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We consider the problem of discriminating finite-dimensional quantum processes, also called quantum
supermaps, that can consist of multiple time steps. Obtaining the ultimate performance for discriminating
quantum processes is of fundamental importance, but is challenging mainly due to the necessity of
considering all discrimination strategies allowed by quantum mechanics, including entanglement-assisted
strategies and adaptive strategies. In the case in which the processes to be discriminated have internal
memories, the ultimate performance would generally be more difficult to analyze. In this Letter, we present
a simple upper bound on the ultimate success probability for discriminating arbitrary quantum processes. In
the special case of multishot channel discrimination, it can be shown that the ultimate success probability
increases by at most a constant factor determined by the given channels if the number of channel
evaluations increases by one. We also present a lower bound based on Bayesian updating, which has a low
computational cost. Our numerical experiments demonstrate that the proposed bounds are reasonably tight.
The proposed bounds do not explicitly depend on any quantum phenomena, and can be readily extended to
a general operational probabilistic theory.
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A quantum process, which is a mathematical object that
models the probabilistic behavior of quantum devices,
plays an essential role in quantum information science.
Discriminating between quantum processes is a fundamen-
tal and challenging problem, which forms the basis of a
large class of problems in quantum information theory such
as quantum communication, quantum cryptography, and
quantum metrology. The simplest instance of this problem
is a quantum state discrimination problem, which has been
widely studied since the end of the 1960s [1–3]. Since the
maximum success probability is often quite difficult to
obtain accurately, its upper and lower bounds have been
developed [4–9]. Discrimination problems of quantum
measurements [10–16] and quantum channels [17–22]
are also particular instances. In quantum channel discrimi-
nation, entanglement with an ancillary system and an
adaptive strategy may be required to achieve the ultimate
performance, which makes this problem difficult in gen-
eral. A quantum process describes the most general trans-
formation that maps channels to channels [23,24]. A
process can consist of several memory channels [25–29],
whose output states can depend on the previous input
states. As an example of process discrimination, we can
consider the problem of retrieving the value of the bit that is
encoded into the reflectivity of a certain memory cell,
which is often referred to as quantum reading [30]. This
problem can be seen as the discrimination of two processes,
even when a finite number of uses of the memory cell are
allowed and the reflectivity may change depending on the

previous inputs to it. Although finding the ultimate
performance for discriminating such processes is extremely
difficult, it is of fundamental importance in various fields
including quantum cryptography [31], quantum game
theory [32], and quantum algorithms.
In this Letter, we derive a simple upper bound on the

ultimate success probability for discriminating arbitrary
finite-dimensional quantum processes. In the special case
of multishot channel discrimination, our approach can
ensure that the ultimate success probability increases by
at most a constant factor, which is determined by the given
channels, if the number of channel evaluations increases by
one. Note that an upper bound for channel discrimination
has been reported very recently [33], which is based on
port-based teleportation [34,35]. We present numerical
simulations that show that, at least in a certain multishot
channel discrimination problem, our upper bound is sig-
nificantly tighter than that of Ref. [33].
A tight lower bound is also required to accurately

evaluate the ultimate performance. Since the success
probability of any discrimination allowed by quantum
mechanics yields a lower bound on the ultimate success
probability, a natural approach to derive such a bound is
to find good discrimination. As an illustration of this
approach, certain nonadaptive discrimination has some-
times been discussed [33,36]. However, an adaptive strat-
egy would outperform the best nonadaptive strategy except
for some special cases [21,24,37–41]. For example, it is
known that there exist two channels that can be perfectly
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distinguished by using an adaptive strategy with only two
uses of the channel, while they cannot be perfectly
distinguished by using any nonadaptive strategy with a
finite number of uses [42]. We present a lower bound that is
obtained by an adaptive discrimination strategy based on
Bayesian updating. Our work is motivated by the fact that,
for quantum state discrimination, a Bayesian updating
approach has been shown to be effective [43–46] and to
be optimal at least for discriminating two identical copies of
a pure state [47–49]. Our numerical results demonstrate the
tightness of the proposed lower bound. We should empha-
size that the proposed upper and lower bounds do not
explicitly depend on any quantum phenomena, such as
entanglement and quantum teleportation, and can be readily
extended to operational probabilistic theory (or generalized
probabilistic theory) [50–54].
Process discrimination problems.—Suppose that we

