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High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations
compared to qubit systems, offering significant advantages for quantum information processing. Certifying
these stronger correlations, however, remains an important challenge, in particular in an experimental
setting. Here we theoretically formalize and experimentally demonstrate a notion of genuine high-
dimensional quantum steering. We show that high-dimensional entanglement, as quantified by the Schmidt
number, can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower
dimensions. Exploiting the connection between steering and incompatibility of quantummeasurements, we
derive simple two-setting steering inequalities, the violation of which guarantees the presence of genuine
high-dimensional steering, and hence certifies a lower bound on the Schmidt number in a one-sided device-
independent setting. We report the experimental violation of these inequalities using macropixel photon-
pair entanglement certifying genuine high-dimensional steering. In particular, using an entangled state in
dimension d ¼ 31, our data certifies a minimum Schmidt number of n ¼ 15.
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Introduction.—The possibility of having entanglement
between quantum systems with a large number of degrees
of freedom opens interesting perspectives in quantum
information science [1]. In particular, high-dimensional
quantum systems can lead to stronger forms of correlations
[2,3], featuring increased resilience to noise and losses
[4–6]. This makes them a promising alternative to qubits
for applications in quantum technology, in particular for
quantum communications [7–12]. Experimentally, impres-
sive progress has been achieved in recent years towards the
generation and manipulation of high-dimensional entan-
glement [13–17]. A key problem is then to certify and
characterize this entanglement. This is challenging not
only due to the large number of parameters in the
Hilbert space, but also because experimentally available
data is typically limited. Nevertheless, significant progress
has been reported in scenarios assuming fully characterized
measurement devices [18–24].
It turns out that quantum theory allows one to certify

high-dimensional entanglement, as quantified by the notion
of Schmidt number [25,26] (see below), based only on the
nonlocal correlations it produces, hence relaxing the
requirement of a perfectly calibrated or trusted measure-
ment device. That is, given some observed data, one can, in
principle, certify the presence of high-dimensional entan-
glement (i.e., infer a lower bound on the Schmidt number)
without making any assumptions about the workings of the
measurement devices used. Beyond their fundamental
interest, such black-box tests are also relevant for device-
independent quantum information processing [27–29].

Previous works have discussed these questions for Bell
nonlocality mostly on the theoretical level [30,31], with
proof-of-principle experiments certifying entangled states
of Schmidt number n ¼ 3 [16] and n ¼ 4 [32]. The
experimental certification of higher-dimensional entangle-
ment via nonlocality is extremely demanding technologi-
cally, requiring very high state fidelities and offering
extremely low tolerance to noise.
In this work, we address these questions from the point

of view of quantum steering, a form of quantum correla-
tions intermediate between entanglement and Bell non-
locality [33,34]. Quantum steering relaxes the strict
technological requirements of Bell nonlocality by assuming
an uncharacterized or untrusted measurement device only
on one side. However, steering tests developed so far can
only witness the presence of entanglement (i.e., certify a
Schmidt number n > 1) but do not characterize the
entanglement dimensionality [35–37]. Here we develop a
notion of genuine high-dimensional quantum steering. This
leads to effective methods for certifying a minimal entan-
glement dimensionality, i.e., a lower bound on the Schmidt
number n, in a one-sided device-independent setting.
We demonstrate this experimentally with photon pairs
entangled in their discretized transverse position-momen-
tum and certify Schmidt numbers up to n ¼ 15.
Consider a scenario featuring two distant parties, Alice

and Bob, sharing a bipartite quantum state ρAB. In the task
of steering [see Fig. 1(a)], Alice performs several possible
quantum measurements on her subsystem, thus remotely
“steering” the state of Bob’s subsystem to
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σajx ¼ TrA½ðAajx ⊗ 1BÞρAB�; ð1Þ

where x denotes Alice’s choice of measurement and a its
outcome. Alice’s measurements are represented by a set of
positive operators Aajx satisfying

P
a Aajx ¼ 1A for all x.

