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Quantum sensing is one of the key areas that exemplify the superiority of quantum technologies.
Nonetheless, most quantum sensing protocols operate efficiently only when the unknown parameters vary
within a very narrow region, i.e., local sensing. Here, we provide a systematic formulation for quantifying
the precision of a probe for multiparameter global sensing when there is no prior information about the
parameters. In many-body probes, in which extra tunable parameters exist, our protocol can tune the
performance for harnessing the quantum criticality over arbitrarily large sensing intervals. For the single-
parameter sensing, our protocol optimizes a control field such that an Ising probe is tuned to always operate
around its criticality. This significantly enhances the performance of the probe even when the interval of
interest is so large that the precision is bounded by the standard limit. For the multiparameter case, our
protocol optimizes the control fields such that the probe operates at the most efficient point along its critical
line. Finally, it is shown that even a simple magnetization measurement significantly benefits from our
global sensing protocol.
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Introduction.—The emerging field of quantum sensing
exploits quantum features for developing a new class of
sensors with unprecedented precision [1–6]. Originally, the
superiority of quantum sensors was shown by exploiting
the quantum superposition of Greenberger-Horne-
Zeilinger–type states in noninteracting particles [7–10].
Such sensors use the resources (e.g., the number of particles
L) more efficiently to enhance their precision, quantified by
the variance of the estimation, from the usual classical
standard limit (bounded by 1=L) to the Heisenberg limit
(bounded by 1=L2) [11,12]. However, if the particles
interact, the precision goes down [13–16]. Moreover, the
Greenberger-Horne-Zeilinger states are difficult to create
and prone to decoherence [17–22]. Hence, developing
these types of sensors for many particles, where the
quantum enhancement becomes significant, is extremely
challenging in practice. To overcome such difficulties, a
plethora of novel methods and systems have been exploited
for sensing purposes, including quantum control techniques
[23–26], machine learning algorithms [27–29], hybrid
variational methods [30], feedback schemes [31–34],
quantum chaos [35], periodically driven systems [36,37],
and sequential measurements [38–41].
Strongly correlated many-body systems are among the

efficient quantum probes [42–48]. In particular, the ground
state of many-body systems with quantum phase transitions
is known to provide quantum-enhanced sensing at the
vicinity of their critical point [49–58]. These schemes truly
exploit the interaction between the particles, and, because of
operation at equilibrium, they benefit from easier prepa-
ration and robustness against decoherence. However, the

quantum-enhanced sensing only occurs at the vicinity of the
critical point [49], making these sensors most suitable for
local sensing, where the unknown parameter varies within a
very narrow interval. Hence, tuning the system to operate
optimally at its quantum phase transition point can be very
elusive and practically demanding, e.g., adaptive sensing
strategies have to be employed [2,59–66]. A key open
question is whether one can employ such sensors for global
sensing, where the unknown parameter varies over a wide
range. While in the case of temperature there have been
efforts for the formulation of global thermometry [67,68],
the problem is still open for general quantum sensing.
In this Letter, we formulate a systematic approach for

multiparameter global sensing, where the unknown para-
meters can vary over arbitrarily large intervals. Our pro-
tocol applies to any sensing protocol and provides a
systematic approach for optimizing the probe. In particular,
for many-body sensors, we show that one can genuinely
exploit the criticality as a resource for enhancing the global
multidirectional magnetometry precision.
Parameter estimation.—Every sensing protocol contains

three essential steps: (i) choose an appropriate probe,
(ii) gather data through repeatedly performing specific
types of measurements on the probe, and (iii) feed the
gathered data into an estimator to infer the value of the
unknown parameters. The precision of the estimation of an
unknown parameter h ¼ ðh1; h2;…Þ obeys the Cramér-
Rao inequality [69,70]

