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Multiple Self-Organized Phases and Spatial Solitons in Cold Atoms Mediated by
Optical Feedback
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We study the transverse self-structuring of cold atomic clouds with effective atomic interactions
mediated by a coherent driving beam retroreflected by means of a single mirror. The resulting self-
structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying
hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear
susceptibility. Phase domains are described by Ginzburg-Landau amplitude equations with real coef-
ficients. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of
the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic
traps with motion controlled by phase gradients in the driving beam.
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Spontaneous self-organization phenomena are ubiqui-
tous in out-of-equilibrium classical and quantum dynam-
ics [1,2]. In recent years, cold and ultracold gases have
provided useful platforms for probing light-atom self-
structuring by means of density modes or internal states,
resulting in crystalline (density) or magnetic order,
respectively [3—7]. In the first case, the emerging dynami-
cal potential for the atoms induces a density grating
which, in turn, scatters photons into the side-band modes
creating the potential and leading to optomechanical self-
structuring [8]. Several experimental realizations of such
phenomena in cold atoms setups have offered ground-
breaking insight into different quantum many-body
physics aspects such as quantum phase transitions [9],
supersolidity [10-13], topological defects [14], and struc-
tural phase transitions [15].

A key aspect, analogous to soft-matter realizations [16],
is that the collective bunching of the scatterers gives rise to
a self-focusing Kerr-like optomechanical nonlinearity [17].
Hence, Ashkin et al. coined the term “artificial Kerr
medium” [18]. Transverse optical pattern formation in
effective-Kerr media (and beyond) has been the subject
of wide theoretical and experimental efforts since the
1990s, in both cavity and single-feedback-mirror (SFM)
configurations [19-22]. Among the major advantages of
cold atoms is the possibility to significantly reduce thresh-
old intensities when the atoms are laser cooled to hundreds
of uK [3,23,24].

In this Letter, we show that, despite some similarities
between Kerr media and mobile dielectric scatterers, the
latter is a source of a much richer structural transition
behavior characterized by three light-atom crystalline
phases, i.e., hexagonal, stripe, and honeycomb. We explore
phase stability for an SFM setup in terms of a weakly
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nonlinear analysis, leading to the amplitude equations
(AEs) and relative free energy functional in the universal
Ginzburg-Landau form [25]. This provides an accurate
description of the selection mechanism and spatial soliton
formation in a cloud of atoms undergoing optomechanical
self-structuring. Our results can be potentially applied to
other systems of interest, e.g., in free-space or longitudi-
nally pumped cavities [26,27], transverse structures in
optomechanical arrays [28-30], and can shed new light
on the ongoing discussion of potential phases in the rapidly
developing fields of dipolar supersolids [31-33], and
quantum ferrofluids [34]. Indeed, current experimental
realizations have started to explore 2D configurations
[35], where transitions between hexagon and honeycombs
were predicted theoretically [36]. Based on a close corre-
spondence between the condensate energy functional and
the Lyapunov functional discussed below, we conjecture
that our results are helpful to understand novel super-
solid phases in between the hexagonal and honeycomb
phases [37].

We consider a thermal cloud of two-level atoms at
temperature 7, where atomic motion is overdamped by
means of optical molasses [23]. In this regime, the trans-
verse dynamics is described by density modulations only,
ie., n(r,t) =1+ én(r,t), where the atom density n(r, )
obeys a Smoluchowski drift-diffusion equation [8,27]:

On(r.t) = —pDV | - [n(r, g (r, 1)] + DV3 n(r,1), (1)

where D is the cloud diffusivity, and f = 1/kpT, with kg
being the Boltzmann constant. The dipole force reads

Alr'A
faip(r. 1) = _Tvis(r’ 1), (2)
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FIG. 1. Optomechanical SFM scheme. A far detuned input
beam of amplitude £, ; and wave number k illuminates a cloud
of rubidium atoms of thickness L, optical density by, and
temperature 7. The reflected £_ provides feedback by means
of the dipole potential, leading to self-structuring with critical
wavelength A [3].

where s(r, ) is the total light intensity (saturation para-
meter), and A corresponds to the light-atom detuning in
units of half the linewidth I'. The SFM setup, represented in
Fig. 1, is a paradigmatic scheme for Talbot-based optical
pattern formation [19,21,38]. For a diffractively thin cloud,
the field equations are

