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Introduction.—The residues of (the loop integrands of)
scattering amplitudes on iterated, simple poles have played a
critical and starring role through most of the incredible
advances in our understanding of perturbative quantum field
theory in recent years. Such residues, when they are of
maximal codimension, have been called “leading singular-
ities” [1,2] and have been used in the context of generalized
unitarity [3–6] to construct integrands for amplitudes to
impressive orders of perturbation [6–21]. Leading singular-
ities have also appeared as the individual terms generated by
Britto-Cachazo-Feng-Witten recursion relations for ampli-
tudes at tree level [22,23] and beyond [24–26].
In the case of maximally supersymmetric Yang-Mills

theory in the planar limit (SYM), leading singularities
were discovered to enjoy an infinite-dimensional Yangian
symmetry algebra [27–30] and were later found to be
classified according to the “positroid” stratification of
Grassmannian manifolds [31–33]. In Ref. [34], the corre-
spondence between Yangian invariants and compact con-
tour integrals over the positroid-canonical top form [35–37]
in the Grassmannian was established.
As maximal codimension residues, leading singularities

can be viewed as the coefficients of loop amplitude
integrands that are locally (in loop-momentum space)
“d log” differential forms—wedge products of simple poles
in all loop-momentum variables. (A multidimensional
residue can in fact be defined by this fact alone—given
by the inverse Jacobian of the requisite change of variables,
evaluated at this point.) It is no surprise, therefore, that
leading singularities also appear as the coefficients of
polylogarithmic functions arising from “loop integration”

(over the Feynman contour of real momenta). Indeed,
the connection between the sufficiency of leading singu-
larities as information required to construct amplitudes
and the existence of d log representations of loop inte-
grands has been the subject of much research in recent
years [14,18,38,39].
Nevertheless, an increasing body of research has shown

that many perturbative scattering amplitudes are not in fact
polylogarithmic [40–43] but involve a much richer variety
of functions—such as elliptic multiple polylogarithms
[44–46] or even integrals over Calabi-Yau manifolds
[47–50]. When the integrands of loop amplitudes are not
d log somewhere locally, leading singularities as they have
been so-far defined represent insufficient information (for
reconstruction via unitarity) about perturbative amplitudes.
The attempts to use generalized unitarity in such cases have
relied on less intrinsically well-defined (or well-motivated)
strategies—such as matching amplitude integrands func-
tionally through some number of off-shell evaluations (see,
e.g., [16,18,51]).
In this Letter, we argue that the notion of leading

singularity must be broadened to include any full-
dimensional compact, contour integral of an amplitude.
Up to factors of ð2πiÞ, this definition automatically includes
those functions covered previously but expands their scope to
include contour integrals that do not just compute the
residues around simple poles. We conjecture that this new,
broadened definition of leading singularities represents
complete unitarity-level information for amplitudes in per-
turbative SYM (and perhaps considerably beyond).
The first appearance of nonpolylogarithmic structure for

planar SYM theory occurs in the ten-particle N3MHV
amplitude at two loops [42]. In this Letter, we derive closed
formulas for the elliptic leading singularities of this
amplitude. We have checked that they are Yangian invari-
ant. This check is very nontrivial since they involve the
periods of complete elliptic integrals. Thus, they are not any

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 126, 201601 (2021)

0031-9007=21=126(20)=201601(6) 201601-1 Published by the American Physical Society

https://orcid.org/0000-0002-3340-5667
https://orcid.org/0000-0002-3287-3717
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.201601&domain=pdf&date_stamp=2021-05-17
https://doi.org/10.1103/PhysRevLett.126.201601
https://doi.org/10.1103/PhysRevLett.126.201601
https://doi.org/10.1103/PhysRevLett.126.201601
https://doi.org/10.1103/PhysRevLett.126.201601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


elliptic analogs of “residues”—which would be necessarily
algebraic—but rather contour integrals directly, carrying
(some notion of) transcendental weight. Interestingly, the
loop integrand whose coefficient would be an elliptic
leading singularity takes the form of what has been defined
as a “pure” elliptic integral [52,53]. We strongly suspect
that this magic is not accidental: namely, that for any basis
of loop integrands diagonalized on maximal-dimension,
compact contours, the coefficients of amplitudes (in SYM)
will be Yangian invariant and all integrands will be pure
(in a sense suitably generalized to integrals involving
higher-dimensional Calabi-Yau periods). But we leave
such speculations to future work.
Elliptic subleading singularities of SYM.—We begin our

analysis with the “double-box” cut of the two-loop, ten-
particle N3MHV amplitude in planar SYM:

