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Using the recently established formalism of a worldline quantum field theory description of the classical
scattering of two spinless black holes, we compute the far-field time-domain waveform of the gravitational

waves produced in the encounter at leading order in the post-Minkowskian (weak field but generic velocity)
expansion. We reproduce the previous results of Kovacs and Thorne in a highly economic way. Then, using
the waveform, we extract the leading-order total radiated angular momentum and energy (including

differential results). Our work may enable crucial improvements of gravitational-wave predictions in the

regime of large relative velocities.
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When two compact objects (black holes, neutron stars, or
stars) fly past each other, their gravitational interactions not
only deflect their trajectories but they also produce gravita-
tional radiation, or gravitational bremsstrahlung, analogous to
the electromagnetic case. The resulting waveform in the far
field at leading order in Newton’s constant G was constructed
(in the spinless case) in a series of papers by Kovacs, Thorne,
and Crowley in the 1970s [1-4] (see Refs. [5] for recent work
on slow-motion sources). Today’s gravitational wave (GW)
observatories routinely detect quasicircular inspirals and
mergers of binary black holes and neutron stars [6]. Yet
bremsstrahlung events currently appear to be out of reach as
the signal is not periodic and typically less intensive [7]. Still,
these events represent interesting targets for GW searches,
calling for accurate waveform models.

Indeed, the experimental success of GW astronomy brings
up the need for high-precision theoretical predictions for the
classical relativistic two-body problem [8]. A number of
complementary classical perturbative approaches have been
established over the years [9]. Yet quantum-field-theory-
based techniques founded in a perturbative Feynman-dia-
grammatic expansion of the path integral in the classical
limit have proven to be highly efficient. These come in two
alternative approaches.

The first approach, the effective field theory (EFT)
formalism [10], models the compact objects as pointlike
massive particles coupled to the gravitational field. It has
mostly been applied to a nonrelativistic post-Newtonian
(PN) scenario for bound orbits in which an expansion in
powers of Newton’s constant G implies an expansion in
velocities (Gm/c?r ~ v?/c?). Recently, it has also been
extended to the post-Minkowskian (PM) expansion for
unbound orbits [11,12] that are relevant for this work, an
expansion in G for arbitrary velocities. In these EFT settings,
the graviton field /,, (x) is integrated out successively (from
small to large length scales) in the path integral, while the
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worldline trajectories of the black holes x/(z;) are kept as
classical background sources (see Ref. [13] for reviews).

The second and now blossoming approach starts out from
scattering amplitudes of massive scalars—avatars of spinless
black holes—minimally coupled to general relativity
[14-17], thereby putting the younger innovations in on-
shell techniques for scattering amplitudes (e.g., generalized
unitarity [18] or the double copy [19]) to work. In order to
obtain the conservative gravitational potential, one performs
a subtle classical limit of the scattering amplitudes [20] in
order to match to a nonrelativistic EFT for scalar particles
with the desired potential [21] (see also Refs. [14,21]), which
is known to the 3PM order [16] (complemented by certain
radiation-reaction effects [20,22,23]). Very recently the 4PM
conservative potential was also reported [24]. The so-
obtained effective potential is then used to compute observ-
ables such as the scattering angle or the (PM-resummed)
periastron advance in the bound system [11,24]. Further
recent PM results exist for nonspinning particles [25], spin
effects [26], tidal effects [27], and radiation effects [28].

In a recent work of three of the present authors, the
synthesis of these two quantum-field-theory-based
approaches to classical relativity was provided in the form
of a worldline quantum field theory (WQFT) [29] in which
quantizing both the graviton field £, and the fluctuations
about the bodies” worldline trajectories zi was shown to be
an efficient approach yielding only the relevant classical
contributions. In essence, the WQFT formalism provides an
efficient diagrammatic framework for solving the equations
of motion of gravity-matter systems perturbatively.

In this Letter, we employ this novel formalism to
compute the time-domain gravitational waveform of a
bremsstrahlung event at leading order in G, demonstrating
its effectiveness. To our knowledge, the seminal result of
Kovacs and Thorne [4] has not been verified in its entirety
to date. As we shall see, our approach is far more efficient
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than the one employed back then, paving the way for
calculations of higher orders. We stress that we are able to
determine the far-field waveforms that are of direct rel-
evance for GW observatories. As a check on these wave-
forms, we furthermore reproduce Damour’s recent result
for the total radiated angular momentum [22] at 2PM order.
Our results also complement the recent result of the total
radiated momentum at leading order in G (3PM) estab-
lished with amplitude techniques [30]. We comment on
how to achieve this result from our methods.

