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A quantum spin Hall insulating state that arises from spontaneous symmetry breaking has remarkable
properties: skyrmion textures of the SO(3) order parameter carry charge 2e. Doping this state of matter
opens a new route to superconductivity via the condensation of skyrmions. We define a model amenable to
large-scale negative sign free quantum Monte Carlo simulations that allows us to study this transition. Our
results support a direct and continuous doping-induced transition between the quantum spin Hall insulator
and an s-wave superconductor. We can resolve dopings away from half-filling down to δ ¼ 0.0017. Such
routes to superconductivity have been put forward in the realm of twisted bilayer graphene.
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Introduction.—Doping a band insulator generically leads
to a Fermi liquid state whose Fermi surface may become
unstable to superconductivity. In contrast, insulating states
where correlation effects are dominant provide different
routes to superconductivity. Low-lying Goldstone modes
present in the insulating state can provide a glue between
doped charge carriers. Spin fluctuation theories of high-
temperature superconductivity follow this idea [1,2]. The
correlated insulator can also contain preformed pairs that
become charged upon doping. The resonating valence bond
state based theory of high-temperature superconductivity
follows this idea [3,4]. More recently, the idea of preformed
pairs has been put forward in the realm of graphene Moiré
superlattice systems [5] such as twisted bilayer graphene
[6]. Here, a correlation-induced topological insulator con-
tains skyrmions that carry charge 2e as low-lying excita-
tions [7]. Upon doping superconductivity emerges due to
the condensation of charged skyrmions.
The model we consider in this Letter differs significantly

from those discussed in the context of graphene Moiré
superlattice systems but captures the essence of the
aforementioned topological route to superconductivity. In
Ref. [8], we introduced a model of Dirac fermions
supplemented with a next-nearest-neighbor interaction
term (∼λ) and investigated its phase diagram at half-filling
(see Fig. 1). The interaction dynamically generates a
quantum spin Hall (QSH) insulating state that breaks
SU(2) spin rotational symmetry.
Upon further increasing λ at half-filling, the QSH state

gives way to an s-wave superconductor (SSC). The QSH
SSC transition falls into the class of deconfined quantum
critical points (DQCPs) [7]. Our previous work [8] suggests

that both phase transitions are described by conformal field
theories. The semimetal to QSH transition is in the Gross-
Neveu-Yukawa universality class [11] whereas the DQCP
is associated with a noncompact CP1 [12] field theory
describing the fractionalized SO(3) order parameter.
The insulating QSH state has both preformed pairs,

corresponding to skyrmions of the QSH order parameter,
and Goldstone modes. Understanding the fate of this state
as a function of doping is the aim of this Letter. Our results
are consistent with a doping-induced weakly first-order or
continuous QSH SSC transition driven by the condensation
of skyrmions.

FIG. 1. Phase diagram of the model of Eq. (1) in the interaction
strength λ versus chemical potential plane. The data at half-filling
are reproduced from Ref. [8]. The critical chemical potential μc
for the transition from the quantum spin Hall (QSH) to the s-wave
superconductor (SSC) is computed by measuring the pairing gap
at half-filling [see Ref. [9] and Fig. 3(a)].
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Model and method.—We consider a model of Dirac
fermions in 2þ 1 dimensions on the honeycomb lattice
with Hamiltonian

