
 

Orbital Many-Body Dynamics of Bosons in the Second Bloch Band of an Optical Lattice

J. Vargas,1 M. Nuske,1,2,3 R. Eichberger,1,2 C. Hippler,1 L. Mathey,1,2,3 and A. Hemmerich1,2,3
1Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany

2Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
3The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany

(Received 12 August 2020; accepted 27 April 2021; published 17 May 2021)

We explore Josephson-like dynamics of a Bose-Einstein condensate of rubidium atoms in the second
Bloch band of an optical square lattice providing a double well structure with two inequivalent, degenerate
energy minima. This oscillation is a direct signature of the orbital changing collisions predicted to arise
in this system in addition to the conventional on-site collisions. The observed oscillation frequency scales
with the relative strength of these collisional interactions, which can be readily tuned via a distortion of
the unit cell. The observations are compared to a quantum model of two single-particle modes and to
a semiclassical multiband tight-binding simulation of 12 × 12 tubular sites of the lattice. Both models
reproduce the observed oscillatory dynamics and show the correct dependence of the oscillation frequency
on the ratio between the strengths of the on-site and orbital changing collision processes.
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The ground state wave function of bosonic atoms in
optical lattices [1–5] can be generally chosen to be real and
positive [6–8], giving rise to a rather featureless physical
scenario, in contrast to electronic condensed-matter lattice
physics, where a more complex structure such as orbital
degrees of freedom of higher bands typically provides a
richer physical reality, for example in the case of transition
metal oxides [9,10]. In contrast to the well-controlled and
comparatively simple platform of optical lattices, in elec-
tronic condensed-matter examples, however, the discrimi-
nation of physics related to orbital degrees of freedom from
the multitude of other possible mechanisms is difficult.
This has triggered growing interest to study atoms in
metastable higher Bloch bands of optical lattice potentials
[7,8,11–21]. The presence of energetically degenerate
orbitals with different angular momenta and orientations
gives rise to multiple degenerate global band minima in the
single-particle band structure at different high-symmetry
points within the first Brillouin zone. This results in the
intriguing consequence that even tiny energy scales as
that of weak contact interactions play a decisive role in
determining the structure of the lowest-energy state in each
band. The presence of degenerate local orbitals enables
contact interaction processes, which change the orbital
character of the colliding atoms [8,12,22]. Such processes
have been identified as essential for the experimentally
observed formation of multiorbital Bose-Einstein conden-
sates (BEC) with interaction-induced local angular momen-
tum [8,12,16,18]. Theoretical proposals have also pointed
out the possibility of global angular momentum [23,24].
While equilibrium phases have been studied in some detail,
the study of nonequilibrium scenarios has remained limited
to one-dimensional examples [25,26].

In this work, we experimentally and theoretically explore
quantum dynamics reminiscent of Josephson oscillations of
bosonic atoms in the second band of an optical lattice,
which provides a double well structure in quasimomentum
space with two inequivalent energy minima. These oscil-
lations are driven by the interplay between orbital changing
collisions and conventional on-site collisions. Their relative
strength, which can be readily tuned via a distortion of
the unit cell, determines the oscillation frequency. Note that
orbital changing collisions show some analogy to spin
changing collisions [27]. Our work is the first to extend the
experimental study of interaction dynamics in optical
lattices with bosons from the familiar lowest band examples
to orbital optical lattices, which possess higher order
orbitals. The future perspective of this work is to trigger
further research aiming at a better understanding of the
nature of contact interaction in the presence of orbital
degrees of freedom, including processes as the spontaneous
generation of local or global angular momentum [8].
We selectively populate one of the two degenerate

global energy minima in the second Bloch band of an
optical square lattice with a BEC and observe the sub-
sequent dynamics, which displays a damped oscillation of
population between both energy minima. This oscillation is
exclusively driven by two kinds of collisional interactions,
i.e., the on-site collisions of atoms in either of the three
local orbitals s, px, and py, respectively, and an orbital
changing collision mimicking a pair tunneling process
[22,28,29], where two atoms colliding, e.g., in the px
orbital at some lattice site, are both transferred to the py

