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Quantum sensing is one of the key areas that exemplify the superiority of quantum technologies.
Nonetheless, most quantum sensing protocols operate efficiently only when the unknown parameters vary
within a very narrow region, i.e., local sensing. Here, we provide a systematic formulation for quantifying
the precision of a probe for multiparameter global sensing when there is no prior information about the
parameters. In many-body probes, in which extra tunable parameters exist, our protocol can tune the
performance for harnessing the quantum criticality over arbitrarily large sensing intervals. For the single-
parameter sensing, our protocol optimizes a control field such that an Ising probe is tuned to always operate
around its criticality. This significantly enhances the performance of the probe even when the interval of
interest is so large that the precision is bounded by the standard limit. For the multiparameter case, our
protocol optimizes the control fields such that the probe operates at the most efficient point along its critical
line. Finally, it is shown that even a simple magnetization measurement significantly benefits from our

global sensing protocol.
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Introduction.—The emerging field of quantum sensing
exploits quantum features for developing a new class of
sensors with unprecedented precision [1-6]. Originally, the
superiority of quantum sensors was shown by exploiting
the quantum superposition of Greenberger-Horne-
Zeilinger—type states in noninteracting particles [7-10].
Such sensors use the resources (e.g., the number of particles
L) more efficiently to enhance their precision, quantified by
the variance of the estimation, from the usual classical
standard limit (bounded by 1/L) to the Heisenberg limit
(bounded by 1/L?) [11,12]. However, if the particles
interact, the precision goes down [13-16]. Moreover, the
Greenberger-Horne-Zeilinger states are difficult to create
and prone to decoherence [17-22]. Hence, developing
these types of sensors for many particles, where the
quantum enhancement becomes significant, is extremely
challenging in practice. To overcome such difficulties, a
plethora of novel methods and systems have been exploited
for sensing purposes, including quantum control techniques
[23-26], machine learning algorithms [27-29], hybrid
variational methods [30], feedback schemes [31-34],
quantum chaos [35], periodically driven systems [36,37],
and sequential measurements [38—41].

Strongly correlated many-body systems are among the
efficient quantum probes [42—48]. In particular, the ground
state of many-body systems with quantum phase transitions
is known to provide quantum-enhanced sensing at the
vicinity of their critical point [49-58]. These schemes truly
exploit the interaction between the particles, and, because of
operation at equilibrium, they benefit from easier prepa-
ration and robustness against decoherence. However, the
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quantum-enhanced sensing only occurs at the vicinity of the
critical point [49], making these sensors most suitable for
local sensing, where the unknown parameter varies within a
very narrow interval. Hence, tuning the system to operate
optimally at its quantum phase transition point can be very
elusive and practically demanding, e.g., adaptive sensing
strategies have to be employed [2,59-66]. A key open
question is whether one can employ such sensors for global
sensing, where the unknown parameter varies over a wide
range. While in the case of temperature there have been
efforts for the formulation of global thermometry [67,68],
the problem is still open for general quantum sensing.

In this Letter, we formulate a systematic approach for
multiparameter global sensing, where the unknown para-
meters can vary over arbitrarily large intervals. Our pro-
tocol applies to any sensing protocol and provides a
systematic approach for optimizing the probe. In particular,
for many-body sensors, we show that one can genuinely
exploit the criticality as a resource for enhancing the global
multidirectional magnetometry precision.