0.8 (r,1) = +i%

La(r.1) =i n(r, 0)E.(r.1), (3)
where the + sign relates to £, and vice versa. As typical
for the dispersive regime, we assume large detuning
and low saturation, so that scattering forces are neglected
and the susceptibility of the cloud is real and reads
x = boA/2(1 + A?) (see Fig. 1) [3]. The feedback loop
is closed by considering propagation to the mirror (at
distance d from the cloud) and back [39]. Let us introduce
a constant ¢ = Al'A/4kgT, representing competition
between the dipole potential and spatial diffusion. We
first study the linear stability of spatial modulations [40].
By parametrizing 6n(q, t) = aexp(iq - r + vt) + c.c., one
obtains the following growth rate:

O'R|g+’0|2b0A sin ®
(1+4?) ’

-Dlq|*|1 (4

~—

v(q) =

where © = d|q|?/k, is the total diffractive phase slippage,
R is the mirror reflectivity, and q is the transverse wave
vector. Imposing v(q) =0, we arrive at the threshold
condition

1+ A2 1+ A?
1= 2= > =1, (5
€+l 6RbyAsin® ~ 6RbyA  ° (

~—

where I, represents the minimum threshold, i.e., at the
critical wave number g2 = k7 /2d (purely dispersive case).
We explore the coexistence of self-structured phases by
means of numerical and analytical observations. Unlike the
molasses-free case considered in Ref. [41], the dissipative
dynamics of Eq. (1) admits a (quasi) stationary state given
by the Gibbs distribution [27]

exp[—os(r, 1)]
Jo dPrexpl—os(r,1)]’

(6)

Neg(r, 1) =

where Q is the integration domain and s(r,7) =
|E(r,1)]> + |E_(r,1)|*. The feedback loop is integrated
according to the following scheme: first, we propagate the
incident field through the cloud, i.e., 5+(z =L,r 1) =
&, oexp{iyn(r,r)}. We then propagate in free-space over
two dimensions to determine £_(r, 7), and update the atom
density according to ng,(r,t) in Eq. (6). By expanding
Eq. (6) to first order, one shows that, regardless of the sign
of y, the total refractive index of the cloud is of self-
focusing Kerr type and, thus, the atom density is expected
to choose a hexagonal (honeycomb) geometry above
threshold for A <0 (A > 0) [3,21]. However, for the
optomechanical interaction we numerically observe the
formation of three self-structured phases shown in Fig. 2
for different values of A at fixed by, i.e., hexagons (H™),
stripes (S) and honeycombs (H™), where the labels
identify the atom-density states. To characterize transitions
between such phases we span the two-dimensional space
(A, by) within the experimentally achievable ranges of A =
[10,110] and by = [50,150] [3]. The stability diagram
shown in Fig. 3 is obtained from numerical simulations
by seeding with an S state and iterating the loop long
enough to let the structure stabilize. A simple discriminant
between phases is the number of peaks in the resonant
circle of the far field. In Fig. 3, we report a stability domain
of S states (in gray) for /1, = 1.2, sandwiched between
two disjoint H* regions (in yellow and cyan) and separated
by lines of constant y.

A weakly nonlinear analysis based on the AEs represents
the canonical approach to describe pattern selection proc-
esses above threshold [42]. The first step is to consider the
formal solution of the feedback loop for the reflected field
with a homogenous pump, namely,

@ [E-(r ® [E-@)?  (© [E(r))?

neq e neq neq

FIG. 2. Optomechanical self-structured phases obtained at
fixed by = 110 and T = 300 pK. (a),(d) H™ phase at A = 25.
(b),(e) S phase at A = 55. (b),(€) HT phase at A = 90.
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FIG. 3. Numerically observed stability domains of the S, H*
phases at fixed 7/1,. The observed boundaries match the values
of the susceptibility y from Eqgs. (15)—(16). The S phase (gray) is
absolutely stable on a domain sandwiched between the lines
corresponding to the ;(?_2 points (red), around y =1 (black).
Moreover, the S phase coexists with H* and minimizes the free
energy in the region between the y}!, (dashed-black) and y7,
points (dashed-green). H* phases are stable within the yellow
and cyan domains and absolutely stable outside )({{2.

