR ¼ 10−4.
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function of phase shifts θha − θJ across the bridge. Note
that, as these drive parameters are varied, both phases ϕh
and ϕp as well as the amplitudes wb,Δb, wa, andΔa change
in a range determined by the drive amplitudes. We discuss
this dependence in the Supplemental Material [33]. The
difference between disordered [Fig. 4(a)] and ordered
[Fig. 4(b)] phases is that there is a true discontinuous
change in the current in Fig. 4(b), while the change in
Fig. 4(a) is gradual. The sign of the maximal multipoint
spin-z correlator provides a complementary signature of
ground-state degeneracy.
Experimental realization.—The Floquet gauge pump can

be realized using trapped atomic ions, which are a
well-established system for simulating the time evolution
of spin-lattice Hamiltonians [66]. Ions form defect-free
lattices and can support quantum coherence times of longer
than 10 min [67]. Interactions between ions—which map to
interactions between effective quantum spins—can be fully
controlled and reprogrammed using laser light [68]. These
features have made trapped ions the leading platform for
establishing atomic frequency standards [69] and for
performing quantum simulations of 1D spin chains.
All necessary components for implementing the Floquet

gauge pump have been previously demonstrated in trapped-
ion systems. Transverse-field Ising and XY models are
routinely generated by driving stimulated Raman transi-
tions between the effective spin states [70,71]. The result-
ing spin model depends upon the specific amplitude,
frequency, and phase characteristics of the Raman laser
beams, which can be controlled by passing the beams
through an acousto-optic modulator (AOM) [72].
Periodically driving the amplitude of the rf signal applied
to the AOMs will imprint itself as a periodic drive on the
spin-spin couplings fJxðtÞ; JyðtÞg and transverse fields
hzðtÞ; indeed, this technique has already been used to
realize Floquet engineering of a trapped-ion crystal [73].
The one key challenge will be to implement asymmetric
drives on the left and right halves of the chain. This may be
solved by either (i) adding a second pair of Raman beams
so that both halves can be independently addressed, or by
(ii) adding a second pair of frequency components to the
AOM rf drive to split a single Raman beam into two parts,
each with its own amplitude, frequency, phase, and
deflection angle.
Topological degeneracies are detected by discontinuities

in dhSzðtÞi=dt. At high frequencies Ω ∼MHz in Fig. 4,
dhSzðtÞi=dt ∼ 100 Hz (see [33]). Full contrast is obtained
over ∼10 ms. High resolution of 1 part in 1000 in θh

is also easily achieved. A strength of trapped-ion systems is
the ability to perform site-resolved spin-dependent
fluorescence, which acts as a projective measurement along
the z direction and can discriminate between spin states
with > 99.9% fidelity [74]. Since all effective spins are
detected simultaneously during the measurement, all pos-
sible spin correlators (including the N-body correlator

hSz1Sz2;…; SzNi) can be reconstructed when repeated trials
are averaged.
Concluding remarks.—Dynamical probes to interrogate

and uncover the emergent discrete symmetries that give rise
to ground-state degeneracies are key to discovering topo-
logical or broken-symmetry phases of matter. The Floquet
gauge pump we have introduced in this Letter is a unique
experimental tool conceiving this goal.
Although our proposed proof-of-principle implementa-

tion in an ion-trap platform involved simple many-body
systems, we expect that the Floquet gauge pump becomes a
routine technique even in complex interacting systems. The
required ingredient is the existence of the gauge group. A
sufficient condition in the spin models is the absence of
couplings between the directions parallel and perpendicular
to the field. The gauge group is then the rotations around
the field, which relabels the axes in the perpendicular
direction and leaves the spectrum unchanged. In the XY
model, for example, we can see immediately that the gauge
pump works just as well in the presence of Sz-dependent
interactions for spins [75,76], since these operators com-
mute with the gauge current [33]. In practical setups of ion-
trap simulators, tunable, variable-range interactions
between effective spin degrees of freedom are realized,
also in two-dimensional geometries [77], adding the
possibility of magnetic frustration and potentially leading
to exotic quantum spin liquid phases. Moreover, unveiling
discrete symmetries can help in understanding the mech-
anisms leading to the formation of localized many-body
boundary modes [11,13,24]. This is of fundamental impor-
tance for practical applications, in particular, if the vacuum
is topological and those modes represent quasiparticles
with non-Abelian braiding statistics.
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