ð1Þ

It is a “next-to-leading singularity” in the ordinary sense
(a codimension-7 residue) and corresponds to a contour
which encircles the seven poles from the propagators
shown. This residue depends on one internal (on-shell)
degree of freedom denoted α and a discrete label “�”
signifying which of the two branches of the solution to the
cut equations is taken. [As a positroid configuration, it
corresponds to a 13-dimensional cell in Gþð3; 10Þ labeled
by the decorated permutation f6;5;4;8;7;11;10;9;13;12g,
integrated against the 12 constraints δ3×4ðC · ZÞ—leaving a
one-form over the remaining variable (see, e.g., [33,54]).]
We can give an explicit formula for the double-box

cut db�ðαÞ as a single residue of (the relevant term of)
the codimension-6 “kissing-triangle” function given in
Ref. [16]:

dαdβ
1

αβ
R½1; 2̂; 6̂; 7̂; 1̂�R½2̂; 3; 4; 5; 6�R½7̂; 8; 9; 10; 1�; ð2Þ

where R½a; b; c; d; e� is the R invariant [55,56] with
momentum supertwistor arguments fZa;…;Zeg [57]
and the “hatted” arguments are defined geometrically
(see, e.g., [38]) by

2̂ðαÞ ≔ Z2 þ αZ1; 7̂ðβÞ ≔ Z7 þ βZ6;

6̂ðαÞ ≔ ð56Þ ∩ ð2̂34Þ; 1̂ðβÞ ≔ ð101Þ ∩ ð7̂89Þ: ð3Þ

[Notice that the variables α and β both carry nontrivial
little-group weights. These could be absorbed by rescaling
them (and the form) appropriately; but any such rescaling
would cancel out of any complete compact contour integral
(or residue).]

To obtain (1) from (2), we must compute the residue of
(2) associated with the contour encircling the pole
h2̂ 6̂ 7̂ 1̂i ¼ 0. We may take this residue with respect to
either variable, and we choose to eliminate β. Because
h2̂ 6̂ 7̂ 1̂i is quadratic in β, there are two branches available.
For the sake of concreteness, we note that

Res
h2̂ 6̂ 7̂ 1̂i¼0

�
dβ

h2̂ 6̂ 7̂ 1̂i

�
¼ � cy

yðαÞ ; ð4Þ

where yðαÞ2 is the (by-construction monic) quartic poly-
nomial

1

c2y
y2ðαÞ ≔ ðh2̂ 6̂ 6ð789Þ ∩ ð101Þi þ h2̂ 6̂ 7ð689Þ ∩ ð101ÞiÞ2

− 4h2̂ 6̂ 6ð689Þ ∩ ð101Þih2̂ 6̂ 7ð789Þ ∩ ð101Þi;
ð5Þ

where c2y is defined to be the inverse of the coefficient of α4

on the right-hand side of (5) [so as to render y2ðαÞ monic],
and the particular solutions β�� to h2̂ 6̂ 7̂ 1̂i ¼ 0 are given by

β��≔
h2̂ 6̂6ð789Þ∩ ð101Þiþh2̂ 6̂7ð689Þ∩ ð101Þi�yðαÞ=cy

2h2̂ 6̂ð689Þ∩ ð101Þ6i :

To define the double-box residue (1), we may therefore
replace the pole h2̂ 6̂ 7̂ 1̂i (appearing in the denominator of
R½1; 2̂; 6̂; 7̂; 1̂�) with yðαÞ and replace β with β��ðαÞ every-
where else in (2).
As y2ðαÞ is an irreducible quartic, the differential forms

db�ðαÞ should be understood as involving the geometry of
an elliptic curve. In general, any such differential form may
be represented in the form

db�ðαÞ≕ dα

�
QðαÞ � 1

yðαÞRðαÞ
�
; ð6Þ

where Q and R are algebraic (super)functions of α. As we
are interested in taking a contour integral over the cycles of
the elliptic curve, only the term involving 1=yðαÞ matters;
we may extract this piece by writing