Worldline quantum field theory.—The classical gravita-
tional scattering of two massive objects m; moving on
trajectories X/ (z;) = b} + v't; + Z/(z;), is described by the
WQFT with partition function [29]

Zwqrr = const X / Ry /HD

exp{—lZ/ 0ty 5 [+ ol (3 )]x”xy},
(1)

is the gauge-fixed FEinstein-Hilbert

i(Ser+Sr)

where  Sgy + Sor
action

Sen + Sgr = /d4x [—22 vV—9R + (0, h*" — 18’%””)2} ,
K 2
(2)

with x? = 327G the gravitational coupling. We have sup-
pressed the ghost contributions in Eq. (1) as they are
irrelevant in the classical setting. We work in mostly minus
signature, 7, = diag(1,—1,—1,—1), and set ¢ = 7 = 1.
Correlation functions in the WQFT (O(h, {x;}))wqrr
result from an insertion of the operator O in the
path integral and dividing by Zwgrr. Moving to
momentum space for the graviton /,, (k) and energy space
for the fluctuations z#(w), we have the retarded propagators
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FIG. 1. The three diagrams contributing to the bremsstrahlung

at 2PM order, where w; = k - v; by energy conservation at the
worldline vertices. All three diagrams have the integral measure
in Eq. (16); in the rest frame of black hole 1, diagram (a) does not
contribute as soon as the outgoing graviton is contracted with a
purely spatial polarization tensor, while (b) and (c) do.

with k outgoing, &(w) =

? 2w) _ %eik'bﬁ(k v+ w)
(5)

hy (K) X (2wv(“6z) + v“v”kp> .

(27)6(w), and

The energy o is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex (see, e.g., Ref. [31]).

To determine the bremsstrahlung of two traversing black
holes, we compute the expectation value k*(h*(k))worr-
At leading (2PM) order, there are three diagrams contrib-
uting (cf. Fig. 1). We integrate over the momenta or
energies of internal gravitons or fluctuations respectively;
lack of three-momentum conservation at the worldline
vertices leaves unresolved integrals for the tree-level
diagrams.

Diagram (a) of Fig. 1 then takes the form [32]

— o0k, Ry o\ = vl )]
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where w; =k-vy, [ = [d*q;/(2n)* and the integral

qi
measure is

ellabitab)s(q, - v)8(qy - v2)8(k — g1 — q2).
(7)

ﬂl.z(k)

3
nmiymyK v
k2<h;w(k)>WQFT|(c) == 8 / ﬂll(k)vgﬂ v
q1:92

These integrands were already given in Ref. [29]. The
sum of the three integrands also agrees with a previous
amplitudes-based result [17] (see also Ref. [33] for the
analog in dilaton gravity) and is gauge-invariant.

The waveform in spacetime in the wave zone is obtained
from (A**(k))wqrr as follows: we may identify

k2<h;w(k)>WQFT = gSﬂl/(k)’ (9)

where S, = 7, —37,,7"; and 7,,, is the combined energy-
momentum pseudotensor of matter and the gravitational
field. Consider S, (k) for a fixed GW frequency k° = Q. In
the wave zone (r > {|b;|, Q",Q|b;|*}) the metric pertur-
bation £, (x, ) takes the form of a plane wave (see, e.g.,
Chapter 10.4 of Weinberg [34]):

Kkh,, (X, 1) = 4TGSW(Q, k = QR)e k" +c.e,  (10)
with the wave vector k* = Q(1,X); X = x/r is the unit
vector pointing in the direction of the observation point
(hence k* = 0).

The total gauge-invariant frequency-domain waveform
can be read off as 4GS,-TJ-T(Q, k = QX), where TT denotes
the transverse-traceless projection. The corresponding
time-domain waveform f;;(u,6,¢) is essentially its
Fourier transform in €Q:

fij _ 4G

TT
ij r

| et ®loans: (1
where [, := [® dQ/2x. Note that k - x = Q(7 — r) yields
the retarded time u = ¢ — r. Our task now is to perform the
=X,G"f ,(7) and we seek
the 2PM component f 512) By focusing on the time-domain
instead of the frequency-domain waveform, we consider-
ably simplify the integration step. As we shall see, the
integration over frequency € of the outgoing radiation
coincides neatly with energy conservation along each
worldline.