orbital or vice versa. According to our model calculations,
the frequency of the population oscillation scales with the
relative strength of these collisional interactions, which can
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be readily tuned in the experiment. We implement two
different models both describing essential aspects of our
experimental findings: a quantum two-mode model involv-
ing the two Bloch modes associated with the energy
minima of the second band, and a simulation of 12 × 12
tubular sites according to Fig. 1(a), treated in a four-band
tight-binding approach accounting for nearest- and next-
nearest-neighbor tunneling and on-site contact interactions.
We consider a two-dimensional (2D) optical square

lattice in the xy plane, composed of deep and shallow
wells arranged according to the black and white fields of a
checkerboard, see Fig. 1(a). In the third dimension, i.e., the
z direction, a nearly harmonic potential withΩ=2π ≈ 40 Hz
is applied, such that the 3D lattice potential constitutes a 2D
lattice of elongated sites. The 2D lattice potential is well
approximated by Vðx; yÞ ≈ −V0j cosðkxÞ þ eiθ cosðkyÞj2
with k ¼ 2π=λ and λ ¼ 1064 nm. Adjustment of θ permits
controlled rapid tuning of the potential energy difference
ΔV ≡ −4V0 cosðθÞ between A and B wells. Technical
details are given in Ref. [19]. In its second Bloch band this
lattice provides two inequivalent degenerate local energy
minima at the high-symmetry points Xþ and X−, located
at the edge of the first Brillouin zone, see Fig. 1(b).
The corresponding Bloch functions, ψþ and ψ−, composed
of p orbitals in the deep A wells and s orbitals in the
shallow B wells, are orthogonal real-valued standing waves
[cf. Figs. 1(c) and 1(d)].
We prepare the initial state with the following protocol.

A nearly pure rubidium BEC with up to 6 × 104 atoms
in the jF ¼ 2; mF ¼ 2i hyperfine state at about 50 nK
temperature is initially loaded at the Γ point in the lowest
band of the lattice potential with ΔVi ¼ −1.23V0;i and
V0;i ¼ 4.3Erec. Here, Erec ≡ ℏ2k2=ð2mÞ denotes the

single-photon recoil energy and m is the atomic mass.
At this stage, the negative sign of ΔVi indicates that the B
wells are deep and the A wells are shallow. The atoms
reside nearly exclusively in the B wells. Next, a magnetic
field gradient realizes a magnetic force. The gradient is
applied for 0.65 ms, such that the atoms undergo a half-
cycle of a Bloch oscillation, and hence are transferred to the
Xþ point. Details of this step are deferred to Ref. [30].
Finally, ΔV and V0 are ramped up in 0.3 ms to final values
ΔVf ∈ ½0.55; 0.75� × V0;f and V0;f ¼ 7.2Erec. According
to the positive value of ΔVf the roles of A and B wells are
swapped such that a condensate at the Xþ point in the
second band is formed with 25.000� 2.000 atoms [19,30].
Subsequently, the temporal evolution of the relative
population difference between the X− and the Xþ-point
ðn− − nþÞ=ðn− þ nþÞ is recorded. This quantity is
retrieved by performing band mapping or alternatively,
by recording momentum spectra, and counting the atoms in
the vicinity of the X� points. Details are found in Ref. [30].
An example for ΔVf ¼ 0.725 × V0;f is shown in Fig. 2(a).
A strongly damped oscillation is observed at a frequency of
21.6 Hz. Corresponding band mapping pictures recorded
at times indicated by dashed gray lines are shown on the
upper edge of Fig. 2(a). The red solid line is a fit with
a single exponentially damped harmonic oscillation. In
Fig. 2(b), for each data point the procedure to obtain
Fig. 2(a) is repeated and the observed oscillation frequen-
cies νosc are plotted versusΔVf. The plot shows an increase
of νosc with increasing ΔVf.

