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We analyze signatures of the dynamical quantum phase transitions in physical observables. In particular,
we show that both the expectation value and various out of time order correlation functions of the finite
length product or string operators develop cusp singularities following quench protocols, which become
sharper and sharper as the string length increases. We illustrated our ideas analyzing both integrable and
nonintegrable one-dimensional Ising models showing that these transitions are robust both to the details of
the model and to the choice of the initial state.
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Understanding out-of-equilibrium dynamics of quantum
many body systems is an exciting field of recent research both
from theoretical and experimental viewpoints [1–6]. In this
regard, dynamical and equilibrium quantum phase transitions
(DQPTs), manifested as real-time singularities in time-
evolving integrable and nonintegrable quantum systems,
are indeed an emerging and intriguing phenomena [7–11].
To probe DQPTs, a quantum many body system is prepared
initially in the ground state jψð0Þi of some Hamiltonian. At
time t ¼ 0 a parameter λ of the Hamiltonian in suddenly
changed to say λ ¼ λf and the subsequent temporal evolution
of the system generated by the time-independent final
Hamiltonian HðλfÞ is tracked. DQPTs occur at those
instants of time t when the evolved state jψðtÞi ¼
exp½−iHðλfÞt�jψð0Þi, becomes orthogonal to the initial state
jψð0Þi, i.e., the so-called Loschmidt overlap (LO), LðtÞ ¼
jhψð0ÞjψðtÞij2 vanishes. At those critical instants, the so-
called dynamical free energy density (or the rate function of
the return probability) defined as F ¼ −ð1=NÞ log jLðtÞj, N
being the system size, develops nonanalytic singularities
(cusps in 1D systems) in the thermodynamic limit [7].
Following the initial proposal [7], there have been a

plethora of studies investigating intricacies of DQPTs in
several integrable and nonintegrable, one-dimensional (as well
as two-dimensional) quantum systems occurring subsequent
to both sudden [12–45], and smooth [46–49] ramping proto-
cols. The notion of a DQPT has also been generalized for
mixed initial states [50–53] and finally also in open quantum
systems [54]. Analogous to equilibrium phase transitions, it
has been established that one expects universal scaling of the
dynamical free energy density near the critical instants with
identifiable critical exponents. (For reviews on various aspects
of DQPTs, we refer to Refs. [55–57].) Remarkably, these
nonanalyticities have been detected experimentally sub-
sequent to a rapid quench from a topologically trivial system
into a Haldane-like system [58].

Recently, DQPTs were also experimentally [59] detected
in trapped-ion setups simulating a long-range interacting
transverse field Ising model (TFIM). Starting from a
degenerate ground state manifold, it was established
that following a quench in an interacting chain of
40Caþ ions, the dynamical free energy density develops
cusplike singularities at critical instants signalling DQPTs.
However, a thorough understanding of the phenomena in
harmony with the now well-understood notion of equilib-
rium quantum phase transitions is far from being complete.
Although DQPTs may be characterized by a topological
dynamical order parameter [20,30] indicating the emer-
gence of momentum space vortices at critical instants,
there is an ongoing search for spatially local observables
which are able to capture these nonequilibrium quantum
phase transitions [10,11,60]. There has been many attempts
aiming at finding real-time observable effects of the
dynamical transitions on many-body observables such as
work distributions and the growth of entanglement in
quenched systems [43,61]. A very interesting perspective
on DQPTs was put forward in another recent trapped ion
quantum simulator [62], where the authors experimentally
studied singularities in the domain wall statistics following
a sudden quench of the transverse magnetic field in the
system with long range Ising type interactions.
One obvious drawback of DQPTs is that they are