Parameter estimation.—Every sensing protocol contains
three essential steps: (i) choose an appropriate probe,
(i) gather data through repeatedly performing specific
types of measurements on the probe, and (iii) feed the
gathered data into an estimator to infer the value of the
unknown parameters. The precision of the estimation of an
unknown parameter k = (h;, h,,...) obeys the Cramér-
Rao inequality [69,70]

COV(h) > M_l.’Fc(h)_l > M_lfQ(h)_l, (1)
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where Cov(h) is the covariance matrix whose elements are
[Cov(h)],, = (h,h,) — (h,){h,), M is the total number of
measurements, and F (k) and F ,(h) are the classical and
quantum Fisher information (QFI) matrices, respectively
[71]. For a given quantum probe with density matrix p(h)
and a specific positive operator-valued measure (POVM)
{I1, }, the bound is given by the classical Fisher information
matrix [Fc(h)],, = 3y px()[9), log pe (h)][9), log py (h)].
where p;(h) = Tr[p(h)I1;] is the probability of measure-
ment outcome k, and 0, = d/0h,. By optimizing over
all possible POVMs, one can tighten the bound to be
given by the QFI F,(h) [70,71], which can be simplified
for pure states p(h) = |®(h))(®(h)| as [Fy(h)],, =
4Re[(0,D[0,®) — (®|0,D)(P|0,@)] [72]. In the case of
single parameter, Eq. (1) reduces to

Sh* > M~ Fy(h)™", (2)

in which the QFI provides the ultimate bound for the
variance of the estimation. Note that, for any given probe
one can indeed saturate the inequality of Eq. (2) by using an
appropriate measurement setup computed through symmet-
ric logarithmic derivatives [71,73,74] and an optimal esti-
mator (which for a large dataset is known to be Bayesian
[75-79]). However, the optimal measurement basis, in
general, depends on the unknown parameter /s, which varies
over an interval [A™" h™*]. The optimal sensing is thus
applicable only when Ah = ™ — h™" i small, which is
called local sensing. In this situation, the optimal measure-
ment can be chosen for A" = (A™™ 4 pMin) /2. For
large Ah, the criteria for the best sensing protocol is indeed
unknown. The situation for multiparameter estimation is
more complex as, due to the noncommutativity of the
optimal POVMs for different parameters, even for local
sensing the Cramér-Rao bound may not be achievable [74].

Single-parameter global sensing.—In the case of local
sensing (i.e., small Ah), the Cramér-Rao bound in Eq. (2)
can always be saturated. Nonetheless, the sensing pro-
cedure might still be highly suboptimal due to the bad
choice of the probe. Hence, an optimal local sensing
algorithm requires optimization of F ,(h°") with respect
to the parameters of the probe. For large A%, which is called
global sensing, the situation is more complex as (i) in
general the optimal measurement basis varies over Ak and
no measurement setup can saturate the Cramér-Rao bound
over the entire interval, and (ii) it is not clear which quantity
has to be optimized to find the optimal probe. In the
following, we address this problem.

To formulate the global sensing, we first quantify the
average uncertainty of the estimation via [, 6h>f(h)dh,
where f(h) is the prior information, i.e., the probability
distribution, of the unknown parameter / over the sensing
interval A of interest. Note that every practical sensor has
a range of functionality, which might be different from A#.

In general, the functionality range of the probe needs to be
larger than Ah. From Eq. (2), one can easily show that this
average uncertainty is bounded by

0
oB) = [ it i ®)

where B = (By, B,,...) are external tunable parameters
interacting with the probe. We define the minimization
of g(B) with respect to control parameters B as a figure
of merit for finding the optimal probe, namely
g(B*) := ming[g(B)]. For the minimization of ¢(B), if
the number of parameters are few, such as the case in this
Letter, one can adopt a brute-force search method.
Otherwise, other optimization algorithms such as the
gradient-based Newton-Raphson method [80] or gra-
dient-free genetic algorithms [81] can be exploited.
Throughout this Letter, we assume no prior information
about the unknown parameter /i, and thus f(h) takes a
uniform distribution, namely f(h) = 1/Ah. For local
sensing, i.e., small Ak, the QFI is almost constant over
the interval, and thus g(B)~1/F,(h*"|B). Therefore,
the minimization of g¢(B) turns into maximizing
Fo(h*"|B).

