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We study the resistivity of three-dimensional semimetals with linear dispersion in the presence of on-site
electron-electron interaction. The well-known quadratic temperature dependence of the resistivity of
conventional metals is turned into an unusual T6 behavior. An analogous change affects the thermal
transport, preserving the linearity in T of the ratio between thermal and electrical conductivities. These
results hold from weak coupling up to the nonperturbative region of the Mott transition. Our findings yield
a natural explanation for the hitherto not understood large exponents characterizing the temperature
dependence of transport experiments on various topological semimetals.
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Introduction.—Topologically protected nodal semimetals
are characterized by a linear energy-momentum relation and
can be viewed as a condensed-matter realization of Dirac and
Weyl high-energy particles [1,2]. These materials possess
peculiar transport properties as a result of their nontrivial
electronic band structure and of conducting boundary
modes. One of the most remarkable phenomena is the
negative magnetoresistance of Weyl semimetals, a manifes-
tation of the chiral anomaly [3,4]. The impact of impurity
scattering on the conductivity of three-dimensional (3D)
Dirac semimetals has attracted a lot of attention: a residual
conductivity is found for short-range random potentials [5]
but, at the same time, some of the universal transport features
characterizing graphene emerge [6,7]. While for small
disorder, propagating Dirac fermions determine the transport
properties, localized states appear in the opposite limit giving
rise to the non-Anderson scenario [8].
The low-energy spectrum of Dirac and Weyl nodes in

three dimensions cannot be gapped out by any symmetry-
preserving single-particle perturbation. Many-body effects,
when dominant, lead instead to the breakdown of this
protection and open a gap [9,10]. The energy-momentum
dispersion and the density of states (DOS) of 3D Dirac
semimetals are sketched in Fig. 1. The half-bandwidth D
corresponds to an ultraviolet cutoff Λ on the momenta and
sets the energy scale from which the physics becomes
nonperturbative [11], eventually leading to a Mott tran-
sition of the Dirac cone.
In this Letter, we focus on the essential and, at the same

time, simplest case of electron-electron interaction: a local
intra-orbital Hubbard repulsion U. We investigate how the
fundamental properties defining the electronic behavior of

conventional conductors (such as the bulk diagonal thermal
and electrical resistivity) get qualitatively modified in Dirac
and Weyl semimetals. The results are compared to previous
studies of the effects of impurity [6,12] and phonon [12]
scattering as well as of long-range Coulomb interaction [7].
By combining analytical and nonperturbative numerical
calculations, we unveil qualitative changes in the transport
properties in the whole parameter regime, from small to
large values of the dimensionless U=D coupling, where the
Mott-Hubbard metal-insulator transition eventually occurs.
In the weak-coupling limit, we explicitly test the appli-

cability to 3D Dirac semimetals of the Landau Fermi-liquid
theory, which is based on a one-to-one correspondence
between a system of interacting electrons and a gas of
asymptotically free fermions. In Fermi liquids (FL), quasi-
particle excitations are well defined if their characteristic

(a) (b)

(c)

FIG. 1. (a) Dirac or Weyl dispersion (for kz ¼ 0) and DOS with
cutoff Λ in k space and energy half-bandwidth, indicated by D.
(c) Temperature exponents for scattering rate and resistivity with
Hubbard repulsion U, sketched in (b), comparing 3D Dirac or
Weyl semimetals against conventional Fermi liquids.
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energy is larger than their inverse lifetime, proportional to
the scattering rate. If only electron-electron interaction is
present the resistivity vanishes at zero temperature and
grows as T2. In 3D Dirac or Weyl semimetals, the DOS
goes however quadratically to zero, approaching the Fermi
level. This affects both the lifetime and the effective
number of carriers available for transport leading to a
characteristic and unexpected T6 behavior for the resistivity
ρ. Interestingly, even away from the neutrality point
(E ¼ 0), the power-law exponents remain fairly large (4
to 5) in a narrow though resolvable window of dopings.
This observation has relevant implications for transport
properties of Dirac or Weyl materials, such as WP2, MoP,
Cd3As2, as well as Hg1−xCdxTe.
Weak-coupling result.—In the subspace of spin and

orbital degrees of freedom, denoted by the Pauli matrices
S⃗ and τ⃗, respectively, the three-dimensional noninteracting
Hamiltonian considered in Fig. 1 reads

H0 ¼ ℏvSz ⊗ ðk⃗ · τ⃗Þ; ð1Þ
where the momenta k⃗ live inside the sphere of radius Λ and
v represents the velocity, i.e., the slope of the linear
dispersion. The Hubbard U acts when the same orbital
is occupied by two electrons with opposite spins; i.e., here
we do not consider interorbital two-body terms [13]. In the
weak coupling regime (U ≪ D), perturbation theory
holds and the scattering rate ΓðωÞ ¼ −ImΣðωÞ can be
expressed as