CovðhÞ ≥ M−1FCðhÞ−1 ≥ M−1FQðhÞ−1; ð1Þ
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where CovðhÞ is the covariance matrix whose elements are
½CovðhÞ�μ;ν ¼ hhμhνi − hhμihhνi, M is the total number of
measurements, and FCðhÞ and FQðhÞ are the classical and
quantum Fisher information (QFI) matrices, respectively
[71]. For a given quantum probe with density matrix ρðhÞ
and a specific positive operator-valued measure (POVM)
fΠkg, the bound is given by the classical Fisher information
matrix ½FCðhÞ�μ;ν ¼

P
k pkðhÞ½∂μ logpkðhÞ�½∂ν logpkðhÞ�,

where pkðhÞ ¼ Tr½ρðhÞΠk� is the probability of measure-
ment outcome k, and ∂ν ≔ ∂=∂hν. By optimizing over
all possible POVMs, one can tighten the bound to be
given by the QFI FQðhÞ [70,71], which can be simplified
for pure states ρðhÞ ¼ jΦðhÞihΦðhÞj as ½FQðhÞ�μ;ν ¼
4Re½h∂μΦj∂νΦi − hΦj∂μΦihΦj∂νΦi� [72]. In the case of
single parameter, Eq. (1) reduces to

δh2 ≥ M−1FQðhÞ−1; ð2Þ

in which the QFI provides the ultimate bound for the
variance of the estimation. Note that, for any given probe
one can indeed saturate the inequality of Eq. (2) by using an
appropriate measurement setup computed through symmet-
ric logarithmic derivatives [71,73,74] and an optimal esti-
mator (which for a large dataset is known to be Bayesian
[75–79]). However, the optimal measurement basis, in
general, depends on the unknown parameter h, which varies
over an interval ½hmin; hmax�. The optimal sensing is thus
applicable only when Δh ¼ hmax − hmin is small, which is
called local sensing. In this situation, the optimal measure-
ment can be chosen for hcen ¼ ðhmax þ hminÞ=2. For
large Δh, the criteria for the best sensing protocol is indeed
unknown. The situation for multiparameter estimation is
more complex as, due to the noncommutativity of the
optimal POVMs for different parameters, even for local
sensing the Cramér-Rao bound may not be achievable [74].
Single-parameter global sensing.—In the case of local

sensing (i.e., small Δh), the Cramér-Rao bound in Eq. (2)
can always be saturated. Nonetheless, the sensing pro-
cedure might still be highly suboptimal due to the bad
choice of the probe. Hence, an optimal local sensing
algorithm requires optimization of FQðhcenÞ with respect
to the parameters of the probe. For largeΔh, which is called
global sensing, the situation is more complex as (i) in
general the optimal measurement basis varies over Δh and
no measurement setup can saturate the Cramér-Rao bound
over the entire interval, and (ii) it is not clear which quantity
has to be optimized to find the optimal probe. In the
following, we address this problem.
To formulate the global sensing, we first quantify the

average uncertainty of the estimation via
R
Δh δh

2fðhÞdh,
where fðhÞ is the prior information, i.e., the probability
distribution, of the unknown parameter h over the sensing
interval Δh of interest. Note that every practical sensor has
a range of functionality, which might be different from Δh.

In general, the functionality range of the probe needs to be
larger than Δh. From Eq. (2), one can easily show that this
average uncertainty is bounded by

gðBÞ ≔
Z

Δh

fðhÞ
MFQðhjBÞ

dh; ð3Þ

where B ¼ ðB1; B2;…Þ are external tunable parameters
interacting with the probe. We define the minimization
of gðBÞ with respect to control parameters B as a figure
of merit for finding the optimal probe, namely
gðB�Þ ≔ minB½gðBÞ�. For the minimization of gðBÞ, if
the number of parameters are few, such as the case in this
Letter, one can adopt a brute-force search method.
Otherwise, other optimization algorithms such as the
gradient-based Newton-Raphson method [80] or gra-
dient-free genetic algorithms [81] can be exploited.
Throughout this Letter, we assume no prior information
about the unknown parameter h, and thus fðhÞ takes a
uniform distribution, namely fðhÞ ¼ 1=Δh. For local
sensing, i.e., small Δh, the QFI is almost constant over
the interval, and thus gðBÞ ≈ 1=FQðhcenjBÞ. Therefore,
the minimization of gðBÞ turns into maximizing
FQðhcenjBÞ.
Many-body probe for magnetometry.—To illustrate the