Many-body probe for magnetometry.—To illustrate the
relevance of our general formulation for global sensing,
which can be applied to any sensing protocol indepen-
dent of the choice of the probe, we exploit a chain
of L interacting spin— 1/2 particles with an Ising
Hamiltonian to sense a random static magnetic field. For
simplicity and without loss of generality, we assume that
the y component of the magnetic field is zero, as one
can always rotate the sample such that (s,) = 0. The
Hamiltonian is

L L
H=17) ool = [(B+h)ol + (B, +h)ol]. (4)
i=1

i=1

where 6/, (@ = x, z) is the Pauli operator at site i, J > 0 is
the exchange interaction, B = (B,,B,) is the control
magnetic field that can be tuned, h = (h,, h_) is the random
field to estimate, and a periodic boundary condition is
imposed. The ground state |®), for which the phase
diagram is shown in Fig. 1(a), can be used for detecting
the unknown field k. See Refs. [82—86] for the link between
the characterization of quantum phase transition via metric
tensors. The phase diagram is uniquely determined by
(h,+ B.)/J and (h, + B,)/J. Thus, by tuning B one can
shift the phase diagram for the unknown parameter k. For
example, in the absence of a longitudinal field (i.e.,
B, = h, = 0), the ground state |®) can be solved analyti-
cally using a Jordan-Wigner transformation and is known
to have a quantum phase transition at 4/ := B, + h, = +J
[87,88], which leads to an enhanced QFI with scaling
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FIG. 1. (a) The phase diagram of an Ising model in the presence
of a skew magnetic field (see Ref. [92] for details). (b) By
optimizing the control field, the probe is shifted in its phase
diagram to operate around the criticality, where the quantum
Fisher information is maximum. (c¢) For multiparameter sensing,
the optimization of the probe also displaces the sensing area along
the critical line.

~L? [49,51] [see the Supplemental Material [89] (SM) for
details]. Interestingly, away from criticality, the QFI scales
as ~LE!, where &~ (B, + h,) — h°Y~! is the correlation
length [49]. Since the quantum-enhanced sensing is lost
when the probe operates away from criticality, our global
sensing formulation stands as the most suitable for these
types of sensors.

Example 1: Transverse field Ising probe.—In this
section, we use the Ising many-body probe given in
Eq. (4) for single-parameter sensing when only a transverse
field exists, namely B, = h, = 0. To see the performance
of this probe for global sensing, we numerically evaluate
g(B.) for various Ah for a system size L = 1000. In
Fig. 2(a), we plot the global sensing performance g(B,) as a
function of B, /J for different values of interval widths A#,
and centers h*". For every h{™ and Ah,, the average
uncertainty g(B,) always has a minimum that takes place at
aparticular B, = B}, showing that one can always make the
probe optimal by this choice of the control field.
Interestingly, the minimum value of g(B,) is independent
of A" and is only determined by A#h,. On the other hand,
the optimal control field B} is almost independent of Ah,
and only depends on A%, such that A" + B} ~ hMit, This
means that the control field tends to shift the probe in its
phase diagram such that the interval of sensing is located
almost symmetrically around the critical point. This has
been shown schematically in Fig. 1(b). To determine how
the average uncertainty scales for the optimal probe, in
Fig. 2(b), we plot g(B) as a function of L for various
choices of Ah,. For small A, the average uncertainty
scales as g(B?) ~ 1/L?, which is expected for local sensing.
Remarkably, by increasing A#_, the scaling goes toward the
standard limit, namely g¢(B})~1/L. To quantify the
transition from quantum-enhanced sensing to the standard
limit, we fit g(B?) with a function of the form aL=" + c,
¢ — 0. In Fig. 2(c), we plot the fitting coefficients a and b
as a function of the width Ah_/J. As seen from the figure,
when Ah, — 0, one recovers the Heisenberg scaling
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FIG. 2. (a) Average uncertainty g(B.) as function of B,/J for

different values of interval widths Ah, and centers h$®™. The
optimal probe can always be found by tuning the control field
such that g(B%) = ming_[g(B.)]. (b) g(B:) (shown by markers)
and its corresponding fitting function aL ™ + ¢ (solid lines) as a
function of L for various choices of A#,. (c) Fitting coefficients a
and b versus the controlled field B,/J. (d) g(B,) is plotted as a
function of Ah,/J for various choices of B..