want to discriminate between M quantum processes
E1;…; EM as accurately as possible, where each Em is a

process consisting of T channels Λð1Þ
m ;…;ΛðTÞ

m . The most
general discrimination protocol can be expressed as the
collection of a state σ1, channels σ2;…; σT , and a meas-

urement Π ≔ fΠkgMk¼1 (see Fig. 1). Channels ΛðtÞ
m and

Λðtþ1Þ
m are connected by an ancillary system W0

t. A process
Em, which is also called a quantum supermap or a quantum
comb [24], is equivalent to a sequence of memory channels
[55]. In the first step of process discrimination, a bipartite
system V1 ⊗ V 0

1 is prepared in an initial state σ1. Its part V1

is sent through the channel Λð1Þ
m , followed by a channel σ2.

Then, we send the system V2 through the channel Λð2Þ
m and

so on. After T steps, a quantum measurement Π is
performed on the system WT . The problem of discrimi-
nating M channels Λ1;…;ΛM with T queries can be
regarded as a special case of a processes discrimination

problem with ΛðtÞ
m ¼ Λm and W0

t ¼ C ð∀m; tÞ. For sim-
plicity, we focus on the case of equal prior probabilities. Let
Pkjm be the conditional probability that the measurement
outcome is k given that the given process is Em, which is
expressed by

Pkjm ≔ Πk∘ΛðTÞ
m ∘σT∘ � � � ∘σ2∘Λð1Þ

m ∘σ1:

The success probability P is written as

P ≔
1

M

XM

m¼1

Pmjm; ð1Þ

where ∘ denotes function composition. Our objective is to
find discrimination ðσ1;…; σT;ΠÞ that maximizes the
success probability. It is known that this optimization
problem is formulated as a semidefinite programming
(SDP) problem of order Ñ ≔

Q
T
t¼1 NVt

NWt
[56], where

NVt
and NWt

are, respectively, the dimensions of the
systems Vt and Wt. Solving this problem requires time
polynomial in Ñ, and thus is generally intractable for large
T. Indeed, in the case of NVt

¼ NWt
≕N for each t, for

example, Ñ ¼ N2T is exponentially increasing with T.
Proposed upper bound.—The basic idea is quite simple:

for each t, we only have to replace ΛðtÞ
m of Eq. (1) by stXt,

where st and Xt are, respectively, a positive real number

and a channel satisfying stXt ≥ ΛðtÞ
m (∀m). For two single-

step processes Λ and Λ0, the inequality Λ ≥ Λ0 denotes that
Λ − Λ0 is completely positive. Such a pair ðst; XtÞ obvi-
ously exists. From Eq. (1), we have

P ≤
1

M

XM

m¼1

Πm∘sTXT∘σT∘ � � � ∘σ2∘s1X1∘σ1 ¼ 1

M

YT

t¼1

st;

where the equality follows from
P

M
m¼1 Πm∘XT∘σT∘ � � �∘σ2∘X1∘σ1 ¼ 1. This gives that the ultimate success prob-

ability is upper bounded byM−1 QT
t¼1 st. For example, in the

case of T ¼ 2, it is diagrammatically depicted as

≤

1 2

=

m=1

1

1 2

Λm
(1) (2)Λm

X1 X2
s1s2s1s2

Πm

Πm

=P
M

m=1

M

M

MM .

Tomake this bound as tight as possible, we need to minimize
s1;…; sT . This problem is written as

minimize st

subject to stXt ≥ ΛðtÞ
m ð∀mÞ ð2Þ

with a real number st and a channel Xt from W0
t−1 ⊗ Vt to

W0
t ⊗ Wt. Let s⋆t be the optimal value of problem (2). The

proposed upper bound P̄1 is given by

V1 W1 V2 W2

V'1 V'2

VT WT

V'T

W'1 W'2 W'T−1

Λm
(1) (2) (T)Λm Λm

m

1 2 T Πk

FIG. 1. General protocol of quantum process discrimination.