ΓðωÞ∝ πV3U2

ðℏvÞ9
Z

dε1dε2dε3δðωþ ε1− ε2− ε3Þ

× ðf1ð1−f2Þð1−f3Þþ ð1−f1Þf2f3Þε21ε22ε23; ð2Þ

where V is the volume of the unit cell, fi indicates the
Fermi-Dirac distribution function of εi and the cutoff has
been set to infinity because of the weak-coupling condition.
The quadratic behavior of the DOS enters explicitly in the
integrand (last three factors) and cannot be considered
constant any more, as in conventional metals. An analytic
evaluation of (2) yields [13]

ΓðωÞ ∝ 8πV3U2T8

ðℏvÞ9 P8ðxÞ; ð3Þ

where x ¼ ω=T and P8ðxÞ ¼ x8=8!þ 7π4x4=960þ
31π6x2=1008þ 3π8=128, with T implicitly including the
Boltzmann constant kB. The first unexpected outcome of
this simple calculation is therefore the much higher
exponents entering the temperature and energy dependence
of Γ, compared to the standard quadratic Fermi-liquid
case [29].
Within the Kubo formalism we can compute the con-

ductivity σ making use of our analytical result (3) for ΓðωÞ
and relying on the bubble approximation [30]. Calculations

can be further simplified by disregarding the effect of the
real part of the self-energy, as done in Ref. [5] and rewriting
the conductivity in a Drude-Boltzmann fashion. This is
achieved upon introducing the “fω2” average of a quantity
QðωÞ

hQifω2 ¼
Z

dω

�
−
∂f
∂ω

�
ω2QðωÞ=

Z
dω½− ∂f

∂ω�ω
2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N

; ð4Þ

which leads to the definition of an effective number density
neff=m� ¼ N =ð6π2ℏ3vÞ as well as a scattering time

τ ¼ ℏ

�
1

2ΓðωÞ þ
3ΓðωÞ
2ω2

�
fω2

: ð5Þ

Using these definitions, the conductivity assumes the
simple Drude form:

σ ¼ e2τneff
m� : ð6Þ

This Drude-like formulation allows us to disentangle the
role of the DOS entering in the factor neff=m� from that of
the interaction, leading to a finite scattering time τ [31]. In
conventional metals, the temperature dependence of σ
stems entirely from τ, as all other quantities in Eq. (6)
do not depend on T. In contrast, the parabolic DOS of the
3D Dirac semimetal results in a quadratic behavior of the
effective number density: neff=m� ¼ T2=ð18ℏ3vÞ. Using
the polynomial expression of Γ given in Eq. (3) and
considering that at low temperature the contribution of
the second term in Eq. (5) is irrelevant, we arrive at
τ ∝ T−8. The resistivity calculated from Eq. (6), i.e., taking
into account the temperature dependence of both neff and of
τ, shows hence the characteristic ρ ∝ T6, shown in the
Table of Fig. 1.
Beyond weak coupling.—By releasing the constraint

U ≪ D and replacing perturbative analytic approaches
with numerical many-body methods, we can access the
intermediate-to-strong-coupling region. We do so using
fully dressed dynamical mean field theory (DMFT) [32]
Green’s functions in the Kubo expression [13]. As an
impurity solver, we use the iterated perturbation theory
solver [33–36], which offers computational advantages
maintaining a fair accuracy for our purposes [13]. The
resistivity ρ as a function of T for different values of U and
the corresponding exponent ∂ log ρ=∂ logT are shown in
Fig. 2. For small U, where DMFT nicely reproduces our
analytic results [green curves and blue dashed line in
Fig. 2(a)] as well as approaching the Mott transition located
at Uc ≈ 5.5D, we find that ρ scales as T6, in striking
contrast with the T2 resistivity of conventional metals. This
particular behavior is not limited to low temperatures but
remains visible up to T ≈ 0.1D, as marked by the white
region in the phase diagram in Fig. 2(b). The green region
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at low temperature aroundU=D ≈ 4 reflects the presence of
a low-energy kink in the T6-resistivity behavior (see
Ref. [13]). Upon further increasing T at U < Uc the
resistivity displays a smooth crossover to a linear regime
[green lines in Fig. 2(a) and dark green region in Fig. 2(b)].
ρ ∝ T is usually associated to bad-metallic behavior, a