(a) (b)

(d)(c)

FIG. 1. (a) The bipartite lattice geometry with deep A sites and
shallow B sites. The unit cell is shown by the gray rectangle.
(b) The second Bloch band of the lattice in (a) is plotted across the
first Brillouin zone with the two inequivalent energy minima at
X� and the energy maximum at Γ highlighted. Blue denotes low
and white denotes high energy. (c) and (d) show contour plots of
the Bloch functions ψ�, corresponding to the X� points of the
second band.
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FIG. 2. (a) The temporal evolution of the relative population
difference ðn− − nþÞ=ðn− þ nþÞ is shown for fixed ΔVf ¼
0.725 × V0;f after initially a BEC is formed at the Xþ point.
The red solid line is a fit by an exponentially damped harmonic
oscillation. The error bars show the standard deviations of the
mean for a set of ten measurements. (b) The observed oscillation
frequencies obtained from fitting data as in (a) are plotted versus
ΔVf . The errors show the standard deviations found in the fits.
The red disks and the blue squares represent two measurement
series evaluated via momentum spectra and band mapping,
respectively. The solid black line shows a calculation using a
two-mode model.
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In the following, we will compare the data points in
Fig. 2(b) with two distinct models, which will both allow us
to directly connect the experimental parameter ΔVf with
the amplitude ratio between an orbital interaction process
exchanging pairs of atoms between px and py orbitals and
conventional Hubbard-like on-site interaction. We begin
with a minimal model of the two Bloch modes ψþ and ψ−.
According to Ref. [22], the Hamiltonian reads

H ¼ g0
2
½n̂þðn̂þ − 1Þ þ n̂−ðn̂− − 1Þ�

þ g1
2
½4n̂þn̂− þ ψ̂†

þψ̂
†
þψ̂−ψ̂− þ ψ̂†

−ψ̂
†
−ψ̂þψ̂þ�; ð1Þ

with ψ̂� denoting the annihilation operator for the Bloch
modes ψ� and n̂� ≡ ψ̂†

�ψ̂� the corresponding number
operators. As seen in Eq. (1), g0 corresponds to a conven-
tional Hubbard on-site interaction, while the expression
controlled by g1 contains a pair exchange term between
both modes, which changes the orbital flavor. As detailed in
Ref. [30], the collision parameters g0 and g1 can be
expressed as g0 ¼ g2DI0ðΔVfÞ and g1 ¼ g2DI1ðΔVfÞ
with an effective 2D collision energy g2D and the
dimensionless integrals I0ðΔVfÞ≡ A

R
A dxdyjψ̃�j4 and

I1ðΔVfÞ≡ A
R
A dxdyjψ̃þj2jψ̃−j2, where ψ̃� denote the

Bloch wave functions normalized to a single unit cell of
the lattice with area A ¼ λ2=2. In order to model the
observation in Fig. 2(b), the following steps are performed.
A numerical band calculation is performed to obtain ψ̃�
and hence the integrals I0ðΔVfÞ and I1ðΔVfÞ as functions
of ΔVf. The effective collision parameter g2D is expressed
in terms of the 3D collision parameter for rubidium atoms
(cf. Ref. [30]). The Schrödinger equation for the
Hamiltonian of Eq. (1) is solved for N ¼ 5.000 particles,
with the initial condition that all atoms reside at Xþ. This
leads to the full time evolution of the system state jΨðtÞi.
Finally, the expectation value hΨðtÞjðn̂þ − n̂−ÞjΨðtÞi=N is
obtained, a fast Fourier transform of this quantity is
calculated and the frequency νosc of the dominant spectral
component is determined. To estimate the prediction for
N ¼ 24.000 particles (which results in a good match with
the observations), we calculate νosc as a function of N, for
the range of N ¼ 20 to N ¼ 500. The resulting dependence
of νosc on N is described by a power-law of the form
∼N0.8896, within a relative error of 10−4. Utilizing this
dependence, we extrapolate the value of νosc calculated for
N ¼ 5.000 to find that for N ¼ 24.000 (cf. [33]). The
resulting νosc plotted against ΔVf is shown as the black
solid line in Fig. 2(b). A detailed treatment of the under-
lying two-mode model is found in Ref. [22]. Remarkably,
the observed ascending trend of νosc is well reproduced by
the model although band relaxation, heating, and particle
loss are neglected here. The band calculation of I0ðΔVfÞ
and I1ðΔVfÞ shows that within the accessible range
ΔVf ∈ ½0.2; 0.73� × V0;f, increasing ΔVf acts to increase

