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Wecompute the total radiatedmomentumcarried bygravitationalwaves during the scatteringof two spinless
black holes at the lowest order inNewton’s constant,OðG3Þ, and all orders invelocity. By analytic continuation
into the bound state regime, we obtain theOðG3Þ energy loss in elliptic orbits. This provides an essential step
toward the complete understanding of the third-post-Minkowskian binary dynamics.We employ the formalism
of Kosower, Maybee, and O’Connell (KMOC), which relates classical observables to quantum scattering
amplitudes, and derive the relevant integrands using generalized unitarity. The subsequent phase-space
integrations are performed via the reverse unitarity method familiar from collider physics, using differential
equations to obtain the exact velocity dependence from near-static boundary conditions.
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Introduction.—There has been enormous progress in
applying scattering amplitude tools such as generalized
unitarity [1–3] and the double copy [4–9], together with
effective field theory ideas [10–12], to the classical rela-
tivistic two-body problem, geared toward applications for
current and future gravitational wave detectors [13,14].
Such techniques have produced new results for the dynam-
ics of spinless [12,15–30] and spinning [31–44] black
holes, including finite-size effects [45–53]. This effort has
focused mainly on the conservative dynamics, described by a
two-body Hamiltonian [12,54], or the scattering gravita-
tional waveform [55–60]. In this Letter we use amplitude
methods to compute a radiative observable for a bound
binary system in general relativity. We do so by first
calculating the momentum emitted in the form of gravita-
tional waves during the scattering of two spinless black holes
atOðG3Þ and all orders in velocity. By analytic continuation
from scattering to bound kinematics [61–63] we obtain the
OðG3Þ energy loss in an elliptic orbit of a binary system.
We use the Kosower, Maybee, and O’Connell (KMOC)

[64] formalism to express classical observables directly
in terms of scattering amplitudes and their unitarity
cuts. Recently, this formalism has been used [65] to
understand classical soft radiation [66–70]. By focusing
on an inclusive observable, involving a sum over final
states of the scattering event, we avoid the need for detailed

knowledge of the gravitational waveform and subtleties
arising from infrared divergences in its phase. In a well-
defined sense, observables calculated in the KMOC for-
malism are analogous to inclusive cross sections in collider
physics. Taking this analogy seriously allows us to import
crucial technology developed in the particle physics con-
text. Concretely, we use generalized unitarity (based on the
factorization of loop quantities into products of simpler on-
shell tree-level amplitudes [1–3]) to construct the loop
integrands; we employ (canonical) differential equations
[71–75] adapted to the post-Minkowskian (PM) expansion,
in powers of Newton’s constant G, in classical gravity [76],
together with the reverse unitarity method [77–80] for the
phase-space integration.
There are alternative approaches to the radiation reaction

problem in hyperbolic scattering [81–86]. At 3PM order,
the radiative effects on the scattering angle have been
previously computed by amplitudes-based eikonal tech-
niques in maximal supergravity [85] and by classical
methods in general relativity [87]. With the radiated energy
and momentum, our work provides a key missing ingre-
dient of the full radiative 3PM dynamics. Furthermore, we
compare to post-Newtonian (PN) results in the literature
[63,88–97], which give this quantity to fixed orders in a
small velocity expansion, finding agreement.
KMOC formalism.—In this Letter, we compute classical

gravitational observables in the KMOC formalism [64].
The basic idea of this approach is to set up a gedanken
experiment for the scattering of two wave packets, widely
separated by an impact parameter bμ, and measure the
change in an observable O, with corresponding quantum
operator O, between in and out states
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ΔO ¼ houtjOjouti − hinjOjini: ð1Þ

Since the out state is related to the in state via the time
evolution operator, i.e., the S-matrix, jouti ¼ Sjini, we can
write the change in the observable in terms of the scattering
amplitude M ¼ −iðS − 1Þ, while still capturing the real
time dynamics of the scattering process. For instance, the
gravitational impulse Δpμ

i is given as the momentum
difference of particle i by measuring operator Pi and the
radiated momentum ΔRμ by measuring Rμ.
We are interested in classical observables. This corre-

sponds to the regime where the Compton wavelength of the
particles representing the black holes is the smallest length
scale in the problem (we point to Ref. [64] for a detailed
discussion of this limit). For us, it suffices to state that we are
interested in regions of external kinematicswhere themassive
particle momenta pi scale likeOð1Þ in the classical counting
and the four-momentum transfer q, as well as the graviton
loop variablesli scale likeOðℏÞ. Employing the terminology
from the “method of regions” [98], the classical ℏ expansion
is then equivalent to the so-called soft expansion. This
classical counting will play a crucial role when constructing
loop integrands and evaluating the corresponding integrals.
In the classical limit, the dependence on the shape of the

wave packets drops out and one arrives at [99]