E_(r.1) = VRILE . (z = L.v,1) = VRILex™), (7)

where we defined the free-space propagation operator

A~

L = ¢Vi/k_ Thus, we are left with one equation for
the density perturbation én(r, f) only:

(=V2 4 8,)xén(r, 1)
= RolyV | - [(1 + én(r, 1))V | |Lernx2]  (8)

A similar approach was used to derive a closed equation
capturing the features of the long-range interactions medi-
ated by feedback in a SFM scheme [43]. We now expand
|Le() |2 up to O[(y6n)?] and introduce slow spatial
scales up to third order [44]. Furthermore, we derive the
solvability conditions for our model and substitute a
hexagonal ansatz for the resonant terms n;:

1 3
m=y [ZA,»exp(iq,» -r) +cc.|, (9)
i=1

where q; +q,+q3; =0 and |q;| = ¢>. After lengthy
algebra [40], we obtain the AEs in Ginzburg-Landau form
with real coefficients, namely,

0iA; = HA; +IATAL =11 Y _|A[PA - nalAPA;, (10)
Vil

where i, j, k = 1,2, 3 and i # j # k. Note the presence of
quadratic nonlinear terms, acting as phase-dependent
sources for the hexagonal lattice. In many circumstances,
pattern stability close to threshold is universally described
in terms of the AEs critical points, depending on the
coefficients in Eq. (10) [21,38]. Defining p = I/I,, and for
a generic critical shift @, the linear growth and three-mode
mixing coefficients read

u(p) = 2RIyo(p — 1)y sin @, (11)

Rlyopy [

Ap.y) = sin®, + y(cos®, —1)].  (12)

Already at this level, a number of interesting considerations
arise. Indeed, in sharp contrast with the Kerr model, the
coefficient A changes sign around the point y = cot(®,./2)
(y = 1 with ®, = 7/2), determining a change in the type of
hexagons observed (H* for A > 0 and vice versa) [21].
Second, such a change occurs only for y > 0, i.e., for blue-
detuning (A > 0) while, instead, no phase other than H™ is
expected at threshold for red-detuning. As in the
Hamiltonian case, phase selection processes, such as the
one in Fig. 3, are described in terms of Lyapunov or free
energy functionals associated with the AEs in Eq. (10) [42].
To this aim, we compute the self and cross-cubic coef-
ficients as follows:

Rlyopy? 1
ri(p.y) = %p){ {){Sin@c + 2—§(cos3®c +cos®c)] ,
(13)
RI 2 2
va(p.y) = % [){<sin®c —sin30, + g)
+2(1 —cos 4@6)} . (14)

The Lyapunov functional assumes the following quartic
form, as in the weak crystallization scenario [45,46]:

3
FHA}] =—u Z |Ail? — A(ATA3A] +c.c)
P

3 3
72 71
+?Z|Ai|2|Aj|2+EZ|Ai|4’ (15)
Q=1 i—1

where i =1, 2, 3 and i # j. A coefficient 1 > 0 (1 < 0)
implies that self-structuring is a first-order transition and
that H* (H™) states tend to be favored. Competition with S
is studied by deriving the Lyapunov functional for the three
phases Fy= and Fg, and computing the corresponding
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minimum as a function of y, shown in Fig. 4(a) [40]. In
addition we have the critical points [47]

/"> _ 1272 < _ /12(2}/2 + yl) (16)
I 2 R (7 2V
representing the lower S and the higher H* stability limits,
respectively. We overall single out six values of y, as shown
in Fig. 3. A first couple y7, arises from the intersections
Fu-(x7) = Fs(x;) and Fy-(r3) = Fs(x5) [Fig. 4(a)] and
provide phase boundaries in good agreement with the
observed ones in Fig. 3 (dashed-green lines). The extremal
points in Eq. (16), shown in Fig. 4(b), yield two other pairs
of intersections 4}, and y¥,, delimiting the S/H competi-
tion regions around y = 1 (dashed-black and solid-red
lines). Furthermore, at the same point, the system (dis-
playing S states) recovers inversion symmetry (IS) whereas
the H™ and H™ states break IS (but are inversion symmetric
to each other). This phenomenon is known for dissipative
pattern formation [47—49]. The highly interesting feature
here is that such a recovery results from a self-tuning
depending on the interaction strength y, while, otherwise, it
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FIG. 4. (a) Lyapunov functionals for the three phases at
p =12: Fy+(y) (blue), Fy-(x) (orange), Fg(y) (green). The
resulting minimum determines the observed self-structured phase
while yi and y; identify the boundaries in Fig. 3. Note that
Fu+ = Fy- for y =1 (dotted line). (b) Critical ug and ﬂﬁi
(dashed-black and red lines) and phase boundaries (dashed-
green) as functions of y. Intersections with y (blue) determine
the size of the S/H competition region.