relevance of our general formulation for global sensing,
which can be applied to any sensing protocol indepen-
dent of the choice of the probe, we exploit a chain
of L interacting spin − 1=2 particles with an Ising
Hamiltonian to sense a random static magnetic field. For
simplicity and without loss of generality, we assume that
the y component of the magnetic field is zero, as one
can always rotate the sample such that hσyi ¼ 0. The
Hamiltonian is

H ¼ J
XL

i¼1

σixσ
iþ1
x −

XL

i¼1

½ðBx þ hxÞσix þ ðBz þ hzÞσiz�; ð4Þ

where σiα (α ¼ x, z) is the Pauli operator at site i, J > 0 is
the exchange interaction, B ¼ ðBx; BzÞ is the control
magnetic field that can be tuned, h ¼ ðhx; hzÞ is the random
field to estimate, and a periodic boundary condition is
imposed. The ground state jΦi, for which the phase
diagram is shown in Fig. 1(a), can be used for detecting
the unknown field h. See Refs. [82–86] for the link between
the characterization of quantum phase transition via metric
tensors. The phase diagram is uniquely determined by
ðhz þ BzÞ=J and ðhx þ BxÞ=J. Thus, by tuning B one can
shift the phase diagram for the unknown parameter h. For
example, in the absence of a longitudinal field (i.e.,
Bx ¼ hx ¼ 0), the ground state jΦi can be solved analyti-
cally using a Jordan-Wigner transformation and is known
to have a quantum phase transition at hcrit ≔ Bz þ hz ¼ �J
[87,88], which leads to an enhanced QFI with scaling
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∼L2 [49,51] [see the Supplemental Material [89] (SM) for
details]. Interestingly, away from criticality, the QFI scales
as ∼Lξ−1, where ξ ∼ jðBz þ hzÞ − hcritj−1 is the correlation
length [49]. Since the quantum-enhanced sensing is lost
when the probe operates away from criticality, our global
sensing formulation stands as the most suitable for these
types of sensors.
Example 1: Transverse field Ising probe.—In this

section, we use the Ising many-body probe given in
Eq. (4) for single-parameter sensing when only a transverse
field exists, namely Bx ¼ hx ¼ 0. To see the performance
of this probe for global sensing, we numerically evaluate
gðBzÞ for various Δh for a system size L ¼ 1000. In
Fig. 2(a), we plot the global sensing performance gðBzÞ as a
function of Bz=J for different values of interval widths Δhz
and centers hcenz . For every hcenz and Δhz, the average
uncertainty gðBzÞ always has a minimum that takes place at
a particular Bz ¼ B�

z, showing that one can always make the
probe optimal by this choice of the control field.
Interestingly, the minimum value of gðBzÞ is independent
of hcenz and is only determined by Δhz. On the other hand,
the optimal control field B�

z is almost independent of Δhz
and only depends on hcenz , such that hcenz þ B�

z ≈ hcrit. This
means that the control field tends to shift the probe in its
phase diagram such that the interval of sensing is located
almost symmetrically around the critical point. This has
been shown schematically in Fig. 1(b). To determine how
the average uncertainty scales for the optimal probe, in
Fig. 2(b), we plot gðB�

zÞ as a function of L for various
choices of Δhz. For small Δhz, the average uncertainty
scales as gðB�

zÞ ∼ 1=L2, which is expected for local sensing.
Remarkably, by increasingΔhz, the scaling goes toward the
standard limit, namely gðB�

zÞ ∼ 1=L. To quantify the
transition from quantum-enhanced sensing to the standard
limit, we fit gðB�

zÞ with a function of the form aL−b þ c,
c → 0. In Fig. 2(c), we plot the fitting coefficients a and b
as a function of the width Δhz=J. As seen from the figure,
when Δhz → 0, one recovers the Heisenberg scaling

gðB�
zÞ ∼ F−1

Q ∼ 1=L2 from the local sensing strategy. The
quantum-enhanced sensing is captured by b > 1, for which
the precision surpasses the standard limit b ¼ 1.
Remarkably, the region of quantum-enhanced sensing is
extended until Δhz ≤ 0.07 J, beyond which the standard
limit is restored. However, note that the probe’s optimiza-
tion is still beneficial for sensing, even though there is no
quantum-enhanced advantage in the scaling. This can be
seen in Fig. 2(d), where gðBzÞ is plotted as a function of
Δhz=J for various choices of Bz. As the figure shows, by
the optimal choice of Bz ¼ B�

z , the average uncertainty
remains lower than using nonoptimal values of Bz for all
Δhz. In other words, for large Δhz, while b ¼ 1, the a
coefficient becomes smaller by optimizing Bz.
Multiparameter global sensing.—Thanks to the above

analysis, one can readily generalize the global sensing for
the multiparameter case. To set the performance of different
multiparameter estimators, we recast the matrix bounds in
Eq. (1) into scalar bounds. To do so, we introduce a
(positive and real) weight matrix W such that [74]

Tr½WCovðhÞ� ≥ M−1Tr½FQðhjBÞ−1W�: ð5Þ

The choice ofW depends on the uncertainty that one wants to
minimize. Throughout this work, we consider W to be iden-
tity, i.e., W ¼ I. This choice equally prioritizes the precision
of ðhx; hzÞ by making the left-hand side of the above
inequality to be the sum of the variances of the unknown
parameters. Inspired by the single-parameter case, we define
the average uncertainty for the multiparameter case as

(a) (b)

(c)

FIG. 1. (a) The phase diagram of an Ising model in the presence
of a skew magnetic field (see Ref. [92] for details). (b) By
optimizing the control field, the probe is shifted in its phase
diagram to operate around the criticality, where the quantum
Fisher information is maximum. (c) For multiparameter sensing,
the optimization of the probe also displaces the sensing area along
the critical line.

(a) (b)

(c) (d)

FIG. 2. (a) Average uncertainty gðBzÞ as function of Bz=J for
different values of interval widths Δhz and centers hcenz . The
optimal probe can always be found by tuning the control field
such that gðB�

zÞ ¼ minBz
½gðBzÞ�. (b) gðB�

zÞ (shown by markers)
and its corresponding fitting function aL−b þ c (solid lines) as a
function of L for various choices of Δhz. (c) Fitting coefficients a
and b versus the controlled field Bz=J. (d) gðBzÞ is plotted as a
function of Δhz=J for various choices of Bz.
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gðBÞ ≔
Z

Δh
fðhÞM−1Tr½FQðhjBÞ−1�dh; ð6Þ

where fðhÞ is the prior probability distribution, which is
assumed to be uniform, for magnetic field h, and the
integration is performed over the volume of all parameters.
To optimize the probe, one has to minimize gðBÞwith respect
to B, i.e., gðB�Þ ≔ minB½gðBÞ�.
Example 2: Skew field Ising probe.—In this section, we

consider the probe of Eq. (4), when both hx and hz are
sensed together. Since the system is not solvable anymore,
we are restricted to short chains and exact diagonalization.
Unlike the transverse field Ising model for which the
criticality happens exactly at one point, here there is a
line of criticality in the plane of ðhx; hzÞ [92] [see Fig. 1(a)].
Thus, the optimization of the probe is highly nontrivial as
the control fields ðBx; BzÞ can shift the phase of the probe to
operate anywhere along the critical line. For the case of
local sensing, in which Δhx and Δhz are very small, the
minimization of gðBÞ reduces to the maximization
of TrfFQ½ðhcenx ; hcenz ÞjB�−1g.
In contrast to the single-parameter case, our analysis

