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The interplay between strong light-matter interactions and charge doping represents an important
frontier in the pursuit of exotic many-body physics and optoelectronics. Here, we consider a simplified
model of a two-dimensional semiconductor embedded in a microcavity, where the interactions between
electrons and holes are strongly screened, allowing us to develop a diagrammatic formalism for this system
with an analytic expression for the exciton-polariton propagator. We apply this to the scattering of spin-
polarized polaritons and electrons, and show that this is strongly enhanced compared with exciton-electron
interactions. As we argue, this counterintuitive result is a consequence of the shift of the collision energy
due to the strong light-matter coupling, and hence this is a generic feature that applies also for more realistic
electron-hole and electron-electron interactions. We furthermore demonstrate that the lack of Galilean
invariance inherent in the light-matter coupled system can lead to a narrow resonancelike feature for
polariton-electron interactions close to the polariton inflection point. Our results are potentially important
for realizing tunable light-mediated interactions between charged particles.
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Exciton-polaritons are hybrid light-matter quasi-
particles resulting from the strong coupling between
excitons (bound electron-hole pairs in a semiconductor)
and microcavity photons [1–3]. Their photonic compo-
nent endows them with an exceptionally small mass and
the potential for optical control, which is necessary for
realizing coherent phenomena such as polariton lasing
or Bose-Einstein condensation [4–8] at elevated tempera-
tures and in a variety of tailored geometries [9–13]. Their
excitonic component furthermore gives polaritons the
ability to interact pairwise among themselves and with
other particles, which can give rise to polariton super-
fluidity [14–16] and photon quantum correlations
[17,18]. Of particular interest is the interplay between
polaritons and electrons, a scenario that can be achieved
via photoexcitation or doping of a two-dimensional (2D)
semiconductor embedded in a microcavity [19–23]. Most
recently, the atomically thin transition metal dichaloco-
genides (TMDs) have emerged as promising platforms
for this purpose [24]. The combined polariton-electron
system can lead to enhanced polariton-polariton inter-
actions [25–27], as well as the possibility of optically
engineered electronic phases such as polariton-mediated
superconductivity [28–30].
To investigate and potentially exploit the properties of

electron-rich polariton systems, a necessary ingredient is a
microscopic description of polariton-electron interactions.
However, this is challenging to achieve theoretically since
one must solve a multibody problem that involves at least
three charged particles as well as a photonic component.
Indeed, the case of electron-exciton scattering has only very

recently been studied theoretically with exact state-of-
the-art techniques [31,32]. To date, studies of polariton-
electron scattering have primarily involved calculations
within the lowest-order Born approximation [33–37],
where the excitonic part is treated as an inert object,
unaffected by the coupling to photons. While recent studies
treat polariton-electron interactions beyond the Born
approximation [22,26], these only consider polaritons at
zero momentum and they ignore the composite nature of
the excitonic component. Thus, a complete description of
polariton-electron interactions is still lacking.
In this Letter, we solve the polariton-electron problem

for the case where the spins are polarized and the
interactions between charges are strongly screened, such
that they correspond to short-range contact interactions.
This simplification for the polariton system has been
widely used in the literature [38–40] and allows us to
obtain an analytic expression for the polariton propagator
that captures the nonperturbative effects of the light-matter
coupling on the excitonic part [41,42]. We then obtain the
polariton-electron interaction T matrix using a three-body
diagrammatic approach [43–48] that has been successfully
applied to cold-atom experiments and neutron scattering
[49–51]. We find that the strength of polariton-electron
scattering is strongly enhanced compared to the exciton-
electron case, which is the opposite of what is expected
based on the standard Born approximation. In particular,
we reveal a resonancelike enhancement of elastic scattering
at finite polariton momentum, which is intimately con-
nected to the non-Galilean nature of the polariton system.
We argue that these are generic results that should also hold
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for more realistic interactions in the semiconductor, such as
Coulomb interactions.
Model.—We consider a spin-polarized 2D semiconduc-

tor in a planar microcavity. The system is described by the
Hamiltonian (we set ℏ and the system area to 1)

Ĥ ¼
X
k

ðϵke†kek þ ϵkh
†
khkÞ − V0

X
kk0q

e†kh
†
q−khq−k0ek0

þ
X
k

ðωþ ϵckÞc†kck þ g
X
kq

ðe†kh†q−kcq þ H:c:Þ: ð1Þ

Here, e†k, h
†
k, and c†k create an electron, hole, or photon,

respectively, with momentum k. The top line describes
electrons and holes which, for simplicity, we take to have
contact interactions of strength V0. Owing to Pauli exclu-
sion, the electrons (and holes) do not interact among
themselves. For simplicity, we take these to have the same
mass m (as is approximately the case in TMDs [52,53]),
such that their dispersion is ϵk ¼ jkj2=2m≡ k2=2m. The
second line describes the cavity photons with dispersion
ϵck ¼ k2=2mc and mass mc ¼ 10−4m [1], where ω is the
zero-momentum resonant frequency in the absence of the
active medium. All energies are defined with respect to
the semiconductor band gap. The last term corresponds to
the light-matter coupling with strength g (we applied the
rotating wave approximation). Both the electron-hole and
light-matter interactions are functions of an ultraviolet
cutoff Λ on the relative electron-hole momentum. In the
following, we develop a renormalized low-energy theory
where we take Λ → ∞ and we relate the bare interaction
parameters appearing in Eq. (1) to physical observables.
Photon and polariton propagators.—Inside the semi-

conductor microcavity, photons are modified by repeated
interactions with 2D electron-hole pairs, and the resulting
dressed photon is characterized by the self-energy Σ [54].
As illustrated in Fig. 1(a), this leads to the Dyson equation
for the dressed photon propagator at momentum Q and
energy E [42,55]