Ĥ ¼ −t
X

hi;ji
ðĉ†i ĉj þ H:c:Þ − λ

X

⬡

�X
⟪ij⟫∈⬡Ĵi;j

�
2

ð1Þ

with Ĵi;j ¼ iνijĉ
†
i σĉj þ H:c: The spinor ĉ†i ¼ ðĉ†i;↑; ĉ†i;↓Þ

where ĉ†i;σ creates an electron at lattice site i with z
component of spin σ. The first term accounts for nearest-
neighbor hopping. The second term is a plaquette inter-
action involving next-nearest-neighbor pairs of sites and
phase factors νij ¼ �1 identical to the Kane-Mele model
[13], see also Ref. [8]. Finally, σ ¼ ðσx; σy; σzÞ correspond
to the Pauli spin matrices. We used the ALF (algorithms for
lattice fermions) implementation [14] of the auxiliary-field
quantum Monte Carlo (QMC) method [15–17]. Because
λ > 0, we can use a real Hubbard-Stratonovich decom-
position for the perfect square term. For each field
configuration, time-reversal symmetry is present, even at
finite chemical potential, so that eigenvalues of the fermion
matrix occur in complex conjugate pairs. Hence, we do
not suffer from the negative sign problem. In contrast
to Ref. [8], we used a projective version of the algorithm
(PQMC) [17–19]. The PQMC is a canonical approach in
which the ground state is filtered out of a trial wave
function that is chosen to be a Slater determinant. To
avoid the negative sign problem, the trial wave function
has to be time-reversal symmetric, so that we can only
dope away from half-filling with Kramers pairs. For the
considered trial wave function (see Ref. [9] for further
details), we observed that a projection parameter set by the
linear length of the lattice is sufficient to reach the ground
state.
Mean-field approaches.—Before discussing our QMC

results, it is instructive to carry out a mean-field approxi-
mation. When expanding the square in Eq. (1), diagonal
terms Ĵ2i;j contain, among other interactions, s-wave pair
hopping terms that permit us to introduce an SSC order
parameter. The off-diagonal terms allow for QSH ordering
(see Ref. [9] for a detailed calculation). As seen in Fig. 2,
doping the semimetal produces the SSC. This reflects the
pairing instability of Fermi surfaces to attractive inter-
actions within Bardeen-Cooper-Schrieffer theory. The pro-
tecting symmetries of the QSH state are related to time
reversal and global charge conservation. Hence, the coex-
istence region (QSHþ SSC) is topologically trivial.
Furthermore, the transition at half-filling from the QSH
to QSHþ SSC is continuous and does not require the
closing of the single-particle gap. Upon doping, the mean-
field approximation generically supports two scenarios:
(i) a continuous transition with dynamical exponent z ¼ 2
from the QSH to QSHþ SSC, (ii) a first-order transition
from the QSH to SSC [20]. Our mean-field approximation
provides examples of both scenarios. As expected, it fails to

capture the DQCP between the QSH and SSC phases at
half-filling [8].
QMC results.—We now turn to unbiased QMC results

which, in contrast to the mean-field approach, capture
Goldstone modes as well as topological skyrmion excita-
tions. We consider t ¼ 1 and λ ¼ 0.026, which places us in
the center of the QSH phase at half-filling.
At this filling, we show in Fig. 3 the momentum

dependence of the spin-orbit coupling gap ΔQSHðqÞ and
the SSC gap ΔηðqÞ. To obtain these data, we measured
the imaginary-time displaced correlation functions of the
spin-orbit coupling operators ÔQSH

r;n ¼ Ĵrþδn;rþηn . Here, r
denotes a unit cell and n runs over the six next-nearest
neighbor bonds of the corresponding hexagon with legs
rþ δn and rþ ηn. We also consider the s-wave pairing
operators η̂þ

r;δ̃
¼ ĉ†

rþδ̃;↑
ĉ†
rþδ̃;↓

, where δ̃ runs over the two

orbitals in unit cell r. The gaps were obtained from

SQSHðq; τÞ ¼
X

n

hÔQSH
q;n ðτÞÔQSH

−q;nð0Þi ∝ e−ΔQSHðqÞτ;

SSSCðq; τÞ ¼
X

δ̃

hη̂þ
q;δ̃
ðτÞη̂−

q;δ̃
ð0Þ þ η̂−

q;δ̃
ðτÞη̂þ

q;δ̃
ð0Þi;