g(B:) ~ Fg' ~1/L* from the local sensing strategy. The
quantum-enhanced sensing is captured by b > 1, for which
the precision surpasses the standard limit b = 1.
Remarkably, the region of quantum-enhanced sensing is
extended until Ak, <0.07 J, beyond which the standard
limit is restored. However, note that the probe’s optimiza-
tion is still beneficial for sensing, even though there is no
quantum-enhanced advantage in the scaling. This can be
seen in Fig. 2(d), where ¢g(B,) is plotted as a function of
Ah_/J for various choices of B,. As the figure shows, by
the optimal choice of B, = B}, the average uncertainty
remains lower than using nonoptimal values of B, for all
Ah,. In other words, for large Ah,, while b =1, the a
coefficient becomes smaller by optimizing B,.
Multiparameter global sensing.—Thanks to the above
analysis, one can readily generalize the global sensing for
the multiparameter case. To set the performance of different
multiparameter estimators, we recast the matrix bounds in
Eq. (1) into scalar bounds. To do so, we introduce a
(positive and real) weight matrix WV such that [74]

TeWVCov(h)] > M~'Tr[Fo(hlB)"W].  (5)

The choice of WV depends on the uncertainty that one wants to
minimize. Throughout this work, we consider W to be iden-
tity, i.e., YW = L. This choice equally prioritizes the precision
of (hy, h,) by making the left-hand side of the above
inequality to be the sum of the variances of the unknown
parameters. Inspired by the single-parameter case, we define
the average uncertainty for the multiparameter case as
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9(B) = Ahf(h)M‘lTr[fQ(hIB)‘I]dh, (6)

where f(h) is the prior probability distribution, which is
assumed to be uniform, for magnetic field h, and the
integration is performed over the volume of all parameters.
To optimize the probe, one has to minimize g(B) with respect
to B, i.e., g(B*) :== ming[g(B)].

Example 2: Skew field Ising probe.—In this section, we
consider the probe of Eq. (4), when both A, and h, are
sensed together. Since the system is not solvable anymore,
we are restricted to short chains and exact diagonalization.
Unlike the transverse field Ising model for which the
criticality happens exactly at one point, here there is a
line of criticality in the plane of (h,, h.) [92] [see Fig. 1(a)].
Thus, the optimization of the probe is highly nontrivial as
the control fields (B,, B.) can shift the phase of the probe to
operate anywhere along the critical line. For the case of
local sensing, in which Ah, and Ah, are very small, the
minimization of ¢(B) reduces to the maximization
of Tr{F o[(hs™. ") |B]™'}.

In contrast to the single-parameter case, our analysis
shows that the optimal control fields not only depend on the
location of (A$", hS") but also change by the choice of the
widths (Ah,, Ah,). Interestingly, the probe is always
shifted somewhere near the critical line, which is predomi-
nantly controlled by the longitudinal field. To have a
quantitative analysis, in Fig. 3(a) we plot g(B,,B.) as a
function of control fields for the case of an almost local
sensing with AS™ = h{* =0.02J and the widths of
Ah, = Ah, =0.02 J. As the figure shows, the optimal
control fields are given by By = 1.98 J and B} = —0.02 J.
In Fig. 3(b), we increase the width to Ah, = Ah, =0.3]
(i.e., global sensing). Interestingly, the optimal control
fields shift to By =1.8J and B} =0.4J, which are

2
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FIG. 3. (a) g(B,, B.) as a function of control fields (B,, B,) for
the case of an almost local sensing Ak, = Ah, = 0.02 J. (b) By
increasing the widths to Ak, = Ah, = 0.3 J, one finds a non-
trivial optimal probe along its critical line. The total system is
L =16, and centers are chosen to be A" = he*™ = 0.02 J. The
dashed red lines represent the critical line, and the numbers show
the value of ¢g(B,, B.) at that point in the phase diagram. The
global minimum is depicted in orange.

different from the previous case. This shows that the
optimization of the probe for multiparameter sensing is
nontrivial and that the optimal control fields depend on the
sensing range. This is schematically explained in Fig. 1(c).