the quantity g2 ≡ 1 − g1=g0. The two-mode model [22]
predicts self-trapping (cf. Ref. [34]) to occur if g2 > 2=3,
which, however, corresponds to values of ΔVf well outside
of this range, such that the band structure would no longer
support a stable BEC in the second band.
In order to obtain a more realistic description including

dissipation and loss, we turn to a model consisting of
12 × 12 tubular sites according to Fig. 1(a) treated in a
tight-binding approach accounting for nearest-neighbor
and next-nearest-neighbor tunneling and the same on-site
collisions already included in the model in Eq. (1). The
tubes are mapped onto a 1D lattice by discretizing them in
real space with a discretization length of 0.13 μm. We
simulate the experimental loading protocol and the sub-
sequent dynamics using classical-field-theory techniques,
see Ref. [30]. We initialize the c-field propagation from a
thermal ensemble of temperature T using Monte Carlo
sampling with parameters V0;i ¼ 4.3Erec and ΔVi ¼
−1.23V0;i. We transfer the atoms to the Xþ point using
phase imprinting, see Ref. [30], and quench the potential
offset to its final value ΔVf ∈ ½0.2; 0.73� × V0;f with
V0;f ¼ 7.2Erec. The resulting time evolution of the relative
population of the X points is shown in Fig. 3(a). For a
single initialization and a temperature kBT ¼ 0.8Erec,
similar to what is realized experimentally, we observe
coherent oscillations between the Xþ and X− points during
the first hundred milliseconds before damping by decay to
the lower band sets in. In Ref. [30] we show that at lower
temperatures, band relaxation and decay of the condensate
fractions become negligible, and hence, for single initial-
izations, coherent oscillations prevail for very long times.
However, the frequency and phase of these oscillations vary
for different initializations, which leads to additional strong
damping via decoherence, when averaging over multiple

(a) (b)

FIG. 3. (a) Relative population difference of X points
ðn− − nþÞ=ðn− þ nþÞ according to our classical-field-theory
simulations at ΔVf ¼ 0.69V0. The panel shows the oscillation
for a single random initialization. (b) Fourier spectrum of the
oscillation shown in (a) averaged over 500 random initializations,
see black circles. The peak of the Fourier transform determines
the main oscillation frequency at the given value of ΔVf . The red
line shows a Gaussian fit to the Fourier spectrum. For details on
the fitting routine see Ref. [30]. For both panels the temperature is
T ¼ 76.8 nK ≈ 0.8Erec=kB and hence similar to the experimental
temperature.
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initializations is performed (see Ref. [30]). Recall that the
experimental data in Fig. 2(a) correspond to an average
over ten initializations. As illustrated by the error bars, the
error for a single initialization increases during the first
30 ms, thus reflecting this expected decoherence. Only for
later times, when atom loss in the second band sets in, the
error bars decrease again. For our numerical simulations we
estimate the dominant oscillation frequencies by calculat-
ing the power spectrum. We Fourier transform the relative
population of the X points for each random initialization
and subsequently average the Fourier spectra. The result is
shown in Fig. 3(b). As expected, we find a broad Fourier
peak, where many different oscillation frequencies con-
tribute. We fit a Gaussian to the Fourier spectrum in order to
extract the dominant oscillation frequency, for details see
Ref. [30]. Figure 4 plots the results for different final
potential offsets ΔVf showing notable agreement with the
experimental data repeated from Fig. 2(b).
Finally, we consider the equilibration dynamics after the