Em is a process consisting of T channels Λð1Þ
m ;…;ΛðTÞ

m . Dis-
crimination is characterized by the collection of a state σ1,
channels σ2;…; σT , and a measurement fΠkgMk¼1.
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P̄1 ≔
1

M

YT

t¼1

s⋆t ; ð3Þ

where the subscript 1 indicates that P̄1 is obtained by
optimization problems for finding single-step processes
(the same for P̄2, which will be defined below).
The above argument can be readily extended to obtain a

tighter bound at the expense of additional complexity. For
instance, instead of finding a single-step process stXt that

is larger than ΛðtÞ
m as in Eq. (2), we can consider finding a

pair of single-step processes that is larger than the pair

½Λðt−1Þ
m ;ΛðtÞ

m �. Specifically, we consider the following opti-
mization problem

minimize st;2

subject to st;2Xt∘η∘Xt−1 ≥ ΛðtÞ
m ∘η∘Λðt−1Þ

m

ð∀m; ηÞ ð4Þ

with a real number st;2 and channels Xt−1 and Xt, which are

the same type as Λðt−1Þ
m and ΛðtÞ

m , respectively. η is any

channel that can be sequentially connected to channels ΛðtÞ
m

and Λðt−1Þ
m such as ΛðtÞ

m ∘η∘Λðt−1Þ
m . Its optimal solution, s⋆t;2,

can be used to obtain an upper bound instead of s⋆t−1s⋆t ,
Thus, we obtain the following upper bound

P2 ≔
1

M

YT=2

t¼1

s⋆2t;2 or P2 ≔
s⋆T
M

YðT−1Þ=2

t¼1

s⋆2t;2; ð5Þ

for even or odd T, respectively. We can easily see
P ≤ P2 ≤ P1 [57].
With the so-called Choi-Jamiołkowski representation of

Xt [58,59], Eqs. (2) and (4) can be formulated as SDP
problems. Thus, their numerical optimal solutions can be
efficiently obtained by several well-known SDP solvers.
Analytical optimal solutions to these problems can be
obtained in some cases, such as the case in which processes
E1;…; EM have some kind of symmetry [60]; another
example is shown in Sec. III of the Supplemental
Material (SM) [61].
As a special case, we consider the T-shot discrimination

of quantum channels. In this case, the optimal value s⋆t ≕ s⋆
of problem (2) is obviously independent of t. Let P⋆

T be the
ultimate success probability; then, since P⋆

T increases as the
number of evaluations T increases, P⋆

T ≥ P⋆
T−1 ≥ � � � ≥ P⋆

1

holds. As an application of the above argument, we also
obtain (see Sec. II B of the SM [61])

P⋆
T ≤ s⋆P⋆

T−1 ≤ s⋆2P⋆
T−2 ≤ � � � ≤ s⋆T−1P⋆

1 ¼ s⋆T
M

; ð6Þ

where the equality follows from P⋆
1 ¼ s⋆=M [56]. This

equation implies that the ultimate success probability

increases by at most s⋆ð≥ 1Þ times if the number of
channel evaluations increases by one. Discrimination of
quantum channels that are very close to each other is
required in many application scenarios such as quantum
illumination [63,64] and quantum reading [30]. In such a
case, since s⋆ is very close to one, the inequality P⋆

T−1 ≤
P⋆
T ≤ s⋆P⋆

T−1 provides a strong constraint. Equation (6)
provides some useful properties. As an example, we can see
that the given channels cannot be perfectly discriminated
with T uses if P⋆

1 is smaller than 1=M1−1=T . As another
example, in order for the ultimate success probability to be
larger than a given threshold p, more than logs⋆ Mp
evaluations are needed.
Proposed lower bound.—A natural approach for

obtaining a lower bound is to restrict attention to certain
types of discrimination strategies. A typical example is
nonadaptive strategies. The success probability, PðnaÞ, of
the best nonadaptive strategy would be more easily
obtained than the ultimate success probability; for example,
in the particular case of T-shot discrimination of two
channels Λ1 and Λ2, it is well known that PðnaÞ is given
by 1