manifested in the overlap of the wave functions, which
is difficult to observe experimentally. However, the experi-
ment of J. Zhang et al. (Ref. [62]) showed that DQPTs can
also be manifested in the behavior of nonlocal, stringlike
observables. But the precise mathematical connection
between DQPTs and this experiment remains unclear.
Currently, the broad questions which remain under scrutiny
are: (i) Can the singular transitions at DQPTs be captured in
the real-time behavior of strong observable quantities?
(ii) What can one infer about the spatiotemporal locality
of the observables required to detect the DQPTs? (iii) Is it
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possible to obtain the critical exponents associated with the
dynamical transitions through a measurement of time-
evolving observables [38]? In this work, we approach
these issues by defining finite length string operators. As
the length of these operators increases they effectively play
the role of the projection operators to polarized spin states.
Using an exact diagonalization scheme [63,64], we show
that these observables are able to capture the critical
singularities in their time evolving expectations and tem-
poral correlators. We observe that early time rate function
of the out-of-time order correlator (OTOC), which is an
important quantity to study scrambling of information in
chaotic systems [65] and quantum phase transitions
[42,66], quickly becomes nonanalytic at the critical instants
with the operator length and show universal critical scaling
near DQPTs.
To exemplify, we consider a ferromagnetic TFIM with

nearest and next nearest neighbor interactions (J > 0 and
J2 > 0) and a noncommuting external field h, having N
spins,

H ¼ −J
XN

i¼1

σizσ
iþ1
z − J2

XN

i¼1

σizσ
iþ2
z − h

XN

i¼1

σix ð1Þ

under periodic boundary conditions where σ’s are the Pauli
Matrices satisfying standard SUð2Þ commutation relations.
The presence of both the nearest neighbor and the next
nearest neighbour interactions renders the model non-
integrable with an integrable point at J2 ¼ 0.
For concreteness we start from a fully spin-polarized

state j↑↑↑…i, which is a ground state corresponding to a
zero transverse field. However, this assumption can be
lifted without affecting the results of this work as we will
observe similar nonanalyticities in the infinite temperature
OTOCs (also see Supplemental Material Ref. [67] for a
discussion on generic initial states). As an observable we
consider the translationally invariant Pauli string operator,

Pnð0Þ ¼
1

N

XN

i¼1

1

2n

Yiþn

i

ðIi þ σzi Þ; ð2Þ

having a finite string size n of a system of size N and probe
its time evolution following a sudden quench of the
transverse field h at t ¼ 0. When the strings in Eq. (2)
span the whole system (i.e., when n ¼ N), the quantity
Pnð0Þ simply reduces to the projector over the complete
initial state jψð0Þi.
Originally DQPTs are defined through emergent non-

analyticities of the rate function [7,12] defined as

fðtÞ ¼ − lim
N→∞

1

N
logLðtÞ; where LðtÞ ¼ jhψð0ÞjψðtÞij2:

ð3Þ

These nonanalyticities develop at critical instants of time
(t ¼ tc). It is easy to see that formally the rate function
can be understood through the time-dependent expecta-
tion value of the ground state projection operator
P ¼ jψð0Þihψð0Þj in the Heisenberg representation:
PðtÞ ¼ exp½iHt�Pð0Þ exp½−iHt�, such that,

fðtÞ ¼ − lim
N→∞

1

N
loghPðtÞi; ð4Þ

where, h� � �i ¼ hψð0Þj…jψð0Þi. In the one-dimensional
Ising models, close to the critical point jfðtÞ − fðtcÞj ∼
jt − tcjα with the universal critical exponent α ¼ 1
[7,12,19]. For the initially polarized state j↑↑↑…i, clearly
P≡ PNð0Þ. The idea of this work is to look into the
expectation value of the operator PnðtÞ (n ≤ N) instead of
the full projector through the observable

OnðtÞ ¼ −
1

n
loghPnðtÞi: ð5Þ

We find (see Fig. 1) that the observable OnðtÞ develops
emergent cusp singularities at the critical instants in both
integrable and integrability-broken systems, thus establish-
ing that DQPTs can be detected using normal physical
observables. As it is evident from the plot the singularities
quickly develop with increasing n, becoming very sharp
for n≳ 6 for the parameters used to generate this plot.
The singularities were also seen to develop with increasing
string length in the thermodynamic limit (N → ∞)