ΔO ¼
Z

d̂Dqδ̂ð−2p1 · qÞδ̂ð2p2 · qÞeib·qðIO;v þ IO;rÞ ð2Þ

where, borrowing language from collider observables, one
can define virtual and real kernels, IO;v and IO;r, which
respectively depend on the virtual amplitude, and its
unitarity cuts including a phase-space integration akin to
those appearing in cross sections. The observable of interest
is specified by a corresponding measurement function. In
the KMOC formalism, this amounts to a numerator
insertion or differential operator acting on the component
amplitudes in Eq. (2).
In this Letter, we focus on the radiated momentum, ΔRμ.

As explained in Ref. [64], this observable only receives real
contributions, and the corresponding kernel expressed in
terms of scattering amplitudes

ð3Þ

is given by a sum over unitarity cuts featuring the exchange
of sets of messengers, X, in our case gravitons, including
the empty set. As usual, such unitarity cuts involve an
integral over the n-point Lorentz invariant phase space
(dΦn). The measuring function for ΔRμ is encoded in the
insertion of lμ

X, representing the total momentum carried by
the messengers. We use an “all-outgoing" convention for
the momenta in the scattering amplitudes and mostly minus
signature metric. Equation (3) is closely related to the
textbook formula for the radiated momentum [100]

ΔRμ ¼
Z

dΦ1ðkÞkμh�νρðkÞhνρðkÞ; ð4Þ

in terms of the momentum-space gravitational waveform,
hμνðkÞ. However, the calculation of the waveform requires
computing multiscale integrals depending on different
components of kμ, whereas, as we will argue below, the
direct computation of the multiparticle phase-space integral
involves simpler functions of a single scale.
Although Eq. (3) is valid beyond perturbation theory, in

this Letter, we will expand it perturbatively in GEcm=b,
whereG is Newton’s constant and Ecm is the center of mass
energy. The first contribution to ΔRμ arises atOðG3Þ, since
bremsstrahlung of finite energy gravitons can occur only
once one of the black holes is deflected due to its
gravitational interaction with the other.
Integrands from generalized unitarity.—With an eye

toward more general observables, at fixed order in G,
instead of computing both real and virtual contributions in
Eq. (2) separately, we obtain the integrand for the virtual
amplitudes and then take appropriate cuts and insert lμ

X
from Eq. (3) to obtain the real contribution relevant for the
radiated momentum. The virtual integrand for two-to-two
scattering of massive scalars is derived by generalized
unitarity [1–3] as described, e.g., in Refs. [20,22]. Unlike
for the conservative integrand obtained in previous works
[20,22], to construct the scattering amplitude in the full soft
region we are forced to include additional terms that are
necessary once radiation is taken into account. However, to
capture all terms relevant for the radiated momentum in the
classical limit, it suffices to match the set of cuts in Fig. 1,
the first of which is familiar from the conservative sector
[20,22]. Relative to the three-particle cut in Eq. (3), these
have the advantage that only four-particle tree amplitudes
are involved, and matter contact terms, which are quantum
contributions, are automatically dropped. We compute
these unitarity cuts by sewing tree-level amplitudes in D ¼
4 − 2ϵ dimensions taking advantage of the additional
simplifications of generalized gauge invariance [101,102].
To find a diagrammatic representation of the integrand

that matches the unitarity cuts in Fig. 1, we write an ansatz
in terms of the cubic diagrams in Fig. 2 with kinematic
numerators. The first five graphs were already present in
the conservative result; however, since we are now dealing
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with additional cuts, their numerators might change
slightly. Furthermore, there are three new graphs that
contribute to the radiated momentum computation. Each
kinematic numerator of a graph Γ in Fig. 2 is written as a
polynomial of Lorentz products of the independent external
momenta pi and the loop momenta lj up to mass
dimension 12. In addition, we impose the following
constraints on the ansatz:(1) Apply on-shell conditions
to all legs that are always cut in the spanning set of cuts
depicted in Fig. 1. (2) Demand diagram symmetries of each
graph (compatible with the cuts in point 1). (3) A numerator
of a diagram with n all-graviton vertices is at least of order
jqj4n in the classical counting. (4) The numerator of a
diagram with iterated s-channel two-particle cuts contain-
ing n2 tree-amplitudes is proportional to n2 powers of the
tree numerator.
The above rules fix, e.g., the numerator of the planar

double box, that is, the first diagram in Fig. 2, up to an
overall normalization to NIII ¼ a1½ðs −m2

1 −m2
2Þ2 −

4m2
1m

2
2�3 and leave 3731 parameters in the ansatz globally.