shows that the optimal control fields not only depend on the
location of ðhcenx ; hcenz Þ but also change by the choice of the
widths ðΔhx;ΔhzÞ. Interestingly, the probe is always
shifted somewhere near the critical line, which is predomi-
nantly controlled by the longitudinal field. To have a
quantitative analysis, in Fig. 3(a) we plot gðBx; BzÞ as a
function of control fields for the case of an almost local
sensing with hcenx ¼ hcenz ¼ 0.02 J and the widths of
Δhx ¼ Δhz ¼ 0.02 J. As the figure shows, the optimal
control fields are given by B�

x ¼ 1.98 J and B�
z ¼ −0.02 J.

In Fig. 3(b), we increase the width to Δhx ¼ Δhz ¼ 0.3 J
(i.e., global sensing). Interestingly, the optimal control
fields shift to B�

x ¼ 1.8 J and B�
z ¼ 0.4 J, which are

different from the previous case. This shows that the
optimization of the probe for multiparameter sensing is
nontrivial and that the optimal control fields depend on the
sensing range. This is schematically explained in Fig. 1(c).
Sensing protocol.—While our formulation for global

sensing systematically provides a bound for the average
uncertainty, it is not obvious whether this bound can be
saturated, as no measurement basis can be optimal through-
out the whole region. Here, we choose a simple but not
necessarily optimal measurement basis, namely global
magnetization M ¼ P

i σ
i
z, which can be measured in

ion traps [93] and superconducting quantum devices
[94,95]. In fact, global magnetization results in Lþ 1
outcomes for which one can compute the classical
Fisher information matrix. As an example, we consider a
two parameter sensing with hcenx ¼ 0.5 J, hcenz ¼ 0.7 J, and
Δhx ¼ Δhz ¼ 0.2 J. One can optimize the probe of Eq. (4)
using the algorithm above, i.e., minimizing gðBx; BzÞ,
which results in B�

x ¼ 1.39 J and B�
z ¼ −0.39 J. Using

this optimal probe, we perform the magnetization meas-
urement and compute Tr½FCðhjB�Þ−1� over the whole
interval. In Fig. 4(a), we plot Tr½FCðhjB�Þ−1� as a function
of ðhx þ B�

xÞ=J and ðhz þ B�
zÞ=J. However, one may argue

that the optimal control fields, i.e., B�
x and B�

z , have been
obtained usingFQ in Eq. (6), which is inherently optimized
for the measurement basis. For a fixed measurement basis
such as global magnetization, one may replace FQ by FC

in Eq. (6). Since this measurement is not necessarily
optimal, the ultimate precision gðB�Þ may not be achieved.
Nonetheless, optimizing the probe for our given measure-
ment basis, in general, results in different optimal control
parameters B�c ¼ ðB�c

x ; B�c
z Þ. Indeed, for the given meas-

urement, using B�c may result in better precision compared
to B�. In Fig. 4(b), we plot Tr½FCðhjB�cÞ−1� as a function
of ðhx þ B�c

x Þ=J and ðhz þ B�c
z Þ=J. As the figure shows,

over the region of interest, the probe optimized byFC gives

FIG. 3. (a) gðBx; BzÞ as a function of control fields ðBx; BzÞ for
the case of an almost local sensing Δhx ¼ Δhz ¼ 0.02 J. (b) By
increasing the widths to Δhx ¼ Δhz ¼ 0.3 J, one finds a non-
trivial optimal probe along its critical line. The total system is
L ¼ 16, and centers are chosen to be hcenx ¼ hcenz ¼ 0.02 J. The
dashed red lines represent the critical line, and the numbers show
the value of gðBx; BzÞ at that point in the phase diagram. The
global minimum is depicted in orange.