The collection fσajxga;x of the possible (unnormalized)
steered states is termed an assemblage, referred to as σajx in
the following. When this assemblage can be produced
without the use of entanglement, i.e., via a so-called local
hidden state (LHS) model [33], the assemblage is called
unsteerable. If this is not possible, then the assemblage
demonstrates steering. This effect has been investigated
experimentally, mostly with qubit entanglement [38–41].
Here we are specifically interested in the situation

where Alice and Bob share a quantum state featuring
high-dimensional entanglement. Consider, for instance, a
d × d maximally entangled state jϕdi ¼

P
d−1
j¼0 jj; ji=

ffiffiffi
d

p
.

By using any set of incompatible measurements, Alice can
generate on Bob’s side an assemblage featuring steering
[42,43]. Moreover, for large dimensions, the robustness to
noise and losses of these assemblages is known to increase
[44–47]. This suggests that high-dimensional entangle-
ment can in fact lead to assemblages featuring a stronger
form of quantum correlations. In particular, by using well-
chosen measurements, Alice may generate an assemblage
for Bob that could not have been created using lower-
dimensional entanglement. Below, we formalize this intu-
ition and define the notion of genuine high-dimensional
steering.
Specifically, we characterize the entanglement dimen-

sionality through the concept of Schmidt number [25,26].
The Schmidt number of a state ρAB is the minimum n such
that there exists a decomposition ρAB ¼ P

j pjjψ jihψ jj,
where all jψ ji are pure entangled states of Schmidt rank at
most n. For pure states, the Schmidt number is simply equal

to the Schmidt rank. This motivates us to define the notion
of n-preparable assemblages.
Definition 1: An assemblage σajx acting on Cd is n-

preparable, with 1 ≤ n ≤ d, when it can be decomposed as
σajx ¼ TrA½ðAajx ⊗ 1BÞρAB�, where ρAB∈ DðHA ⊗ HBÞ
has Schmidt number n and d is the dimension of the
Hilbert space HB ≡ Cd.
In other words, an n-preparable assemblage σajx can be

prepared via suitable operations on an entangled state of
Schmidt number n. However, one could also prepare this
assemblage via operations on a state with a larger Schmidt
number. This implies that any n-preparable assemblage is
also straightforwardly (nþ 1)-preparable, which leads to a
nested structure of assemblages, as shown in Fig. 1(b). For
n ¼ 1 we recover the usual definition of steering: any one-
preparable assemblage can be reproduced via a LHS model
[33] or, equivalently, via a separable state (i.e., with Schmidt
number n ¼ 1) of arbitrary dimension on Alice’s side
[48,49]. On the other hand, for n ¼ d we obtain the full
set of quantum assemblages onCd, as any decomposition of
a density matrix can be remotely generated via shared
entanglement and well-chosen local measurements [50,51].
Interestingly, there exist assemblages that are n-

preparable without being (n − 1)-preparable, thus featuring
genuine n-dimensional steering. For instance, in the case
n ¼ 4, there are assemblages that cannot be created by only
using entangled states with Schmidt number 3. Such
assemblages thus feature genuine four-dimensional steer-
ing and guarantee that the underlying states have Schmidt
number n ¼ 4 [see Fig. 1(b)]. It turns out, however, that the
general characterization of the set of n-preparable assemb-
lages is challenging. Notably, standard methods that allow
for a full characterization of unsteerable assemblages do
not work here: determining whether an assemblage is one-
preparable can be cast as a semidefinite programming [35],
which does not appear to be the case for n-preparability
when n > 1.