quench within our c-field simulations. The two degenerate
lowest-energy many-body states approximately form an
N-fold occupation of either of the coherent superpositions
Ψ� ¼ ψþ � iψ− of the two degenerate single-particle
states ψ� [12,16,19]. Their relative phases �i minimize
the energy associated with the pair exchange processes. We
may consider the oscillatory dynamics that emerges in both
experiment and simulations in terms of Ψ�. To this end, we
show in Fig. 5 the normalized projection of the state ψðtÞ
onto Ψ�. We consider an idealized only weakly damped
case by choosing a low temperature of 0.5 nK. Initially,
the atoms are prepared to occupy one of the X points and
hence their overlap with both Ψþ and Ψ− is 50%. Before
damping sets in, the evolution is characterized by instanton-
type dynamics [35], where the atoms perform perfect

oscillations between Ψ�. This reproduces the oscillations
shown in Fig. 3(a) in the Ψ� basis, however at much lower
temperature and hence lower damping. At the zero cross-
ings in Fig. 3(a), the atoms have unit overlap with one
of the two many-body states Ψ�. A typical single-
implementation trajectory plotted in Fig. 5 shows that this
overlap alternates between Ψþ and Ψ−, which amounts to
an oscillating chirality. The slight inward shift of the
trajectory at 50% mixture is a result of the slow-down
due to the free-energy barrier that separates the two lowest-
energy statesΨ�. Eventually, due to damping, the atoms do
not have enough energy to cross this barrier and sponta-
neously pick either of the two states Ψ�. In the subsequent
second part of the dynamics the atoms perform damped
harmonic oscillations in the corresponding free-energy
minimum and hence have an overlap between 50% and
unity with this state. This example provides a limiting case of
the many-dynamics of this system, for which the exper-
imental results provide a more strongly damped realization.
In summary, we have studied quantum dynamics of a

BEC in the second band of an optical lattice arising from
the competition between orbital changing and conventional
on-site collisions. A minimal quantum model and a more
realistic model based on classical field simulations show
quantitative agreement with the observations. For simu-
lations of an idealized low-temperature scenario, we find
coherent instanton-type dynamics characterized by oscil-
lations between the two degenerate lowest-energy many-
body states in the second band. Our work pioneers the
exploration of quantum dynamics in optical lattices with
orbital degrees of freedom and orbital degeneracies, which
allows one to emulate a physical reality beyond s-band
Hubbard physics.
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from Fig. 2(b). For each ΔVf we determine the averaged Fourier
spectrum, as exemplarily shown in Fig. 3(b) and plot the
dominant frequency obtained from a Gaussian fit. The errors
in the determination of the positions of the maxima of the fitted
Gaussians are mostly smaller than the data symbols.

FIG. 5. Phase-space diagram of the relative population in
the two lowest-energy many-body states mr for a single initial-
ization of our simulations. Here, mr ¼ mþðtÞ −m−ðtÞ and
m�ðtÞ ¼ jhΨ�jψðtÞij2=m0. Furthermore ψðtÞ is the wave func-
tion obtained within our simulations and m0 ¼ jhΨþjψðtÞij2 þ
jhΨ−jψðtÞij2 is the total number of condensed atoms in the
second band. We consider an idealized case at lower temperature
T ¼ 0.5 nK and 4 times stronger interactions as compared to
Fig. 4. We also use a different quench protocol that keeps
V0 ¼ 7Erec throughout the quench and changes ΔV from ΔVi ¼
−0.6V0 to ΔVf ¼ 0.35V0.
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