Matching this ansatz against the cuts in Fig. 1 then
determines the unknown parameters. All that is left to
do is to evaluate the three-particle cut of the resulting
integrand, perform the phase-space integrals in Eq. (3), and
Fourier transform [cf. Eq. (2)] to impact parameter space.
Soft expansion and reverse unitarity.—To efficiently

evaluate the phase-space integrals appearing in the
KMOC kernel (3) we are inspired by the enormous
progress in cross section calculations in a collider physics
setting where similar real contributions appear and are
handled on equal footing to the virtual ones via reverse
unitarity [77]; see also, e.g., Refs. [78–80]. In the reverse
unitarity setup, one replaces on-shell delta functions (and
their nth derivatives in intermediate steps of our calcula-
tions) that appear in phase-space integrals by the difference
of propagators with varying iε prescription

2πi
ð−1Þnn! δ

ðnÞðzÞ ¼ 1

ðz − iεÞnþ1
−

1

ðzþ iεÞnþ1
; ð5Þ

which allows us to employ standard tools for loop integrals
like dimensional regularization, integration-by-parts (IBP)
identities [103], and (canonical) differential equations [71–
75] to evaluate a minimal set of master integrals. For all
practical purposes, we can treat any on-shell delta function
as a propagator, which significantly simplifies our compu-
tations and circumvents the difficulties in having to
evaluate integrals containing derivatives of delta functions
that would otherwise appear.
In fact, we calculate soft integrals, obtained by expand-

ing the original integrals in Fig. (2) in the limit where the
gravitons are much softer than the matter lines [due to the ℏ
scaling of momenta assigned below Eq. (1)]. Inverse
graviton propagators l2

i are unchanged whereas inverse
matter propagators ðli þ pjÞ2 −m2 are expanded into
linearized expressions 2miuj · li, where uj is a normalized
four velocity in the direction of the large components of the
matter momentum pj. Within reverse unitarity, the phase-
space delta functions are treated on the same footing and
are likewise expanded. The resulting soft integrals are
homogeneous in the masses and momentum transfer, with
the scale given by dimensional analysis, which we com-
monly strip from our expressions.
The construction of the differential equations for the soft

master integrals I⃗ has been discussed in Ref. [76]. These
take the form [104]

dI⃗ðyÞ ¼ AðyÞI⃗ðyÞ; ð6Þ

where AðyÞ is a matrix with logarithmic singularities,
y ¼ σ þOðq2Þ [105], and σ ¼ p1 · p2=ðm1m2Þ is the
relativistic Lorentz factor. Since IBP relations are agnostic
to the iε prescription, the connection matrix A is identical
for cut and virtual integrals. This allows to directly import
the canonical basis constructed in Ref. [76].
The complete list of master integrals that survive on the

triple cut relevant for the radiated momentum is illustrated
in Fig. 3. The cubic ladder diagram with four matter
propagators is notably missing from the master integrals,
but will be present in the calculation of the radiation
reaction on the matter lines [106]. The definition of cut
integrals involving raised propagator powers is well estab-
lished (see, e.g., Ref. [107]); one practical definition is that
integration-by-parts reduction can always reduce such
integrals to integrals without raised propagator powers
where the meaning of cuts is clear.
All but the fourth master integral have a single s-channel

Cutkosky cut (the triple cut shown in the Fig. 3) so that
the phase-space integral is simply equal to twice the
imaginary part of the virtual integrals (uncut), obtained
in Refs. [106,108] by solving differential equations found
in Ref. [76] but with boundary conditions evaluated in the
soft rather than the potential region. The fourth cut integral
in Fig. 3, however, has to be calculated directly using
reverse unitarity and differential equations. The rhs of the

FIG. 1. Generalized unitarity cuts relevant for the radiated
momentum. Shaded blobs denote tree-level amplitudes, visible
legs are on shell, and we exclude any phase-space integrals.