(a) (b)

FIG. 1. High-dimensional quantum steering. (a) Alice and Bob share an entangled state ρAB. By performing local measurements Aajx,
Alice remotely steers Bob’s subsystem, described by the assemblage σajx. (b) As the entanglement dimensionality (the Schmidt number
n) of the state ρAB increases, stronger correlations can be created. More precisely, by performing well-chosen measurements, Alice can
generate for Bob an assemblage σajx that can provably not have been obtained via any lower-dimensional entangled state. To prove this,
we define the notion of n-preparable assemblages, i.e., that can be produced via ρAB with Schmidt number n. This leads to a hierarchy of
sets, shown here for n ≤ 4. First, one-preparable assemblages (with SRðσajxÞ ¼ 0 thus δðσajxÞ ¼ 1) feature no quantum steering. Next,
the two- and three-preparable sets contain assemblages achievable with entangled states of Schmidt number n ¼ 2 and n ¼ 3,
respectively. Beyond this, there exist assemblages that are not three-preparable, hence featuring genuine four-dimensional steering, as
witnessed by violation of a steering inequality (red dashed line corresponding to δðσajxÞ > 3). This guarantees the presence of an
entangled state of Schmidt number n ¼ 4 in a one-sided device-independent setting.

PHYSICAL REVIEW LETTERS 126, 200404 (2021)

200404-2



Nevertheless, we can derive a necessary criterion for n-
preparability in the case where Alice has two possible
measurements. We use the notion of steering robustness
(SR), a convex quantifier of quantum steering [35,52]:

SRðσajxÞ ¼ min
t;τajx

�
t ≥ 0

���� σajx þ tτajx
1þ t

unsteerable
�
; ð2Þ

where the minimization is over all assemblages τajx with the
same dimension and numbers of inputs and outputs as σajx.
The SR quantifies the robustness of σajx to an arbitrary
noise τajx before becoming unsteerable. Specifically, since
any assemblage σajx that is n-preparable can by definition
be written as in Eq. (1) where ρAB has Schmidt number n,
we can use the convexity of the steering robustness to upper
bound SRðσajxÞ by

X
j

pjSRfTrA½ðAajx ⊗ 1BÞjψ jihψ jj�g ð3Þ

≤ max
jψi∈Cn⊗Cn

SRfTrA½ðAajx ⊗ 1BÞjψihψ j�g: ð4Þ

Importantly, the assemblages relating to this last upper
bound act on Cn. Using the connection between quantum
steering and measurement incompatibility [42,43,53,54] and
a recent result identifying the most incompatible pairs of
quantum measurements in a given dimension [55], we find
that the steering robustness of any n-preparable assemblage
is upper bounded by ð ffiffiffi

n
p

− 1Þ=ð ffiffiffi
n

p þ 1Þ; all details are in
the Supplemental Material [56]. Hence, any n-preparable
assemblage σajx (with two inputs for Alice) satisfies

n ≥
�
1þ SRðσajxÞ
1 − SRðσajxÞ

�
2

≡ δðσajxÞ; ð5Þ

so that violating this inequality amounts to certifying that the
assemblage is not n-preparable, i.e., the shared state has at
least a Schmidt number of nþ 1.
The inequality (5) turns out to be tight for all n ≤ d: if

ρAB is a maximally entangled state of dimension n × n, and
Alice performs projective measurements onto two mutually
unbiased bases (MUBs), then the resulting assemblage
(embedded in Cd) saturates the bound. Recall that two
orthonormal bases are called mutually unbiased if the scalar
product of any vector from the first basis with any vector
from the second basis is equal to 1=

ffiffiffi
n

p
. Below, we use a

standard construction of sets of MUBs when d is prime (see
Sec. II of the Supplemental Material [56]).
From the above, in particular inequality (5), we see that

given the steering robustness of an assemblage, we obtain a
lower bound on the dimension n such that σajx is n-
preparable. Full tomography on Bob’s side would make the
exact computation of the steering robustness possible via
semidefinite programming [35]. A more effective (and
experimentally friendly) method consists in using the
results of Refs [57,58] showing that the steering robustness
can be lower bounded via a steering functional involving
only a pair of MUBs measurements (denotedMajx) for both
Alice and Bob, namely,

1

λ

X
a;x

Tr½ðMajx ⊗ MT
ajxÞρAB� − 1 ≤ SRðσajxÞ ≤

ffiffiffi
n

p
− 1ffiffiffi

n
p þ 1

;

ð6Þ

(a)

(b)