FIG. 4. (a) Tr½FCðhjB�Þ−1� as a function of ðhx þ B�
xÞ=J and

ðhz þ B�
zÞ=J. (b) Tr½FCðhjB�cÞ−1� as a function of ðhx þ B�c

x Þ=J
and ðhz þ B�c

z Þ=J. The probe optimized with control field B�c

provides smaller uncertainty. Other values are L ¼ 10,
hcenx ¼ 0.5 J, hcenz ¼ 0.7 J, Δhx ¼ Δhz ¼ 0.2 J, B�

x ¼ 1.39 J,
B�
z ¼ −0.39 J, B�c

x ¼ −0.39 J, and B�c
z ¼ 0.44 J.
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smaller uncertainty in contrast to the case shown in
Fig. 4(a). Note that both of these still give larger uncertainty
than the ultimate bound gðB�Þ. It is worth emphasizing that
B�c and B� are different due to the presence of the critical
line. In the single-parameter case, where the criticality
is a single point, B�c coincides with B� (see the SM for
details).
Conclusions.—We present a formulation for multipara-

meter global sensing that not only provides a bound for the
average uncertainty but also allows for systematic opti-
mization of the probe. By applying our protocol to an Ising
many-body probe, we show that one can indeed tune
external control fields to harness the criticality for enhanc-
ing the sensing precision, even when the intervals of
interests are so large that the Heisenberg limit is absent.
While the optimal measurement basis remains an open
problem, we show that a simple magnetization measure-
ment can hugely benefit from our optimization.
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[55] I. Frérot and T. Roscilde, Phys. Rev. Lett. 121, 020402

(2018).
[56] Y. Chu, S. Zhang, B. Yu, and J. Cai, Phys. Rev. Lett. 126,

010502 (2021).
[57] L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S.

Felicetti, Phys. Rev. Lett. 124, 120504 (2020).
[58] M. A. C. Rossi, M. Bina, M. G. A. Paris, M. G. Genoni, G.

Adesso, and T. Tufarelli, Quantum Sci. Technol. 2, 01LT01
(2017).

[59] M. Mehboudi, L. A. Correa, and A. Sanpera, Phys. Rev. A
94, 042121 (2016).

[60] R. Okamoto, M. Iefuji, S. Oyama, K. Yamagata, H. Imai, A.
Fujiwara, and S. Takeuchi, Phys. Rev. Lett. 109, 130404
(2012).

[61] R. Okamoto, S. Oyama, K. Yamagata, A. Fujiwara, and S.
Takeuchi, Phys. Rev. A 96, 022124 (2017).

[62] A. Fujiwara, J. Phys. A 39, 12489 (2006).
[63] A. Fujiwara, J. Phys. A 44, 079501 (2011).
[64] H. M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995).
[65] B. L. Higgins, D.W. Berry, S. D. Bartlett, H. M. Wiseman,

and G. J. Pryde, Nature (London) 450, 393 (2007).
[66] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and

H. Mabuchi, Phys. Rev. Lett. 89, 133602 (2002).
[67] W.-K. Mok, K. Bharti, L.-C. Kwek, and A. Bayat, arXiv:

2010.14200.
[68] J. Rubio, J. Anders, and L. A. Correa, arXiv:2011.13018.
[69] H. Cramer, Mathematical Methods of Statistics (Princeton

University Press, Princeton, 1946).
[70] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[71] M. G. A. Paris, Int. J. Quantum. Inform. 07, 125 (2009).
[72] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, J. Phys. A 53,

023001 (2020).
[73] L. Seveso and M. G. A. Paris, Int. J. Quantum. Inform. 18,

2030001 (2020).

[74] F. Albarelli, M. Barbieri, M. Genoni, and I. Gianani, Phys.
Lett. A 384, 126311 (2020).

[75] L. M. Le Cam, Asymptotic Methods in Statistical Decision
Theory, Springer Series in Statistics (Springer-Verlag, New
York, 1986).

[76] Z. Hradil, R. Myška, J. Peřina, M. Zawisky, Y. Hasegawa,
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