½dbþðαÞ − db−ðαÞ�≕ dbðαÞ≕ dα
yðαÞ

cdbðαÞ: ð7Þ

Analytic structure of the elliptic form dbðαÞ.—It is not
hard to see that the differential form dbðαÞ has many simple
poles—corresponding to the various factorization channels
of the six four-particle amplitudes appearing in (1). Every
such factorization channel has the topology of a “pentabox”
leading singularity; counting every distinct solution to the
cut equations for each topology, there are altogether 24
such “boundary” on-shell functions; let us denote them pbi.
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Each of these “factorizations” of the double-box cut (1)
corresponds to a simple pole located at ai in the α plane
with residue equal to the corresponding pentabox on-shell
function pbi. For example, near

α → a1 ≔
h2ð34Þ ∩ ð1012Þ56i
hð34Þ ∩ ð1012Þ561i ; ð8Þ

the differential form dbðαÞ has a simple pole with residue

ð9Þ

This function corresponds to one of the ordinary codi-
mension-one boundaries of the positroid configuration of
the double box; as such, it can easily be computed as the
canonical (12-dimensional) form in the Grassmannian
integrated against δ3×4ðC · ZÞ. Regardless of how it is
represented or computed, the location of each pole and
its residue is easy to determine explicitly. Interestingly, it is
worth noting that all of the poles ai lie on the real axis, and
are negative semidefinite, for positive kinematics (see, e.g.,
[58] for a discussion of positive kinematics). These have
been given explicitly in Supplemental Material [59].
Expanding dbðαÞ into a basis of forms with manifest

simple poles results in a representation of dbðαÞ which may
be written

dbðαÞ≕ dα
yðαÞ db0 þ dα

X24
i¼1

yðaiÞ
ðα − aiÞyðαÞ

pbi; ð10Þ

where db0—the coefficient of the differential form dα=yðαÞ
without any simple poles—is therefore defined indirectly
(but explicitly and without ambiguity) by

db0 ≔ cdbðαÞ −X24
i¼1

yðaiÞ
ðα − aiÞ

pbi: ð11Þ

[Actually, for (10) and (11), there is in fact (exactly) one
pole at α ¼ −∞; for this term, the differential form in the
sum should be understood as being dα½α=yðαÞ�.]
Importantly, since db0 has no poles in α (including at

infinity), it must be independent of α—a fact that we have
checked analytically. As such, it is worthwhile to express it
in the form

db0 ≔ cdbðα�Þ −X24
i¼1

yðaiÞ
ðα� − aiÞ

pbi ð12Þ

for any choice of α�. As every expression appearing in
the right-hand side of (12) is fully known analytically

[as superfunctions (or expressed in terms of R invariants)],
this provides a concrete definition for db0.
Elliptic leading singularities of SYM.—We are now in a

position to determine the elliptic leading singularity—the
integral of the form dbðαÞ over some choice of elliptic
cycle, say, Ωa:

ea ≔
Z
Ωa

dbðαÞ ¼
Z
Ωa

dα
yðαÞ

cdbðαÞ ¼ �2

Z
Ωa

db�ðαÞ: ð13Þ

To specify the particular elliptic cycle Ωa, it is worthwhile
to note that, for positive (nondegenerate) momentum-
twistor kinematics, it turns out that the roots ri of the
quartic y2ðαÞ,

y2ðαÞ≕ ðα − r1Þðα − r2Þðα − r3Þðα − r4Þ; ð14Þ

always come in complex-conjugate pairs—between which
we may introduce branch cuts. To be clear, we have chosen
to order the roots such that r�1≕ r2 and r�3≕ r4, with
Reðr1Þ > Reðr3Þ and Imðr1;3Þ > 0; with this ordering of the
roots (the reverse of the default ordering from Solve[] in
Mathematica), the cross-ratio