phenomenon of high interest which can, however, have
different physical origins. Here, its appearance is ascribed
to incoherent high-temperature scattering, similar to what
happens in systems with nonvanishing DOS at the Fermi
level. For the case of a correlated metal on the Bethe lattice,
the relation to the bad metallic regime of hydrodynamic
theories [37,38] has been analyzed in detail in Ref. [39].
On the other side of the Mott transition instead, the

typical exponential behavior of an insulating resistivity is

recovered [red line in Fig. 2(a) and blue areas in Fig. 2(b)].
Close to the Mott transition the exponent becomes very
large, in analogy with the results for a semicircular
DOS [40]. The parameter region where ρ ∝ T6 holds is
substantially larger than the corresponding T2 one of
conventional FL [40] (see Fig. S3 and Sec. IVe of the
Supplemental Material [13]).
Finite doping.—After having found the T−6 dependence

of the electrical conductivity, we examine how far this
persists upon doping the Dirac semimetal (μ ≠ 0). Already
a small doping adds contributions to the scattering rate with
lower exponents, down to T2μ6. For ω ¼ 0, an analytic
calculation yields [13]

Γðω ¼ 0Þ ∝ T8Q6ðyÞ; ð7Þ

where now y ¼ μ=T and Q6ðyÞ ¼ 3π8 þ 12π6y2þ
20π4y4 þ 8π2y6. When the temperature scale is substan-
tially smaller than the chemical potential, i.e., T ⪅ 0.2μðTÞ,
the thermal broadening is negligible and the Dirac point is
sufficiently away in energy, such that it plays no role for
transport properties. In this case, the T2 term in Eq. (7)
dominates and the scattering rate behaves similar to the
usual FL. When T is increased beyond 0.2μ, the higher-
order terms begin to contribute significantly. At T > 0.6μ
[i.e., when the standard deviation of the derivative of the
Fermi distribution (≈1.8T) is roughly equal to μ] the T8

term prevails.
This is confirmed by a DMFT calculation of ρ away from

the neutrality point, shown in Fig. 3. Upon increasing the
temperature at n ¼ 0.5 (dark blue circles), ρ goes from T6

directly to T. With a small but finite doping, the conven-
tional T2 Fermi-liquid behavior emerges at low temper-
atures, in agreement with the analytical result (see Fig. 3).

(a)

(b)

FIG. 2. (a) DMFT results for the resistivity ρ of a 3D Dirac or
Weyl semimetal at zero doping, as a function of the temperature T
for different values of the interaction strength U=D (color bar), in
units of ρ0 ¼ 6π2ℏ3v=ðe2DÞ. The dashed lines indicate the
asymptotic behavior for low temperature and weak coupling
and for large temperature, respectively. (b) DMFT phase diagram,
where the color indicates ∂ log ρ=∂ log T, i.e., the exponent of the
T dependence of ρ.

FIG. 3. DMFT results for the resistivity as a function of
temperature of a Dirac semimetal for different fillings at inter-
action strength U ¼ 2D. The inset shows experimental data for
Cd3As2 from Ref. [41].
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At larger temperatures, however, before crossing over to the
linear behavior, higher T exponents in ρ are clearly visible.
The extension of this intermediate region depends on the
doping level. As we will discuss below, the possibility of
realizing fast-growing (even though not necessarily a clean
T6) power-law resistivity can play a crucial role for the
explanation of experiments on doped Dirac and Weyl
semimetals. For larger deviations from half-filling the
resistivity goes instead directly from quadratic to linear
and the influence of the Dirac fermiology in the inter-
mediate region is suppressed.
Other sources of scattering.—The precise way in which

Γ depends on ω stems from the nature of the one- and two-
body terms that we include in the model Hamiltonian.
These can be, for instance, a random disorder potential, an
electron-phonon interaction, as well as different paramet-
rizations of the electron-electron repulsion, like the intra-
orbital Hubbard U considered here.
Within the self-consistent Born approximation (SCBA),

ImΣ arising from disorder is proportional to the DOS—
hence it is quadratic in ω—and to the variance of the
disorder distribution. As a consequence τ ∝ T2. Interband
transitions can be safely neglected. This way the temper-
ature in the expression for σ drops out, yielding a residual
resistivity at low T. The case of (a weak) electron-phonon
interaction is similar, the only difference being an explicit
(linear) temperature dependence appearing in the variance
of the distribution of local displacements associated to
classical phonons above the Debye temperature. This leads
to τ ∝ T−3 and, upon plugging this into Eq. (6), to σ ∝ 1=T
which is in agreement with the high-temperature result
described in Ref. [12]. A third situation which can be easily
recasted in this simplified Drude-Boltzmann-like frame-
work is a long-range Coulomb interaction at weak coupling
strength: in this case, ΓðωÞ is given by maxðω; TÞ [6,7].
Interband contributions matter and one obtains τ ∼ 1=T
leading to σ ∝ T [13]. Having re-obtained these results
makes the comparison of the various scattering mecha-
nisms in three spatial dimensions easy. Vertex corrections
may introduce modifications as it has been shown, for
example, for Dirac fermions in 2D, where transport and
quasiparticle scattering times get different T dependen-
ces [42].
Specific heat and thermal transport.—The dispersion of