Sensing protocol.—While our formulation for global
sensing systematically provides a bound for the average
uncertainty, it is not obvious whether this bound can be
saturated, as no measurement basis can be optimal through-
out the whole region. Here, we choose a simple but not
necessarily optimal measurement basis, namely global
magnetization M = 6., which can be measured in
ion traps [93] and superconducting quantum devices
[94,95]. In fact, global magnetization results in L + 1
outcomes for which one can compute the -classical
Fisher information matrix. As an example, we consider a
two parameter sensing with A3 = 0.5 J, h{*" = 0.7 J, and
Ah, = Ah, = 0.2 J. One can optimize the probe of Eq. (4)
using the algorithm above, i.e., minimizing ¢(B,,B,),
which results in By =1.39] and B} = —0.39 J. Using
this optimal probe, we perform the magnetization meas-
urement and compute Tr[F(h|B*)~!] over the whole
interval. In Fig. 4(a), we plot Tr[F -(h|B*)~'] as a function
of (h, + Bj)/J and (h, + B})/J. However, one may argue
that the optimal control fields, i.e., By and B}, have been
obtained using F  in Eq. (6), which is inherently optimized
for the measurement basis. For a fixed measurement basis
such as global magnetization, one may replace 7, by F¢
in Eq. (6). Since this measurement is not necessarily
optimal, the ultimate precision g(B*) may not be achieved.
Nonetheless, optimizing the probe for our given measure-
ment basis, in general, results in different optimal control
parameters B*¢ = (B3¢, B°). Indeed, for the given meas-
urement, using B*“ may result in better precision compared
to B*. In Fig. 4(b), we plot Tr[F ¢(h|B*¢)~!] as a function
of (hy+ Bi)/J and (h, + B:¢)/J. As the figure shows,
over the region of interest, the probe optimized by F - gives

(a) (b)

(hy + B39
[
=
a

1.09

0.21 1.04
179 1.84 189 194 199 0.01 0.06 0.11 0.16 0.21
(he+ B (hx + BO)J
Tr[Fe(h|B*)71 Tr[Fo(h|B*®) 7| we——
122 35 428 146 15 1.58

FIG. 4. (a) Tr[F(h|B*)~!] as a function of (h, + B%)/J and
(h, + B%)/J. (b) Tr[F ¢(h|B*¢)~!] as a function of (h, + Bi)/J
and (h, + Bi)/J. The probe optimized with control field B*¢
provides smaller uncertainty. Other values are L = 10,
K" =057, he"=0.7J, Ah,=Ah,=02], B;=1.39],
B =—0.39 1, B =-0.39J, and B =0.44 J.
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smaller uncertainty in contrast to the case shown in
Fig. 4(a). Note that both of these still give larger uncertainty
than the ultimate bound g(B*). It is worth emphasizing that
B*¢ and B* are different due to the presence of the critical
line. In the single-parameter case, where the criticality
is a single point, B* coincides with B* (see the SM for
details).

Conclusions.—We present a formulation for multipara-
meter global sensing that not only provides a bound for the
average uncertainty but also allows for systematic opti-
mization of the probe. By applying our protocol to an Ising
many-body probe, we show that one can indeed tune
external control fields to harness the criticality for enhanc-
ing the sensing precision, even when the intervals of
interests are so large that the Heisenberg limit is absent.
While the optimal measurement basis remains an open
problem, we show that a simple magnetization measure-
ment can hugely benefit from our optimization.
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