ϕ ≔
ðr2 − r1Þðr3 − r4Þ
ðr2 − r3Þðr1 − r4Þ

ð15Þ

is always real; moreover, ϕ ∈ ð0; 1Þ for positive Z’s. With
these conventions, we define Ωa to be the contour “enclos-
ing” the branch cut between the complex-conjugate pair of
roots r1;2 which does not encircle any of the simple poles
of dbðαÞ.
In order to compute the elliptic leading singularity (13),

therefore, we merely need to note the basic period integrals
appearing in (10):

Z
Ωa

dα
1

yðαÞ ¼
4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3 − r2Þðr4 − r1Þ

p K½ϕ� ð16Þ

and

Z
Ωa

dα
yðaiÞ

ðα− aiÞyðαÞ
¼ 4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3 − r2Þðr4 − r1Þ
p

�
yðaiÞ

ðr4 − aiÞ
K½ϕ�

þ yðaiÞðr4 − r2Þ
ðr2 − aiÞðr4 − aiÞ

Π
�ðr4 − aiÞðr2 − r1Þ
ðr2 − aiÞðr4 − r1Þ

;ϕ

��
;

ð17Þ

where K½ϕ� and Π½q;ϕ� are the complete elliptic integrals of
the first and third kinds, respectively, defined in accordance
with the conventions of Mathematica. Of particular
importance is that both (16) and (17) are pure imaginary
for positive kinematics; for the latter integral (17), this
statement is nontrivial [even for ϕ ∈ ð0; 1Þ], as the coef-
ficients of both complete elliptic integrals appearing in (17)
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have nonzero real and imaginary parts and only the
combination is pure imaginary. The full integral in (13) is
obtained by integrating each term in (10) and using the
explicit formula for db0 in (12) (for any choice of α�). As a
consequence of the above discussion, this representation of
ea is term-by-term purely imaginary.
One reason for our preference for the a cycle (and also

for our conventions regarding the roots) is that, in the space
of positive kinematics, the only possible kinematic degen-
erations at codimension one result in the collision of one of
the two pairs of complex-conjugate roots. When this
happens, it is easy to see that both integrals (16) and
(17) become equal to ð2πiÞ times the residue around the
corresponding simple pole generated by the colliding pair
of roots. (Recall that K½0� ¼ Π½0; 0� ¼ π=2.) The b-cycle
integrals, in contrast, diverge upon such degenerations.
More concise formulas for the leading singularities.—In

the discussion above, the reader should notice that every
pentabox on-shell function pbi appears twice: once in the
definition of db0 in (12) (where α� may be taken a
s arbitrary) and once as the coefficient of the particular
(α-dependent) differential form in dbðαÞ in (10). From the
first, (16) results in a contribution to ea of

ea ⊃ −
4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3 − r2Þðr4 − r1Þ

p K½ϕ� × yðaiÞ
ðα� − aiÞ

pbi; ð18Þ

from the second, (17) results in a contribution of

ea ⊃
4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3 − r2Þðr4 − r1Þ

p
�

yðaiÞ
ðr4 − aiÞ

K½ϕ�

þ yðaiÞðr4 − r2Þ
ðr2 − aiÞðr4 − aiÞ

Π
�ðr4 − aiÞðr2 − r1Þ
ðr2 − aiÞðr4 − r1Þ

;ϕ

��
pbi:

ð19Þ

From these two contributions, mere pattern recognition
suggests a “preferential” choice for the arbitrary point α�.
In particular, if we were to take α� to be r4, all the terms
involving K½ϕ� × pbi would cancel. As α� is indeed
arbitrary, this would result in a final, more compact
expression:

ea ¼
4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3− r2Þðr4− r1Þ

p
�
K½ϕ�cdbðα� → r4Þ

þ
X24
i¼1

yðaiÞðr4− r2Þ
ðr2−aiÞðr4−aiÞ

Π
�ðr4−aiÞðr2− r1Þ
ðr2−aiÞðr4− r1Þ

;ϕ

�
pbi

�
:

ð20Þ

The reader may be worried about the fact that taking α� to
be r4 sets yðα�Þ → 0. As such, the first term in (20) may
appear ill defined. However, yðα�Þ also appears (mani-
festly) in the denominator in the definition of the

differential form dbðα�Þ; as such, the evaluation—forcdbðαÞ—may be performed without taking limits (and turns
out to be extremely stable, numerically). This simplified
form is included in Supplemental Material [59].
It is worth noting that, upon any physical degeneration