typically results from different boundary conditions (e.g.,
in Maragoni compared to Rayleigh-Bénard convection
[48]), symmetry-breaking external fields [50] or polariza-
tion imbalances [38,51], and strong changes in the homo-
geneous solution [52-55].

A second intriguing consequence of the optomechanical
nonlinearity, elucidated by the AEs, is the possibility of
exciting light-density spatial solitons when 4 # 0 [56,57].
Indeed, as a universal feature of the AEs (10), the H*
branches display subcriticality, i.e., they are stable in a
negative range pgy < 4 < 0, originating in a saddle-node
bifurcation at

12
Py = ——— . 17
N 4(y2 +211) (17)

This is shown for A > 0 in Fig. 5(a), where the stable H*
branch A; = A, = A; = A (blue line), computed analyti-
cally from the AEs coefficients above, is in good agreement
with the numerical amplitude [max(nq) — min(ne,)]/2 for
p € (0.8, 1.2] [40]. The stability of H* for y < 1 allows for
the existence of a spatial feedback soliton characterized by
a dark intensity profile |£_(r)|?, which serves as a self-
sustained trap for a bright density peak, as displayed in
Figs. 5(b)-5(c). Note also the presence of higher-order
rings induced by the locally inhomogeneous energy
balance [56]. Controlling soliton motion via external phase
gradients enables atomic transport applications [58,59]. We
address that by means of 1D particle dynamics simulations,
where parameters are tuned in order to match those in Fig. 5

(a)
3
—— H* Analytical
v H* Numerical (up)
924 v H* Numerical (down)
1 4
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neq(r)

FIG. 5. Optomechanical solitons for blue detuning. (a) Ampli-
tude of the H*, S branches as functions of p for y~0.31
(by =50, A = 80, o ~ 78.3), plotted together with the numerical
amplitude (black and red triangles). (b)—(c) Dark backwards
intensity and bright density profiles at p = 0.98.
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FIG. 6. 1D angular dynamics simulation of 4 x 10* atoms with
a driving beam possessing OAM (index / = 1) [40]. (a) Density
evolution n(x, 7), numerically reconstructed from particle trajec-
tories. (b) Phase space distribution at 7 = 120.

in the thermodynamic limit [40]. Assuming periodic
boundary conditions, the atoms are effectively confined
in an annular trap and, thus, a linear phase on the input field
corresponds to the 1D angular equivalent of orbital angular
momentum (OAM) [60]. The density profile is shown in
Fig. 6(a) where, after a transient behavior, the atoms
initially prepared in a density peak reach steady state
angular drift, induced by OAM. This is illustrated by the
phase space distribution in Fig. 6(b), where the nonzero
momentum of the trapped region is visible.

In summary, we have demonstrated transverse opto-
mechanical self-structuring to hexagonal, stripe, and
honeycomb phases in cold atomic clouds subject to optical
feedback. Focusing on a simple model of overdamped
motion, we pointed out that the Kerr picture of the
optomechanical nonlinearity fails to capture structural
transitions among hexagons, stripes, and honeycombs,
depending on the coupling strength. Indeed, in that case,
only the second addend in Eq. (12) arises as the resulting
nonlinearity involves the intensity alone, resulting in a pure
quadratic dependence on the susceptibility [21]. By con-
trast, the optomechanical nonlinearity involves the trans-
port generating product n(r, )V, s(r,¢) [27], so that the
mixing of linear terms from both factors gives rise to a
shifted quadratic dependence on y, becoming effective Kerr
for y > 1 only. For y = 1, the system is inversion sym-
metric, undergoing a structural transition to a stripe state.