2
þ 1

4
kΛ⊗T

1 − Λ⊗T
2 k⋄. However, adaptive strategies pro-

vide a clear advantage over nonadaptive ones in not a
few cases.
We propose an adaptive strategy based on Bayesian

updating to obtain a tight lower bound. In our method,
channels σ2;…; σT are restricted to measure-and-prepare
(i.e., entanglement breaking) channels as illustrated in
Fig. 2. The channel σt with 2 ≤ t ≤ T consists of a

measurement, Πðt−1Þ ≔ fΠðt−1Þ
m gMm¼1, followed by a state

preparation, ϱðtÞ. The state preparation ϱðtÞ and the meas-
urement ΠðtÞ can be connected by an ancillary system and
may depend on the outcome of the previous measurement
Πðt−1Þ. Assume that they are independent of the outcome of
measurements Πðt−2Þ;Πðt−3Þ;… to reduce the complexity.
In such a scenario, we want to determine ϱðtÞ and ΠðtÞ such
that the success probability is as high as possible. For
practical computation, we need to optimize them sequen-
tially for t ¼ 1; 2;…. Note that, since such discrimination

Γ (1)

Λm
(1)

V1

V'1

Λm
(2)

W1

W'1

V2 W2

W'2

V3

V'2 V'

Γ(2) Γ(3)

Π(1)k1 Π(2)k2
(1) (2) (3)

31 2

FIG. 2. Proposed protocol based on Bayesian updating. Each
channel σt with 2 ≤ t ≤ T is restricted to a measure-and-prepare
channel ϱðtÞ∘Πðt−1Þ. The state preparation ϱðtÞ and the measure-
ment ΠðtÞ depend on the outcome of the previous measurement
Πðt−1Þ. To provide a tight lower bound on the ultimate success
probability, ½ϱð1Þ;Πð1Þ�; ½ϱð2Þ;Πð2Þ�;… are sequentially optimized.
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only requires state preparations and measurements, it has
the advantage of being relatively easy to implement
experimentally.
We here present a brief outline of the proposed method;

we refer to Sec. IVof the SM [61] for details. Let ϱð1Þ ≔ σ1
and ΠðTÞ ≔ Π; then, the sequence of processes shown in
Fig. 2 is expressed by the sequential composition of

ΓðtÞ
ktjm;kt−1

≔ ΠðtÞ
kt
∘ΛðtÞ

m ∘ϱðtÞ;

where kt−1 is the outcome of Πðt−1Þ. After some calcu-
lations, we find that the probability that the measurement
ΠðtÞ correctly distinguishes between the processes is given
by

PðtÞ ≔
1

M

XM

m¼1

qðtÞm ;

where qðtÞm is the conditional probability of the outcome of
the measurement ΠðtÞ being m given that the given process
is Em, which is expressed by

qðtÞm ≔ Tr
XM

kt−1¼1

…
XM

k1¼1

ΓðtÞ
mjm;kt−1

∘Γðt−1Þ
kt−1jm;kt−2

∘ � � � ∘Γð1Þ
k1jm:

The sets of ½ϱð1Þ;Πð1Þ�; ½ϱð2Þ;Πð2Þ�;… can be sequentially
optimized. Specifically, for each t, we find ½ϱðtÞ;ΠðtÞ� that
maximize PðtÞ, which can be regarded as a single-shot
channel discrimination problem and is formulated as an
SDP problem. The success probability of our strategy is
given by

P ≔ PðTÞ; ð7Þ

which is obviously a lower bound on the ultimate success
probability. Since we need to optimize the T sets
½ϱð1Þ;Πð1Þ�; ½ϱð2Þ;Πð2Þ�;…, the computational complexity
of obtaining P is roughly proportional to T.
We emphasize that since the proposed upper and lower

bounds are based only on the concept of an operational
probabilistic framework, it can be generalized to an
arbitrary operational probabilistic theory. In such a theory,
we need to solve some convex programming problems that
are not SDP in general. However, these problems can be
efficiently solved with existing techniques such as interior-
point methods.
Numerical results.—First, we discuss a multishot chan-

nel discrimination problem. We here consider the problem
of channel position finding [65] with two amplitude
damping (AD) channels to compare our results with that
in Ref. [33]. Let Aq be the AD channel with the damping
parameter q, i.e., the qubit channel defined by

AqðρÞ ¼ E0ρE
†
0 þ E1ρE

†
1;