(at codimension one), the elliptic function ea in fact
vanishes identically. This can be understood by noting
that any such physical degeneration would correspond to an
ordinary “residue” contour about the simple pole generated
by the collision of the roots—[ð2πiÞ times the residue]
about the point α ¼ r1 or r4; as there is no corresponding
on-shell function to draw, the amplitude must vanish on
such a contour. We have checked that it does.
The b-cycle elliptic leading singularity—the one encir-

cling a branch cut between the roots r1 and r3, say (and not
encircling any of the simple poles)—is easily obtained from
our work above [replacing r2 ↔ r3 in (16) and (17)]. Using
these expressions for the b-cycle integrals of the relevant
differential forms and choosing α� to be r4 as before, the
resulting expression becomes

eb¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr3−r2Þðr4−r1Þ

p
�
K½1−ϕ�cdbðα�→r4Þ

þ
X24
i¼1

yðaiÞðr4−r3Þ
ðr3−aiÞðr4−aiÞ

Π
�ðr4−aiÞðr3−r1Þ
ðr3−aiÞðr4−r1Þ

;1−ϕ

�
pbi

�
:

ð21Þ

One interesting aspect of these formulas is that the b-cycle
leading singularity eb is invariant under a fivefold cyclic rota-
tion (in a highly nontrivial way), while the a-cycle integral ea
is not—reflecting the asymmetry of the contour (analogous
to the noncyclic invariance of the four-mass box leading
singularities).
Explicit, computer-usable (Mathematica) expressions

for both elliptic leading singularities ea and eb are included
as Supplemental Material [59]. This code makes use of
tools made available in Refs. [14,16,60].
Yangian invariance of the elliptic leading singularities.—

Among the most interesting aspects of our results so far is
that Yangian invariance requires the complete elliptic
integrals K½ϕ� and Π½q;ϕ� as coefficients appearing in
their definition. The easiest way to see this is to consider
one of the level-one generators (see, e.g., [30]):

JAB ≔
Xn
a¼1

ZA
a

∂
∂ZB

a
; ð22Þ

where Za is a supermomentum twistor and the component
A is taken to be fermionic and B bosonic. This operator
turns out to be surprisingly powerful. For example, it tells
us that any nontrivial function of cross-ratios times a
Yangian invariant will not be Yangian invariant. In par-
ticular, direct application of this operator demonstrates that
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the four-mass box coefficient as defined in Ref. [14], which
is not simply a product of R invariants but includes as part
of its definition a particular function of the relevant cross-
ratios, is only Yangian invariant with these peculiar
prefactors included.
It turns out that no combination or subset of the terms

(with constant coefficients) that appear in the two formulas
for ea;b in (20) and (21), respectively, is Yangian invariant
except for the ea;b themselves. We have checked this
explicitly using numerical approximations for the deriva-
tives appearing in the Yangian generator (22).
That any integral over a compact, full-dimensional cycle

in the Grassmannian should be Yangian invariant may not
be surprising: indeed, it seems to be a consequence of the
arguments described in Ref. [34]. However, the fact that
these integrals, in the case of elliptic contours, require the
nonalgebraic content of complete elliptic integrals is very
surprising, as this is in stark contrast with the notion of
taking residues (a purely algebraic operation).
The lesson here has very obvious consequences for

generalization beyond elliptic contours—which we must
leave to future work.
Conclusions and discussion.—In this Letter, we have

motivated a broader definition of leading singularity to be
any full-dimensional compact, contour integral of a per-
turbative amplitude’s loop integrand. This definition differs
from the previous one merely by factors of ð2πiÞ in the case
of simple (logarithmic) poles but includes also the contour
integrals of elliptic curves. We have given closed formulas
for elliptic-containing contour integrals for the first non-
polylogarithmic structure that arises in planar SYM theory,
and we have checked that they are Yangian invariant. We
conjecture that, with this broader definition, all leading
singularities of SYM will be Yangian invariant and that the
set of all leading singularities will represent complete
information for perturbative amplitudes in this theory.
We will have more to say about this in a forthcoming work.
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