In light of the similarity between the Lyapunov func-
tional discussed here and the energy functional for a
dipolar condensate, we expect that the analytical frame-
work presented here will be useful to understand stripelike
supersolid phases, as those discussed recently in Ref. [37].
Apart from dipolar supersolids [34,36], where current
experiments are transitioning towards 2D configurations

and may provide soon rigorous experimental confirmations
[35], structural transitions have received recent attention in
the context of driven Bose-Einstein condensates [61]. The
proposed scheme provides relative ease of implementation
of 2D symmetry-breaking phenomena in cold atoms [3],
and quantum gases [36,62]. The overdamped limit used
here simplifies the analytical treatment but the phase
selection occurs also in the Hamiltonian case, i.e., without
optical molasses [40]. Finally, the existence of optome-
chanical feedback solitons motivates us to explore analogs
in quantum degenerate gases [62], in connection with the
concept of quantum droplets [63,64].

All authors acknowledge financial support from the
European Training Network ColOpt, which is funded by
the European Union (EU) Horizon 2020 program under the
Marie Skodowska-Curie Action, Grant Agreement
No. 721465. We are grateful to G. Labeyrie and R.
Kaiser for numerous discussions and the fruitful collabo-
ration on optomechanical self-organization.

"giuseppe.baio @strath.ac.uk

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[3] G. Labeyrie, E. Tesio, P. M. Gomes, G.-L. Oppo, W. J. Firth,
G.R.M. Robb, A.S. Arnold, R. Kaiser, and T. Ackemann,
Nat. Photonics 8, 321 (2014).

[4] S. Ostermann, F. Piazza, and H. Ritsch, Phys. Rev. X 6,
021026 (2016).

[5] G. Labeyrie, I. Kresi¢, G. R. Robb, G.-L. Oppo, R. Kaiser,
and T. Ackemann, Optica 5, 1322 (2018).

[6] 1. Kresi¢, G. Labeyrie, G.R. M. Robb, G.-L. Oppo, P. M.
Gomes, P. Griffin, R. Kaiser, and T. Ackemann, Commun.
Phys. 1, 33 (2018).

[7]1 M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, and
T. Esslinger, Phys. Rev. Lett. 120, 223602 (2018).

[8] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).

[9] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Nature (London) 464, 1301 (2010).

[10] S. Gopalakrishnan, B.L. Lev, and P.M. Goldbart, Nat.
Phys. 5, 845 (2009).

[11] S. Gopalakrishnan, B.L. Lev, and P. M. Goldbart, Phys.
Rev. A 82, 043612 (2010).

[12] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner,
and T. Esslinger, Science 336, 1570 (2012).

[13] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T.
Donner, Nature (London) 543, 87 (2017).

[14] G. Labeyrie and R. Kaiser, Phys. Rev. Lett. 117, 275701
(2016).

[15] X. Li, D. Dreon, P. Zupancic, A. Baumgirtner, A. Morales,
W. Zheng, N. R. Cooper, T. Donner, and T. Esslinger, Phys.
Rev. Research 3, 1L.012024 (2021).

[16] P.J. Reece, E. M. Wright, and K. Dholakia, Phys. Rev. Lett.
98, 203902 (2007).

203201-5


https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphoton.2014.52
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1364/OPTICA.5.001322
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nphys1403
https://doi.org/10.1038/nphys1403
https://doi.org/10.1103/PhysRevA.82.043612
https://doi.org/10.1103/PhysRevA.82.043612
https://doi.org/10.1126/science.1220314
https://doi.org/10.1038/nature21067
https://doi.org/10.1103/PhysRevLett.117.275701
https://doi.org/10.1103/PhysRevLett.117.275701
https://doi.org/10.1103/PhysRevResearch.3.L012024
https://doi.org/10.1103/PhysRevResearch.3.L012024
https://doi.org/10.1103/PhysRevLett.98.203902
https://doi.org/10.1103/PhysRevLett.98.203902

PHYSICAL REVIEW LETTERS 126, 203201 (2021)

[17] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-
Kurn, Phys. Rev. Lett. 99, 213601 (2007).

[18] A. Ashkin, J. M. Dziedzic, and P. W. Smith, Opt. Lett. 7,
276 (1982).

[19] W.J. Firth, J. Mod. Opt. 37, 151 (1990).

[20] G. DAlessandro and W.J. Firth, Phys. Rev. Lett. 66, 2597
(1991).