E0 ≔ j0ih0j þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
j1ih1j; E1 ≔

ffiffiffi
q

p j0ih1j ð8Þ

with the standard basis fj0i; j1ig. Specifically, we consider
T-shot discrimination of three channels, in which case the
three channels are expressed in the form AqT ⊗ AqB ⊗ AqB ,
AqB ⊗ AqT ⊗ AqB , and AqB ⊗ AqB ⊗ AqT with two damp-
ing parameters qT and qB. In Fig. 3, we show our numerical
results. We computed our bounds P̄1 and P from Eqs. (3)
and (7), respectively, where we solved the corresponding
single-shot channel discrimination problems by the SDP
solver CSDP (a C library for SDP) [66]. We also computed
another proposed upper bound P̄0

1 (detailed in Sec. II C of
the SM [61]), which can be obtained at low computational
cost. We can see that P̄conv is far from being optimal when
the given channels are very close to each other. Indeed,
P̄conv ≥ ðM þ 1Þ=2M always holds for any discrimination
problem of M channels with equal prior probabilities [67],
while the ultimate success probability P⋆ is close to 1=M
when the given channels are nearly identical to each other.
We can say that P̄1 is tighter than P̄conv in such a situation if
T is not large enough [68]. Note that the proposed bound P̄1

becomes looser as T increases; in our preliminary numeri-
cal experiments, we observed that P̄1 is worse than P̄conv
for large T (e.g., T ≥ 13). As for the computational cost,
computing P̄1 requires polyð4MÞ time, whereas P̄conv
requires Oð1Þ time (see Sec. VI of the SM [61]). The
proposed method can be easily extended to obtain a slightly
looser bound P̄0

1 requiring Oð1Þ time. Computing PPGM

and P takes polyð4MTÞ and OðMTÞpolyð4MÞ times,
respectively [69].
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lit
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Damping rate qT

P1
P1

P

'

Pconv

PPGM

FIG. 3. Success probability in the problem of channel position
finding with two AD channels AqB and AqT , where T ¼ 2,M ¼ 3,
and qB ¼ qT þ 0.04. The ultimate success probability lies in the
gray region, between our upper bound P̄1 of Eq. (3) and our lower
bound P of Eq. (7). P̄0

1 is the proposed upper bound described in
the SM. P̄conv is the upper bound proposed in Ref. [33]. PPGM is
the success probability achieved by the maximally entangled pure
state and the pretty good measurement [70,71], which is a lower
bound on the ultimate success probability.
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Next, we discuss the problem of discriminating M
processes where each process Em consists of M memory
channels each of which is the same channel, G0, except the
mth step, which is G1. These processes are analogous to
pulse-position modulated signals; We are here concerned
with the case in which G0 and G1 are memory channels
each of which is associated with two consecutive uses of
generalized AD channel with correlated noise. Additional
details including the exact definition of generalized AD
channels are given in Sec. Vof the SM [61]. Figure 4 shows
the two upper bounds P̄1 of Eq. (3) and P̄2 of Eq. (5) and
the lower bound P. In this simulation, we set M ¼ 3 to
compute the exact value of the ultimate success probability
P⋆ (note that T ¼ M holds in this problem). Since the cost
of computing P⋆ increases exponentially with M, P⋆ is
practically computable only for fairly small M (typically,
M ≤ 3). We observe that P is very close to P⋆; the
difference between them is less than 0.0015. P̄1, P̄2, and
P have affordable computational costs; they require Oð1Þ,
Oð1Þ, and OðM2Þ times, respectively.
Conclusions.—We presented upper and lower bounds on

the ultimate success probability for discriminating arbitrary
finite-dimensional quantum processes. In a special case of
multishot channel discrimination, the ultimate success
probability satisfies the relationship of Eq. (6). Our
approach can be used to estimate the ultimate performances
in various quantum information tasks, such as quantum
sensing, quantum imaging, and quantum tomography.
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Eq. (3) and P̄2 of Eq. (5) and the proposed lower bound P of
Eq. (7) are depicted. In this case, we can numerically compute the
ultimate success probability P⋆. Pmaxent is the success probability
achieved by the maximally entangled pure state and the optimal
measurement, which gives a lower bound on P⋆.
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