FIG. 2. Experimental realization. (a) One photon from an entangled photon pair and a classical bit x are distributed to the untrusted
party, Alice. She generates holograms on a spatial light modulator (SLM-A) to perform the projection Aajx onto outcome a for the given
basis x and passes a to the trusted party, Bob. Bob receives the other photon along with this classical information, forming the
conditional state σajx, and he performs the projection AT

ajx according to his chosen steering inequality. Coincident photon detection

events are then used to evaluate the steering inequality, under the fair sampling assumption, allowing us to certify genuine high-
dimensional steering. (b) Normalized two-photon coincidence counts in a pair of d ¼ 31 dimensional mutually unbiased pixel bases
(x ¼ 1 and 2). Using these measurements we obtain the maximum value of δðσajxÞ ≥ 14.1� 0.6 that demonstrates genuine 15-
dimensional steering (i.e., Schmidt number n ¼ 15).
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where λ ¼ 1þ 1=
ffiffiffi
d

p
(see Sec. III of the Supplemental

Material [56]). The second inequality in Eq. (6) corresponds
to the result of Eq. (5) and gives a steering inequality valid
for all n-preparable assemblages. For n ¼ 1, we recover the
inequality (

P
a;x Tr½ðMajx ⊗ MT

ajxÞρAB� ≤ 1þ 1=
ffiffiffi
d

p
), the

violation of which certifies the presence of entanglement
(i.e., Schmidt number n > 1) [16,35–37]. Clearly, the
inequality (6) is more general, and provides a lower bound
on the Schmidt number n depending on the amount of
violation.
Note that this steering inequality as well as the relation (5)

apply to general assemblages (involving, e.g., mixed states).
Note also that the inequality can be saturated by using a
d × d pure maximally entangled state and projective mea-
surements onto MUBs. In Sec. III of Ref. [56] we derive the
critical noise threshold for violating the inequality for
isotropic states (mixture of a maximally entangled state
with white noise). The above method is well adapted to
experiments and allows us to certify genuine high-dimen-
sional steering in practice. We use photon pairs entangled in
their discrete transverse position-momentum, also known as
“pixel” entanglement [24]. This platform allows us to access
generalized d-dimensional measurements with a very high
quality in dimensions up to d ¼ 31. As shown in Fig. 2(a),
a nonlinear ppKTP crystal is pumped with a continuous-
wave ultraviolet laser (405 nm) to produce a pair of
pixel-entangled infrared photons (810 nm) via type-II

spontaneous parametric down-conversion (SPDC). The
photon pairs are separated by a polarizing beam splitter
(PBS) and directed to Alice and Bob, who each have access
to a holographic spatial light modulator (SLM) for perform-
ing generalized projectivemeasurements in the pixel basis or
any of its MUBs. The holograms used for performing
projective measurements are optimized by tailoring the size
and spacing of the pixels based on the knowledge of the
joint-transverse-momentum-amplitude (JTMA) of the gen-
erated biphoton state [59]. This choice of basis warrants that
the state well approximates a maximally entangled state and
that, in addition to the strong correlations in the pixel basis,
pixel-MUBare also strongly correlated owing tomomentum
conservation of the narrow-band, weakly focused pump.
The SLM holograms ensure that only photons carrying
pixel or pixel-MUB modes of interest couple efficiently to
single-mode fibers (SMF) and are subsequently detected
by single-photon avalanche detectors (SPADs). This
allows us to reconstruct the results of the measurement
operatorsMajx andMT

ajx, and implement them in the steering
inequality (6).
It is important to note that the measurements actually

performed in the experiment only have two outcomes,
depending on whether the photon detector clicks or not.
While it is common practice to reconstruct full projective
measurements out of these dichotomic ones [13,16,32,46],
the underlying assumption is strong since the corresponding

Pair of MUBs

FIG. 3. Experimental certification of genuine five-dimensional
steering. A photon pair with entanglement in dimension d ¼ 5 is
generated. The complete set of MUBs features dþ 1 ¼ 6 bases,
labeled by c for computational and 0…4, which leads to 15
possible pairs of MUBs to be measured by both Alice and Bob.
For each pair, the certified dimension is given by the ceiling of the
quantity δðσajxÞ; the steering robustness being estimated via the
steering inequality (6). Here all pairs of MUBs certify the
presence of genuine five-dimensional steering, and hence maxi-
mal Schmidt number n ¼ d ¼ 5, within 1 standard deviation. The
second error bar represents 3 standard deviations.