FIG. 1. Emergent cusp singularities in the observable OnðtÞ
[see Eq. (5)] for finite string lengths n following an integrable
sudden quench in the transverse field (with 4J ¼ 1.0, 2J2 ¼ 0.0),
from the completely polarized ferromagnetic ground state
(2h ¼ 0) to a paramagnetic phase (2h ¼ 4.0). The emergence
of the singularities is shown for various string lengths comparing
the cusps with increasing string length n. (Inset) The same
observable following a quench in the nonintegrable Ising chain
(4J ¼ 1.0, 4J2 ¼ 0.5). The simulations have been performed in a
chain containing N ¼ 16 spins using exact diagonalization.
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following an exact calculation for the integrable situation as
the expectation hPnðtcÞi vanishes at the critical instants
exponentially fast in n [67].
These results can be generalized for quenches starting

from an arbitrary initial state [67], like a ground state
corresponding to a finite transverse field within the para-
magnetic phase or a mixed initial density matrix, for
example, corresponding to a finite temperature ensemble.
To see how it works, let us observe that for any initial
density matrix ρð0Þ we have

CðtÞ≡ Tr½ρðtÞPð0ÞPð−tÞPð0Þ� ¼ pðtÞLðtÞ; ð6Þ

where, pðtÞ ¼ hψð0ÞjρðtÞjψð0Þi. It is easy to check that,

Tr½ρðtÞPð0ÞPð−tÞPð0Þ� ¼ Tr½ρð0ÞPðtÞPð0ÞPðtÞ�;

such that,

CðtÞ ¼ pðtÞLðtÞ ¼ Tr½ρð0ÞPðtÞPð0ÞPðtÞ�: ð7Þ

The function pðtÞ is a projection of the time dependent
density matrix to the ground state jψð0Þi. In some sit-
uations, like when the initial state is the ground state of the
initial Hamiltonian, pðtÞ ¼ LðtÞ such that CðtÞ ∝ L2ðtÞ. If
the initial state, on the other hand, is stationary with respect
to the final Hamiltonian HðλfÞ then pðtÞ ¼ constðtÞ and

CðtÞ ∝ LðtÞ. In both cases −ð1=NÞ log½CðtÞ� is expected to
show the exact same singularities as the rate function and
scale similar to fðtÞ with the same exponent α near the
critical point.
The function CðtÞ is nothing but the OTOC of the

projection operator, which can be measured through, for
example, quantum echo protocols [22,68–71].
Like before instead of the full CðtÞ we define the

quasilocal truncated OTOC

CnðtÞ ¼ −
1

n
loghPnðtÞPnð0ÞPnðtÞi; ð8Þ

where the average now is over the initial density matrix
ρð0Þ, which we first take to be the same as before ρð0Þ ¼
jψð0Þihψð0Þj and later show that the results qualitatively do
not change if we start from general mixed ensembles.
Similar to the expectation OnðtÞ the postquench rate

function CnðtÞ of the OTOC develops nonanalytic cusp
singularities [see Figs. 2(a) and 2(b)] even for finite length
string operators Pnð0Þ. We find that the observable CnðtÞ
apart from being singular at critical times, also shows a
collapse to an universal scaling for sufficiently long strings
near the critical point t ¼ tc, having critical exponent α ∼ 1
for quenches in both the integrable and nonintegrable
chains. Consequently, the growth rate of the OTOC in
its early time dynamics, shows singular discontinuous
jumps at the critical instants of DQPTs. In Fig. 3 we show

(a) (b)

FIG. 2. (a) The universal scaling of the OTOCs for an integrable chain near the critical point. The deviation log jCnðtÞ − Cnðt0Þj vs
log jt − t0j (in the region shown within the vertical dashed lines in inset) exhibits a scaling collapse for different string lengths n (see also
Ref. [72]); here we have chosen an instant t0 ¼ 1.3 to be a point near the critical point such that it captures the universal linear collapse
region. (Inset) Corresponding emergent cusp singularities in the rate function of the OTOC Cn [see Eq. (8)] for finite string lengths
following a sudden quench in the transverse field (with 4J ¼ 1.5, 4J2 ¼ 0 for N ¼ 16) from the completely polarized ferromagnetic
ground state (2h ¼ 0) to a paramagnetic phase (2h ¼ 2.5). (b) The linear scaling of Cn (in the region shown within the vertical dashed
lines in inset) and the corresponding cusps (inset) at critical times in a nonintegrable chain (with 4J ¼ 1.0, 4J2 ¼ 1.0 for N ¼ 16)
subsequent to a quench from 2h ¼ 0.0 to 2h ¼ 4.5 and choosing a t0 ¼ 2.1 near the critical point. Both the integrable and the
nonintegrable situations exhibit a universal critical exponent of α ∼ 1 as seen by the linear fits depicted by black solid lines. The linear
scaling in both (a) and (b) has been shown for t < tc (left of the critical instant). Similar scaling has also been checked to hold for t > tc.
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that the jump singularities in the early-time OTOC growth
rate at critical instants,