FIG. 2. Cubic diagrams relevant for the radiated momentum.
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corresponding differential equation is proportional to the
first integral in Fig. 3 [76,106], which we already deter-
mined earlier. It remains to impose a suitable boundary
condition, which follows from the vanishing of such
integral in the static limit x ¼ 1, where the real-emission

phase-space volume is suppressed [106]. Then the differ-
ential equation is easily solved by direct integration with
the prescribed boundary condition.
Radiated momentum and energy loss.—Using the tools

described above we have computed the radiated momentum
at OðG3Þ from the real kernel Iμ

R;r in Eq. (3) and the
subsequent Fourier transform to impact parameter space
outlined in Eq. (2) with the following result:

ΔRμ ¼ G3m2
1m

2
2

jbj3
uμ1 þ uμ2
σ þ 1

EðσÞ þOðG4Þ; ð7Þ

where uμi ¼ pμ
i =mi, we restrict to D ¼ 4, and define

EðσÞ
π

¼ f1 þ f2 log

�
σ þ 1

2

�
þ f3

σarcsinh
ffiffiffiffiffiffi
σ−1
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ; ð8Þ

f1 ¼
210σ6 − 552σ5 þ 339σ4 − 912σ3 þ 3148σ2 − 3336σ þ 1151

48ðσ2 − 1Þ3=2 ;

f2 ¼ −
35σ4 þ 60σ3 − 150σ2 þ 76σ − 5

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

f3 ¼
ð2σ2 − 3Þð35σ4 − 30σ2 þ 11Þ

8ðσ2 − 1Þ3=2 : ð9Þ

Equation (7) has the expected homogeneous mass depend-
ence, which, as pointed out in Refs. [63,88], implies that
the result is fixed by the probe limitm1 ≪ m2. Note that the
result in Eq. (7) is purely longitudinal and yields the energy
radiated as gravitational waves. In the center-of-mass frame
it is given by

ΔEhyp ¼ ðp1 þ p2Þ · ΔR
jp1 þ p2j

¼ G3M4ν2

jbj3hðν; σÞ EðσÞ þOðG4Þ:

ð10Þ

We define hðν; σÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðσ − 1Þp

, the symmetric mass
ratio ν≡m1m2=M2, and the total mass M ≡ ðm1 þm2Þ.
The contribution to the above energy loss from each black
hole is inversely proportional to its mass. From the
scattering (hyperbolic motion) result in the cm frame of
Eq. (10), one can obtain the energy loss for an elliptic orbit
via analytic continuation [61–63]

ΔEellðσ; JÞ ¼ ΔEhypðσ; JÞ − ΔEhypðσ;−JÞ; ð11Þ

which requires writing the energy loss in terms of the
angular momentum J ¼ bMν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
=hðσ; νÞ and analyti-

cally continuing the result from the physical region σ > 1

to the Euclidean region σ < 1, where σ is related to the
dimensionless binding energy Ē¼½hðν;σÞ−1=ν�<0 [63]

ΔEellðσ; JÞ ¼ G3M7ν5ð1 − σ2Þ32
J3hðν; σÞ4 ẼellðσÞ þOðG4Þ: ð12Þ

We define an analogous rescaled function ẼellðσÞ

ẼellðσÞ
π

¼ f̃1 − f̃2 log

�
σ þ 1

2

�
þ f̃3

σ arcsin
ffiffiffiffiffiffi
1−σ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p ; ð13Þ

with f̃i ¼ 2fi, and fi given in Eq. (9) subject to the
additional replacement ðσ2 − 1Þðn=2Þ → ð1 − σ2Þðn=2Þ for
odd integers n. Note that the elliptic orbit energy loss
presented in Eq. (12) has the expected simplified ν
dependence observed by [63] that is inherited from the
analytic continuation of the hyperbolic result.
Cross-checks.—Our result for the energy loss for scatter-

ing black holes can be expanded in small velocity
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
=σ

EðσÞ
π

¼ 37

15
vþ 2393

840
v3 þ 61703

10080
v5 þ 3131839

354816
v7 þOðv9Þ;

ð14Þ

FIG. 3. Master integrals relevant for the radiated momentum.
The dashed line indicates the cut; double lines, cut or uncut, are
linearized propagators, and a dot (•) indicates a squared propa-
gator, corresponding to the n ¼ 2 case of Eq. (5).