[21] G. D’Alessandro and W. J. Firth, Phys. Rev. A 46, 537 (1992).

[22] A. Scroggie, W. Firth, G. McDonald, M. Tlidi, R. Lefever,
and L. A. Lugiato, Chaos Solitons Fractals 4, 1323 (1994).

[23] M. Saffman and Y. Wang, Lect. Notes Phys. 751, 361
(2008).

[24] J. A. Greenberg, B.L. Schmittberger, and D.J. Gauthier,
Opt. Express 19, 22535 (2011).

[25] L. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).

[26] B. L. Schmittberger and D.J. Gauthier, New J. Phys. 18,
103021 (2016).

[27] E. Tesio, G.R.M. Robb, T. Ackemann, W.]J. Firth, and
G.-L. Oppo, Phys. Rev. A 86, 031801(R) (2012).

[28] J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldan,
and G.J. de Valcarcel, Phys. Rev. A 93, 033850 (2016).

[29] J. Ruiz-Rivas, G. Patera, C. Navarrete-Benlloch, E. Roldan,
and G.J. de Valcarcel, New J. Phys. 22, 093076 (2020).

[30] M. Ludwig and F. Marquardt, Phys. Rev. Lett. 111, 073603
(2013).

[31] L. Tanzi, E. Lucioni, F. Fama, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys.
Rev. Lett. 122, 130405 (2019).

[32] F. Bottcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo,
T. Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).

[33] L. Chomaz, D. Petter, P. Ilzhofer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider,
M. Sohmen et al., Phys. Rev. X 9, 021012 (2019).

[34] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Bottcher, K. Ng, S.
Graham, P. Uerlings, T. Langen, M. Zwierlein, and T. Pfau,
arXiv:2103.13930.

[35] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J.
Mark, R. Bisset, L. Santos, and F. Ferlaino, arXiv:2102.05555.

[36] Y.-C. Zhang, F. Maucher, and T. Pohl, Phys. Rev. Lett. 123,
015301 (2019).

[37] Y.-C. Zhang, T. Pohl, and F. Maucher, arXiv:2103.12688.

[38] A.J. Scroggie and W. J. Firth, Phys. Rev. A 53, 2752 (1996).

[39] T. Ackemann and W. Lange, Appl. Phys. B 72, 21 (2001).

[40] See Supplemental Material at http:/link.aps.org/supplemental/
10.1103/PhysRevLett.126.203201 for more details on the
weakly nonlinear analysis, the variational formalism and the
particle dynamics simulations.

[41] E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and
G.-L. Oppo, Phys. Rev. Lett. 112, 043901 (2014).

[42] R. Hoyle, Pattern Formation: An Introduction to Methods
(Cambridge University Press, Cambridge, England, 2006).

[43] Y.-C. Zhang, V. Walther, and T. Pohl, Phys. Rev. Lett. 121,
073604 (2018).

[44] P. Manneville, Dissipative Structures and Weak Turbulence
(Academic Press, San Diego, 1990).

[45] S. Brazovskii, I. Dzyaloshinskii, and A. Muratov, Sov. Phys.
JETP 66, 625 (1987), http://www.jetp.ac.ru/cgi-bin/e/index/
e/66/3/p6257a=list.

[46] E. Kats, V. Lebedev, and A. Muratov, Phys. Rep. 228, 1 (1993).

[47] S. Ciliberto, P. Coullet, J. Lega, E. Pampaloni, and C. Perez-
Garcia, Phys. Rev. Lett. 65, 2370 (1990).

[48] F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).

[49] B. A. Malomed and M. I. Tribel’skii, Sov. Phys. JETP 65, 305
(1987), http://jetp.ac.ru/cgi-bin/e/index/e/65/2/p305a=list.

[50] I. Kresi¢, G.R. M. Robb, G. Labeyrie, R. Kaiser, and T.
Ackemann, Phys. Rev. A 99, 053851 (2019).

[51] A. Aumann, E. Biithe, Y. A. Logvin, T. Ackemann, and W.
Lange, Phys. Rev. A 56, R1709 (1997).

[52] M. Tlidi, M. Georgiou, and P. Mandel, Phys. Rev. A 48,
4605 (1993).

[53] M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett. 73, 640
(1994).

[54] W.J. Firth and A. J. Scroggie, Europhys. Lett. 26, 521 (1994).