GnðtÞ ¼
dCnðtÞ
dt

; ð9Þ

for finite string operators Pnð0Þ emerge with increasing
sharpness for increasing string lengths.
Although we have demonstrated the development of

emergent singularities through a quenched TFIM, the
phenomena is not explicitly model dependent as has been
previously established in literature. We also stress that the
information about the complete initial ground state is not a
necessary requirement to study the nonequilibrium phase
transitions which can also be detected in temporal corre-
lators of the strings when summed over arbitrary complete
basis states. To elaborate, consider the infinite temperature
autocorrelator and OTOCs,

ÕnðtÞ ¼ −
1

n
log Tr½PnðtÞPnð0Þ�;

C̃nðtÞ ¼ −
1

n
log Tr½PnðtÞPnð0ÞPnðtÞ�; ð10Þ

respectively. Remarkably, we find that though the traced
correlations are independent of the full initial state jψð0Þi,
they develop cusplike singularities at the critical instants for
finite but sufficiently long strings and are therefore suffi-
cient to observe the nonequilibrium transitions (see Fig. 4).
This also establishes that the emergent critical behavior

stays robust in the observables even when the dynamics
starts from arbitrary excited initial states.
In conclusion, we demonstrated that DQPTs can be

observed experimentally as postquench singularities devel-
oping in time for stringlike observables. These singularities
become sharper with increasing string length. We showed
that for the initial ground state these singularities emerge in
the expectation values of string operators, while for generic,
even infinite temperature, initial states they appear in the
OTOC of such operators and can be detected through echo-
type protocols. It is interesting that similar signatures of
postquench singularities in two-spin observables were
found in Refs. [10,60]. The precise relation of the results
of that work to the present one regarding DQPTs is yet to be
understood.
One can also check (see Ref. [67]) that the coefficient of

variation of the observable PnðtcÞ at a critical point remains
finite and nonzero for local strings (having a finite length n)
even in the thermodynamic limit, unlike that of the full
projector PNðtcÞ which diverges exponentially in system
size. This suggests a further experimental advantage of the
proposed observables as unlike the full Loschmidt overlap,
it takes only a finite number of measurements to accurately
determine the expectations of finite projectors even for
infinitely large system sizes.
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FIG. 3. Emergent jump discontinuities in the OTOC growth rate
Gn [see Eq. (9)] following an integrable sudden quench in the
transverse field with the quench parameters being the same as in
Fig. 2(a). The quantity GnðtÞ vs t, is shown for various n
comparing the sharp jumps at the critical instant t ¼ tcðnÞ with
increasing string length. The critical instants tcðnÞ corresponding
to the peaks in the rate function of the OTOC, for a string length n
can be determined by the emergent jump singularities in the
OTOC growth rate (shown by vertical dashed lines in the figure
where the rate crosses zero, with tcð14Þ explicitly marked).
Similar jump discontinuities were also observed in the non-
integrable situations.

n=2
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FIG. 4. (Solid lines) The logarithm of the infinite temperature
OTOC C̃nðtÞ [see Eq. (10)] at the critical instants show sharper
singularities with increasing peak heights as the string size n
increases. (dotted lines) The corresponding postquench autocor-
relation functions ÕnðtÞ. The system is initially chosen to be in a
completely polarized ground state of an integrable TFIM having a
transverse field h ¼ 0.0, J ¼ 0.1 and suddenly quenched to a
final field in the paramagnetic phase h ¼ 2.5 at t ¼ 0. The
simulations have been performed for a chain of N ¼ 8 spins
while considering finite strings of lengths n. The singularities
were seen to become sharper for higher string sizes.
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Note added.—Recently, we came across a similar study
[72] which also exhibits the efficacy of local operators in
capturing DQPTs.
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