Kinematics.—We describe the waveform in a Cartesian
coordinate system (¢, x, y, z) where black hole 1 is initially

integrals; in a PM expansion f;

with 8(k) == (2z)*6* (k). The diagram (b) is naturally
obtained by swapping 1 <> 2. Diagram (c) includes the

three-graviton vertex V") (k —q, —q,):
c) (A7) Pp0;0lﬁ P/lf;}’5 a, B
! . v vhvd (8)
(g +ie)* —ar’] (g8 +ie) —qp?] 112

|

at rest v’f = (1,0,0,0) and located at the spatial origin, i.e.,
we set b = 0. The orbit of black hole 2 we put in the x — y
plane w1th initial velocity 5 = (y,7v,0,0) in the x
direction; the impact parameter b5 = (0,0,b,0)=:b*
points in the y direction. Introducing the polar angles 6
and ¢, we may write the unit (spatial) vector ¥* pointing
from black hole 1 to our observation point as

i = & cosf +sinO(&5 cos ¢ + &4 sin ),

(12)

where & = (0,€;) are spatial unit vectors. Also, we
put p# = off + %,
The two additional unit spatial vectors orthogonal to %*

are

O = 03" = (0,0), ¢ ——8¢x” = (0.).

sin @

(13)

Together with %, they form a right-handed spatial coor-
dinate system. GWs travel in the direction of X#, and we use
0" and ¢ to define our polarization tensors in a linear basis:

A

S - =R Py, (19)
The waveform f;;(u, 6, ¢) is thus decomposed as
fij = fi(ep)i; + fxlex)s (15)

with f, . = (€+ X)ljfl]

The polarlzatlon tensors have zero time components,
which conveniently implies the vanishing of diagram (a) in
Fig. 1 once contracted with them. This observation follows
directly from the expression for vertex, Eq. (5). In the case
of diagram (a), the instance of this vertex that contracts with
the outgoing graviton line carries an overall factor of
vf = (1,0,0,0), which is orthogonal to the spatial polari-
zation tensors above.

Integration.—The two nonzero diagrams in Fig. | share
the integration measure y ,(k), Eq. (7). Including also the
integration with respect to Q in Eq. (11), the full measure
becomes
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where we recall that k* = Qp*; using the delta function
constraints in u; ,(k), we can now identify

4 =k—q, q1 =

(17)

We are left with a three-dimensional Euclidean integral
involving the shifted z-dependent impact parameter:

vy
P02

b(zr)=b+17&, 1= (u+b-%), (18)

noting that p - v, = y(1 — v cos ). The polarizations of the
waveform from Eq. (11) now take the schematic form [also
using Eq. (15)]:
(2) 3 i i
i 47[/ elab { ey
q q°(q - € —ie)

myni,

MY d'q/ }
@ +q-L-q)]
(19)

with the two terms corresponding to the nonzero diagrams
(b) and (c) in Fig. 1 respectively. The rank-2 matrix L
introduced here is

Li =27 &ligh, (20)
P

Finally the vector and matrix insertions are explicitly given
as the real and imaginary parts of [35]

. 72sin?0 [y(1 =302 -
N ya. {7( v )+(1+7)2)]él1 (21a)
P P02
1 2)5in® c0,)2 =1 .
_’_2)/( +v )Sln |:(,0 02) COS¢+2i7/Sin¢:|élz,
P v(p - vy)
4,42 3,2
. yrotsin®0 y’o sin@ ;i o .
Mii=8L ——_"¢ie) +16——5¢/ (0 + i)’
ouy SO G OT)
(1407 o s s
+ 4u O+ i) (0 + i)/, (21b)

P2

where N = N +iN% and MY = MY +iMY. The
insertions /' and M correspond to a helicity basis in
which they have a particular simple expression. We
integrate the two diagrams separately.

Integration of the first diagram is achieved using the
simple result (true regardless of the vector b):

)
:L{i’i_‘i"—“"_*)é’i (”BFTl)]’ (22)

which we prove in the Appendix. The other integral
required corresponding to diagram (c) is somewhat more
involved. The denominator of this integral is composed of
an isotropic propagator together with an anisotropic one.
The physical interpretation is a convolution between the
potentials of the two black holes, where the potential of
black hole 2 is boosted and leads to the anisotropic
propagator. One compact representation is

/ piah q'q’

¢ (@ +q-L-q)
1 (Gy + aG)AY = (G| + aG,)B/]e=!
- A6 [ Gla)

’

(23)

where we have introduced the quadratic polynomial

G(a) = GO + 2(1G1 + (Zsz,

‘5iijk _ Lij

Go = b%, G, =b'b’/ , G, = (b-¢)*Dey,L,

(24)

and A(G) = 4(G? — G(G,) is the polynomial discriminant.
We have also introduced the two matrices

AU = Dety(L)[=2(b - §)(L™" - b)\i¢”
+(b- ) (L™ + (b- L7 -D)p'd'].  (25a)

B = b*s' —b'b/. (25b)
This integral is also discussed in the Appendix, where
explicit forms of L~ and Det, (L) are given; again, both of
the integrals, Eqs. (22) and (23), are solved for arbitrary b’
and LY (with the assumption that L% is rank 2).