[55] R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi,
Phys. Rev. A 52, 791 (1995).

[56] T. Ackemann, W. Firth, and G.-L. Oppo, Adv. Atom., Mol.,
Opt. Phys, 57, 323 (2009).

[57] E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and
G.-L. Oppo, Opt. Express 21, 26144 (2013).

[58] W.J. Firth and A.J. Scroggie, Phys. Rev. Lett. 76, 1623
(1996).

[59] A.M. Yao, C.J. Gibson, and G.-L. Oppo, Opt. Express 27,
31273 (2019).

[60] G. Baio, G.R. M. Robb, A. M. Yao, and G.-L. Oppo, Phys.
Rev. Research 2, 023126 (2020).

[61] Z. Zhang, K.-X. Yao, L. Feng, J. Hu, and C. Chin, Nat.
Phys. 16, 652 (2020).

[62] G.R.M. Robb, E. Tesio, G.-L. Oppo, W.J. Firth, T.
Ackemann, and R. Bonifacio, Phys. Rev. Lett. 114,
173903 (2015).

[63] 1. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Phys. Rev. Lett. 116, 215301 (2016).

[64] Y.-C. Zhang, V. Walther, and T. Pohl, Phys. Rev. A 103,
023308 (2021).

203201-6


https://doi.org/10.1103/PhysRevLett.99.213601
https://doi.org/10.1364/OL.7.000276
https://doi.org/10.1364/OL.7.000276
https://doi.org/10.1080/09500349014550211
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevA.46.537
https://doi.org/10.1016/0960-0779(94)90084-1
https://doi.org/10.1007/978-3-540-78217-9
https://doi.org/10.1007/978-3-540-78217-9
https://doi.org/10.1364/OE.19.022535
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1088/1367-2630/18/10/103021
https://doi.org/10.1088/1367-2630/18/10/103021
https://doi.org/10.1103/PhysRevA.86.031801
https://doi.org/10.1103/PhysRevA.93.033850
https://doi.org/10.1088/1367-2630/abb73e
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.021012
https://arXiv.org/abs/2103.13930
https://arXiv.org/abs/2102.05555
https://doi.org/10.1103/PhysRevLett.123.015301
https://doi.org/10.1103/PhysRevLett.123.015301
https://arXiv.org/abs/2103.12688
https://doi.org/10.1103/PhysRevA.53.2752
https://doi.org/10.1007/s003400000518
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203201
https://doi.org/10.1103/PhysRevLett.112.043901
https://doi.org/10.1103/PhysRevLett.121.073604
https://doi.org/10.1103/PhysRevLett.121.073604
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p625?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p625?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p625?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p625?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p625?a=list
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1103/PhysRevLett.65.2370
https://doi.org/10.1088/0034-4885/41/12/003
http://jetp.ac.ru/cgi-bin/e/index/e/65/2/p305?a=list
http://jetp.ac.ru/cgi-bin/e/index/e/65/2/p305?a=list
http://jetp.ac.ru/cgi-bin/e/index/e/65/2/p305?a=list
https://doi.org/10.1103/PhysRevA.99.053851
https://doi.org/10.1103/PhysRevA.56.R1709
https://doi.org/10.1103/PhysRevA.48.4605
https://doi.org/10.1103/PhysRevA.48.4605
https://doi.org/10.1103/PhysRevLett.73.640
https://doi.org/10.1103/PhysRevLett.73.640
https://doi.org/10.1209/0295-5075/26/7/008
https://doi.org/10.1103/PhysRevA.52.791
https://doi.org/10.1016/S1049-250X(09)57006-1
https://doi.org/10.1016/S1049-250X(09)57006-1
https://doi.org/10.1364/OE.21.026144
https://doi.org/10.1103/PhysRevLett.76.1623
https://doi.org/10.1103/PhysRevLett.76.1623
https://doi.org/10.1364/OE.27.031273
https://doi.org/10.1364/OE.27.031273
https://doi.org/10.1103/PhysRevResearch.2.023126
https://doi.org/10.1103/PhysRevResearch.2.023126
https://doi.org/10.1038/s41567-020-0839-3
https://doi.org/10.1038/s41567-020-0839-3
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevA.103.023308
https://doi.org/10.1103/PhysRevA.103.023308