∝ e−ΔηðqÞτ; ð2Þ
in the limit of large imaginary time τ [9]. As expected for a
Goldstone mode, ΔQSHðqÞ in Fig. 3(b) exhibits a gapless,
linear dispersion around the ordering wave vector q ¼ Γ.
On the other hand, ΔηðqÞ remains clearly nonzero with
quadratic dispersion [see Fig. 3(a)]. It is also important to
note that an s-wave pair has a smaller excitation energy
than twice the single-particle gap, as shown in the inset of
Fig. 3(a). Thus, pairing is present and we can foresee that
these preformed pairs will condense to form a super-
conducting state upon doping.
A key quantity to understand the nature of the metal or

superconductor to insulator transition is the behavior of
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FIG. 2. Mean-field ground-state phase diagram. The blue
and purple (green) lines correspond to continuous (first-order)
transitions.
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the chemical potential upon doping away from half-filling
[21–23]. For first-order transitions, μ shows a jump. For
continuous transitions, and with the assumption of a single
length scale, the singular part of the free energy scales as
f ∝ jμ − μcjνðdþzÞ with d the dimensionality and ν (z) the
correlation length (dynamical) exponent. Since the doping
defined as 1 − n is proportional to ∂f=∂μ and the compress-
ibility is associated with twisting boundaries in the imaginary-
time direction, one can show that for transitions driven via the
chemical potential the hyperscaling relation νz ¼ 1 holds.
Thereby, δ ∝ jμ − μcjνd. Doping a band insulator satisfies the
hyperscaling assumption. For a quadratic band, z ¼ 2 so that
δ ∝ jμ − μcjd=2. This scaling behavior is satisfied upon
doping a bosonic Mott insulator [23].
With the PQMC, we can compute the ground-state

energy for a given, even particle number Np and then
derive the chemical potential. However, we found it more

efficient to extract μ from an estimate of Δη−ðNpÞ by
analyzing the long imaginary-time behavior of the pair
correlation function

P
δ̃hη̂þq;δ̃ðτÞη̂−q;δ̃ð0Þi ∼ e−Δη− τ, where

q ¼ Γ. In particular,

μ≡ EðNpÞ − EðNp − 2Þ
2

¼ Δη−ðNpÞ
2

: ð3Þ

With the doping relative to half-filling defined as
δ≡ 1 − ½ðNp − 1Þ=2L2� [24], we obtain the data shown
in Fig. 4. For alternative ways of computing μ see the
Supplemental Material [9].
Figure 4 plots δ as a function of μ. The vertical dash-

dotted line corresponds to the critical chemical potential.
The data support a linear behavior for μ > 0.16, but this
form would overshoot the critical chemical potential. In a
narrow window of dopings, δ < 0.01, we observe a down-
turn in the functional form. Within our precision, we can
offer two interpretations: a weakly first-order transition or a
continuous transition with dynamical exponent z > 2. We
note that continuous metal-insulator transitions with z > 2
have been put forward in the context of doped quantum
antiferromagnets [21,25].
Another important question to answer is if the onset of

superconductivity is tied to the vanishing of the QSH order
parameter. To this end, we consider the renormalization-
group invariant correlation ratios (α ¼ QSH, SSC)