PHYSICAL REVIEW LETTERS 126, 201602 (2021)

201602-4



and compared to known PN data. The first three terms in
Eq. (14) are found to agree with the result known up to 2PN
[63,88,89]. We can also compare the energy loss for elliptic
orbits in Eq. (12) for small velocities to the 3PN accurate
results for the instantaneous energy flux integrated over an
orbit fromRefs. [89–97] in the large eccentricity limit, i.e., to
leading order in large J. Thevelocity expansion is equivalent
to Eq. (14) (up to a factor of 2), since it is controlled by the
same analytic function and we find perfect agreement where
our results overlap. Note that the full 3PN flux includes tail
(or hereditary) contributions at 1.5, 2.5, and 3PN order,
which are known analytically only in the limit of small
eccentricity [109–111]. The agreement of our result with the
instantaneous part suggests that the tail contributions must
be subleading at large eccentricity.
Going back to the hyperbolic orbit, instead of the low-

velocity result, we can also compare the ultrarelativistic
limit σ → ∞ of Eq. (8). The apparent logarithmic diver-
gence cancels and one finds

EðσÞ ¼ 35

8
πð1þ 2 log 2Þσ3 þOðσ2Þ: ð15Þ

This can be compared to the predictionbyKovacs andThorne
[88], based on the numerical probe calculation by Peters
[112]. Both expressions agree structurally but disagree in the
numerical coefficient [113].We note that our results are valid
only for σ ≪ ðGEcm=bÞ−1, beyond which perturbation
theory breaks down. This is evidenced by the fact that using
Eq. (15) one would conclude that at large enough σ the
radiated energy exceeds the incoming energy, which is
nonsense. This can be interpreted as signaling the necessity
of accounting for destructive interference in multigraviton
emission, which cuts off the spectrum of gravitational waves
at high frequency [114], as explained in Refs. [115–117].
In addition, we have compared our result in Eq. (10) with

the coefficient of the tail term in the OðG4Þ radial action of
Ref. [30], which is proportional to ΔE [63,118,119],
finding full agreement.
(Non)universality.—AtOðG3Þ it has been shown that the

gravitational deflection angle has universal properties in the
ultrarelativistic limit [81,84,85,87]. We have also computed
the radiated momentum in N ¼ 8 supergravity [120] (for
Bogomol'nyi–Prasad–Sommerfield (BPS) angle ϕ ¼ π=2
[121]), using the integrand in Ref. [76] and the technology
described above. The result has the same structure as
Eqs. (8) and (9) with

f1 ¼
8σ6

ðσ2 − 1Þ3=2 ;

f2 ¼ −
8σ4ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

f3 ¼
16σ4ðσ2 − 2Þ
ðσ2 − 1Þ3=2 : ð16Þ

As in pure gravity, the ultrarelativistic limit of the radiated
momentum is controlled by the combinations f1 and−f2 þ
f3=2 (with the leading term independent of ϕ). Although
the limit does not coincide with Eq. (15) in its rational
prefactor (35=8 vs 8), we note that the ratio of the
logarithmic (log 2) and nonlogarithmic contributions
appears universal, i.e.,

lim
σ→∞

−2f2 þ f3
2f1

����
N¼8

¼ lim
σ→∞

−2f2 þ f3
2f1

����
GR

¼ 2: ð17Þ

Conclusions.—In this Letter we report our computation
of the radiated energy emitted in gravitational waves during
the scattering of two spinless black holes in general
relativity to leading order in Newton’s constant and all
orders in velocity. Furthermore, we obtain the radiated
energy in elliptic orbits by analytic continuation from the
scattering problem [63]. Expanding our results in small
velocity we find perfect agreement with the known PN data
[88,112]. In the high-energy regime, we agree with the
kinematic dependence described in Ref. [88] but disagree
with their numerical coefficient.
Besides the radiated momentum discussed here, the

KMOC formalism can also be used to calculate the transverse
impulse on individual particles, which yields the deflection
angle [20,22,24,25], including radiation reaction [85–87].
This computation is more involved than the one presented
here, because it requires the full virtual soft amplitude,
so we defer its discussion. The tools described here can be
directly used to compute observables for spinning [122] and
charged [123] black holes. Furthermore, in retaining the
collider physics analogy, and by restricting the integration
over phase space, one can imagine computing differential
observables, such as the radiated energy spectrum, or the
angular energy distribution [124], analogous to, e.g., rapidity
distributions (see Ref. [78]) or energy correlators (see
Refs. [125,126]).We leave the discussion of such observables
to future work.
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