TABLE I. Experimental results for higher dimensions. Entan-
glement is prepared in prime dimensions d from 5 to 31. For each
d, we provide the minimum and maximum values of the quantity
δðσajxÞ, the ceiling of which gives a lower bound on the certified
Schmidt number n. For d ¼ 5, these values correspond to those of
Fig. 3. For d ¼ 19, a Schmidt number of n ¼ 14 can be certified
(for the best pair of MUBs), while all 190 possible pairs certify (at
least) n ¼ 11. Moreover, for d ¼ 31, the data certifies a Schmidt
number n ¼ 15, i.e., genuine 15-dimensional quantum steering.
Note that for d ≥ 23, the time required for measuring all dþ 1
MUBs scales unfavorably (in particular for the computational
basis), thus only one pair of MUBs was measured. In higher
dimensions, the errors are larger due to higher count rates.

Lower bound on δðσajxÞ

Dimension d Minimum Maximum
Certified Schmidt

number n

5 4.1� 0.1 4.7� 0.1 5
7 5.1� 0.2 6.4� 0.1 7
11 6.3� 0.3 9.1� 0.2 10
13 7.0� 0.3 10.1� 0.3 11
17 9.3� 0.3 12.4� 0.3 13
19 10.1� 0.5 13.6� 0.5 14
23 11.4� 0.5 12
29 12.1� 0.6 13
31 14.1� 0.6 15
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steering scenarios are inherently different, having a different
number of inputs and outputs. Note also that due to detector
and system inefficiencies (see Sec. IV of the Supplemental
Material [56]) we are working under the fair-sampling
hypothesis; however, no subtraction of background or
accidental counts is performed.
The results are given in Fig. 3 and Table I. Note that

since there are dþ 1MUBs in (prime) dimensions d, there
are dðdþ 1Þ=2 possible pairs of them, giving rise to
potentially different certified dimensions. For d ¼ 5, we
consider all 15 possible pairs of MUBs, for all of which
we find δðσajxÞ > 4 (see Fig. 3), thus certifying genuine
five-dimensional steering (i.e., Schmidt number n ¼ 5).
That is, none of this data could be reproduced with
entangled states of Schmidt number n ≤ 4. Of all possible
pairs, those utilizing the pixel basis (also referred to as
computational or simply “c”) exhibit slightly better
bounds owing to the higher visibility in this basis, since
it is the natural Schmidt basis resulting from momentum
conservation.
Next we investigate higher dimensions, up to d ¼ 31.

Note that for d ≥ 23, we measured only one pair of MUBs
to optimize the total data acquisition time, as the number of
single-outcome measurements required increases with
Oðd2Þ. In Table I we only show, for simplicity, the
minimum and maximum values obtained for the parameter
δðσajxÞ; a Schmidt number of n ¼ 15 can be certified when
using an entangled state in dimension d ¼ 31. Moreover,
for d ¼ 19, all 190 possible pairs of MUBs certify (at least)
Schmidt number n ¼ 11 and up to n ¼ 14. The total
measurement time for measuring two MUBs (excluding
the computational basis) was 40 sec for d ¼ 5 and 16 min
for d ¼ 31.
We have developed the concept of genuine high-

dimensional steering, leading to effective methods for
certifying a lower bound on the entanglement dimension-
ality (the Schmidt number) in a one-sided device-indepen-
dent setting, as demonstrated in a photonic experiment.
Moreover, our approach can be readily applied to other
quantum platforms using different degrees of freedom (see
Sec. Vof the Supplemental Material [56]). Our work could
be of significant interest for information-theoretic tasks
such as randomness generation and cryptography. More
generally, this represents an important step towards the
realization of noise-robust, high-capacity quantum net-
works in the near future.
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