Rα ≡ 1 −
Sαðq0 þ δqÞ

Sαðq0Þ
ð4Þ

based on the equal-time correlation functions of the spin
current and s-wave paring operators in momentum
space, SαðqÞ. Here, q0 ¼ ð0; 0Þ is the ordering wave
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FIG. 3. Momentum dependence of (a) the pairing gap and
(b) the QSH gap for the half-filled case, in the vicinity of the Γ
point along the direction toward theM point in the Brillouin zone
of the honeycomb lattice. The inset of (a) shows the 1=L
dependence of the single-particle gap ΔSP and half of the
s-wave pairing gap Δη=2. The inset of (b) shows the QSH
gap, ΔQSH, versus 1=L.
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vector and q0 þ δq a neighboring wave vector. By
definition, Rα → 1 (→ 0) in the ordered (disordered)
state for L → ∞. At a critical point, Rα is scale invariant
and for sufficiently large L, one should observe a
crossing in Rα for different system sizes. Figures 5(a)
and 5(b) show results for RSSC and RQSH as a function of
δ. Because of the observed binding of electrons in the
insulating state, we expect superconductivity for any
δ > 0. This is confirmed by Fig. 5(a). The drift in the
crossings due to corrections to scaling is consistent with
δSSCc → 0 in the thermodynamic limit. The same quantity
is plotted for the QSH correlation ratio in Fig. 5(b). The
data show that the QSH order parameter vanishes very
rapidly as a function of doping. Again, the drift of the
crossing point as a function of system size scales to
smaller values of δ. Given the data, we can provide an
upper bound δQSHc < 0.0017 which corresponds to our
resolution [26]. In our interpretation of Fig. 4, we could
not exclude the possibility of a weakly first-order
transition. On our finite systems, neither of the

correlation ratios show a discontinuity, consistent with
a continuous transition.
As a cross-check, we consider the second-moment,

finite-size correlation length [27], ξ2α ≡ f½Pr jrj2SαðrÞ�=
½Pr S

αðrÞ�g, obtained from the real-space, equal-time
correlation functions [28]. The inset of Fig. 5(b) reveals
the absence of saturation of the QSH correlation length for
δ > 0.0017. Saturation would be expected for a first-order
transition.
The notion of skyrmion superconductivity hinges on a

locking in of the charge density and texture of the SO(3)
QSH order parameter. To image this, we dope two holes
away from half-filling and localize them by modulating the
chemical potential. The real space correlations of the QSH
order parameter are then expected to show a texture akin to
a skyrmion. Precisely this is seen in Fig. 6(a) at λ ¼ 0.026.
In contrast, far away from the QSH state at λ ¼ 0.05 [see
Fig. 6(b)] a skyrmion, is not present around the localized
pair.
Discussion and summary.—Our data suggest a doping-

induced, continuous, and direct phase transition between
the QSH state and the SSC. Clearly, we cannot exclude the
possibility of a weakly first-order transition in which the
correlation length saturates beyond our maximum system
size (L ¼ 24). Our dynamically generated QSH state pos-
sesses Goldstone modes and charge-2e skyrmions of the
QSH order parameter. The Goldstone modes correspond to
long-wavelength fluctuations of the spin-orbit coupling and
do not break time-reversal symmetry. Hence, single-particle
spin-flip scattering off Goldstone modes—as present
in doped quantum antiferromagnets—is not allowed.
Remarkably, one can also show that ½ĉk¼0; Ĥλ� ¼ 0
(see Ref. [9]), so that at the Γ point the single-particle
spectral function [9] is unaffected by the interaction Ĥλ. This
is in strong contrast to quantum antiferromagnets, where
Goldstone modes couple to single-particle excitations to
form a narrow band of spin polarons [29–31]. These
arguments suggest that Goldstone modes do not provide
the glue that leads to pairing.
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FIG. 6. Real-space equal-time correlation function of the QSH
order parameter around a pinned hole pair at the origin.
Hamiltonian (1) was supplemented with a pinning potential
Ĥpin ≡ C

P
r

P
δ̃ e

−jðrþδ̃Þj=ξĉ†
rþδ̃

ĉrþδ̃ with C ¼ 1 and ξ ¼ 1. We

consider L ¼ 15, at (a) λ ¼ 0.026 and (b) λ ¼ 0.05.
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We interpret our results in terms of preformed pairs,
skyrmions carrying charge 2e, that condense upon doping.
In fact, by pinning the charge we were able to image the
skyrmion. Within this picture, the correlation length that
diverges at the transition corresponds to the average
distance between skyrmions.
The finite-temperature phase diagram remains to be

analyzed. Such calculations could reveal pseudogap phys-
ics related to preformed pairs at small doping. At large
dopings, a crossover to conventional superconductivity is
expected.
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