Leading-order waveform.—By combining Eq. (19) with
the insertions NV, and M'jx and the integrals above, we
get the full 2PM waveform:

FE BN, BN (1+ . )

mym;  +/b* 472 b? vb? +7?
MU [(Gy + aG)AY — (G, 4 aG,)Bii]a=!
A(G) { G(a) ]

a=0

(26)

This is a rather compact representation of the gravitational
bremsstrahlung waveform, which we have confirmed
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AF,(v=0.2)xb/G2m,m,
pd __

Afy(v=0.2)+b/G?mqmy
A —

FIG. 2. Plots of the wave memories Af, , for » = 0.2. For a
visualisation of the complete waveforms as they evolve with
retarded time u see the Supplemental Material [36].

agrees with the (rather lengthy) result of Kovacs and
Thorne [4]. The two values of a in the second line
correspond to contributions from the two black holes.
Note that there is also a leading (and nonradiating) 1PM
contribution to the waveform which is independent of the
retarded time u =t — r:

212
(1) 2myyv-sin-6 (1)
=, x — 0 27
I 1 —wvcos@ / (27)
Diagrammatically, this consists only of the vertex,

Eq. (4), with emission from worldline 2; the contribution
from worldline 1 again vanishes in our frame due to
(v)-ex-vy)=0.

To illustrate this result in Fig. 2, we present the
gravitational wave memories Af, , := [f, .]J=t2. The
beauty of our result, Eq. (26), lies in the fact that
the memories only receive contributions from the second

term and read

iN/i

b
M;vﬂaymmr%%i+omw (28)

Diagrammatically, they exclusively emerge from diagram (b)
of Fig. 1. So they are manifestly insensitive to gravitational
self-interactions—this was also pointed out in Ref. [22].

Radiated energy and angular momentum.—One may
now use our result for the waveform, Eq. (26), to compute
the total radiated momentum and angular momentum.
Expressions for these quantities in terms of the asymptotic
waveform are given in Refs. [22,37]:

1 .
Py = e duds(f;;]*p*, (29)

. 1 .
= 372G dudo <fk[ifj]k - Ex[iai]fklfkl> . (30)
where f; ;= 0,fij and do = sin@dOd¢ is the unit sphere
measure.
We first concentrate on Jﬁ'}d as it contributes at leading
order O(G?) and was recently obtained in the center-of-

mass frame [22]. The static nature of f EJD, Eq. (27), allows
one to trivially perform the u integration and express the
radiated angular momentum in terms of the wave memories

Af, . Inserting the basis of polarization tensors, Eq. (15),
[and using f(xl) = 0] gives

1 sin ¢ 1
rad (1) (1)
¢ = Afy —= A
IS o do Liné’f* f 508 POof L ASf |
+ O(G?). (31)

The spherical integral is elementary and yields

J;i;d N 4G2m1m2 (2}/2 - 1)

o T O(G?),
J;Cnyn bz 7/2_1 (v)+ ( )

(32a)

Z(v):——+—2+(3”273_1)

32b
3 v v (32b)

arctanh(v),

where we have normalized our result with respect to the
initial angular momentum in the rest frame of black hole 1:
JiNC = my |v,||b| = myyvb. We find perfect agreement with
Ref. [22,38].

Similarly, P, of Eq. (29) should reproduce the recent
result of Ref. [30] contributing at O(G?). So far we have
only been able to perform the integral in the PN expansion
recovering the result of Ref. [30] to order 10, Yet it is
straightforward to obtain differential quantities derived
from the integrand of Eq. (29). The differential power
spectrum (total energy radiated per unit frequency) as well
as the total energy radiated per unit solid angle are collected
in the Supplemental Material [36] to this Letter. These
results go well beyond Kovacs and Thorne [4] and may be
expanded to any desired order in v.

Conclusions.—Searching for GWs from scattering events
over the full range of impact velocities requires precision
predictions in the PM approximation. While the potential
and radiation of bound systems was calculated to high PN
order [39] (see Ref. [40] for spinning bodies), a resummation
of PN results in the strong-field and fast-motion regimes is
essential for building accurate waveform models [8]. The
PM resummation is one promising recent attempt [21,41,42].

Our results provide a stepping stone for higher-order
calculations, where a repertoire of advanced integration
techniques can be put to use [16,24,30,43]. In fact, the 3PM
integrand has essentially been presented in Ref. [29]. The
present challenge lies in the multiscale integrals, which
despite their tree-level structure are of higher loop three-
momentum type as the worldline only preserves energy.
Generalizations to spin and finite-size effects are possible
and lead to the same families of integrations at 2PM. Also
the extensions to bound systems using mappings between
bound and unbound orbits [24,44] would be of great utility.
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