Dirac or Weyl semimetals affects also other important
transport and thermodynamic coefficients. One relevant
example is the temperature behavior of the specific heat.
In contrast to the usual renormalized linear behavior of a
conventional FL (cV ∝ T=Z, with Z being the quasiparticle
weight) for the undoped Dirac semimetals it depends on the
cube of the temperature (cV ∝ T3=Z3) [43]. Similar as for ρ,
doping away from the degeneracy point introduces a
conventional (linear) behavior at low temperatures: cVðTÞ∝
7π4T3=5Z3ð1þay2Þ with y¼μ=T and a¼5Z2=7π2. The
crossover between FL-like and Dirac-like behavior happens

at T ≈ 0.27Zμ, i.e., approximately the same temperature as
for the scattering rate. We calculated the specific heat within
DMFT using the approach outlined in Ref. [44]. The results
confirm the trend given by the analytic expression [13].
Similarly, our DMFT calculations of the thermal con-

ductivity yield results in sharp contrast to conventional FL:
we find κ ∝ T−5. In analogy to 1=σ shown in Fig. 2(a), the
thermal resistivity 1=κ displays a crossover at T ∼ 0.1D,
from T5 to T2. We can then conclude that the κ=σ ratio
is linear in T at low temperatures, which represents a
result compatible with a Wiedemann-Franz-type of rela-
tion. Let us recall that this conclusion holds roughly in
the white region of the phase diagram of Fig. 2(b)
and is reached within the bubble approximation for the
conductivities [13].
Relation to materials.—First of all it is important to

stress that, even though we have so far been explicitly
referring to 3D Dirac semimetals, our results apply also to
the case of Weyl nodes, since these are characterized by the
same quadratic DOS. In the literature, high exponents for
the resistivity have been reported in some Dirac and Weyl
semimetals, e.g., in the type-II Weyl system WP2 [45], in
the multifold-fermion systemMoP [46] and in the 3D Dirac
semimetal Cd3As2 [41]. Data for the latter are shown in the
inset to Fig. 3. As discussed above for the finite doping
case, already a small distance between the Fermi energy
and the Dirac point leads to the emergence of a conven-
tional T2 behavior for small T. Our results remain,
however, applicable to the intermediate temperature region
shown in Fig. 3, providing an interpretation for the
observed T4 behaviors of ρwithout any ad hoc assumption.
Despite the fact that the situation is more complicated for
WP2 and MoP due to the presence of additional bands, both
compounds show similar behavior (see Ref. [13]), sug-
gesting that the results of our simple model are at least
qualitatively applicable to a wider range of materials.
Hg1−xCdxTe has been reported as a realization of the so-
called Kane semimetal [47], i.e., a 3D zero-gap Dirac
system. Provided that the influence of the structural thermal
expansion remains small, we expect the appearance of T6

terms in the longitudinal resistivity. The situation at the
critical doping, where the gap closes, is, however, disturbed
by the presence of an additional flat band. The Weyl
semimetal realized in compressively strained HgTe might
offer a promising alternative, as it avoids the disturbance of
the heavy-hole band and requires no fine-tuning of the
doping [48].
Conclusions.—In three-dimensional Dirac and Weyl

semimetals, the temperature power law of the scattering
rate originating from short-range electron-electron inter-
action gains as many as six powers, compared to conven-
tional FL. As a consequence, electrical and thermal
resistivities are altered dramatically and go up four powers
of T: in Dirac or Weyl systems we indeed find ρ ∝ T6 and
κ−1 ∝ T5. These conclusions hold not only for weak
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strengths of the Hubbard repulsion, where they can also be
derived analytically, but also in a substantial region of the
T − U phase diagram, essentially up to the point at which
the semimetal breaks down and is turned into a Mott
insulator. These particular temperature exponents lead to an
unusual situation: they describe a strongly suppressed
contribution to transport from electron-electron repulsion
at low temperatures but they rapidly prevail upon increas-
ing T, in the intermediate-to-high regime. Interestingly, if
we move away from the Dirac or Weyl point, the temper-
ature exponent for the electrical resistivity is only slightly
altered, shifting to ρ ∝ T4−5, offering a natural and simple
explanation to the so far elusive origin of the high
exponents of bulk diagonal transport coefficients measured
in several Dirac and Weyl materials.
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