DðQ; EÞ ¼ 1

D−1
0 ðQ; EÞ − ΣðQ; EÞ ; ð2Þ

where the bare propagator D0ðQ; EÞ ¼ 1=ðE − ω − ϵcQÞ
has poles that coincide with the resonant cavity photon
dispersion. Here, and in the following, we assume that the
energy poles are shifted slightly into the lower half of the
complex plane, i.e., we have retarded propagators [54].
The photon self-energy in Fig. 1(a) is composed of two

terms: ΣðQ; EÞ ¼ Σð1ÞðE − ϵQ=2Þ þ Σð2ÞðE − ϵQ=2Þ [42].
These contain all possible processes that involve the
excitation of an electron-hole pair, and they thus only
depend on the energy in the electron-hole center-of-mass
frame. Within the model (1), we have

Σð1ÞðEÞ ¼ g2ΠðEÞ; Σð2ÞðEÞ ¼ g2Π2ðEÞT 0ðEÞ: ð3Þ

Here, ΠðEÞ≡PΛ
k 1=ðE − 2ϵkÞ is the electron-hole pair

bubble and T 0 is the electron-hole T matrix (see, e.g.,
Ref. [56])

T 0ðQ; EÞ≡ T 0ðE − ϵQ=2Þ ¼
4π=m

− ln½ðE − ϵQ=2Þ=εB� þ iπ
;

ð4Þ

where εB ≡ 1=ma2X is the 1s exciton binding energy,
with corresponding Bohr radius aX [57]. We see that
the pair bubble Π diverges logarithmically when the
momentum cutoff Λ is taken to infinity, which implies
that Σð2Þ=Σð1Þ ¼ ΠT 0 → ∞. Hence, to obtain a finite
coupling between light and matter in this limit, we require
g ∼ 1= lnΛ and therefore Σð1Þ → 0 [55].
We now wish to relate the parameters g and ω to real

observables in experiment. Since the poles of the photon
propagator D correspond to the polariton spectrum, we can
compare them to the quasiparticle energies obtained from
the coupled-oscillator model [1,2,58], which is typically
used to fit experimental data. Here, one assumes that εB is
larger than all other relevant energy scales, such that the
exciton’s composite nature can be neglected. This gives the
quasiparticle dispersions

Eosc
� ðQÞ ¼

ϵQ
2
þ δþ ϵcQ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵQ
2
− δ − ϵcQÞ2 þ 4Ω2

q
2

− εB;

with − (þ) referring to the lower (upper) polariton. The
relevant physical parameters are the photon-exciton detun-
ing δ and the Rabi coupling Ω, which we identify in our

+

+=

= +

= +

=

(a)

(b)

(c)

FIG. 1. (a) Dyson equation for the dressed photon propagator
(thick wavy line) in terms of the bare propagator (thin wavy line)
and the self energy (shaded ellipse). The self energy consists of
the two terms in Eq. (3), where the thin lines with arrows are
fermion propagators and the shaded rectangle is the electron-hole
T matrix defined in Eq. (4). Black dots represent the light-matter
coupling g. (b) Polariton propagator (double lines with an arrow)
given by repeated interactions between excitons, dressed photons,
and electron-hole pairs. (c) Polariton-electron scattering, as
encoded in the polariton-electron T matrix (shaded square).
Black, white, and dashed circles represent electrons, holes,
and polaritons, respectively.
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theory by performing a perturbative analysis of Eq. (2)
close to the exciton energy −εB (for additional details, see
Ref. [55]). This yields

δ ¼ ωþ εB − Ω2=ð2εBÞ; Ω ¼ −g
ffiffiffiffiffiffi
ZX

p
Πð−εBÞ; ð5Þ

where ZX ≡ 4πεB=m is the residue of T 0 at the exciton
pole. This procedure finally leads to the dressed photon
propagator

DðQ; EÞ ¼ 1

D−1
0 ðQ; EÞ − Ω2

ZX
T 0ðQ; EÞ ; ð6Þ

which is now fully expressed in terms of experimentally
measurable quantities. We note that Ref. [40] recently
presented an alternative renormalization procedure for the
contact interaction potential; however, our method has the
advantage that it is fully analytic and it does not involve any
infrared divergence.
One particularly important parameter is the polariton

photon fraction jC�ðQÞj2, otherwise known as a Hopfield
coefficient. In our present formulation, this is the residue of
the propagator at the polariton energy E�ðQÞ (which is
determined numerically from the propagator’s poles).
Expanding Eq. (6) at the pole yields

jC�ðQÞj2 ¼
�
1þ ZX=Z�ðQÞ

Ω2D2
0½Q; E�ðQÞ�

�
−1
: ð7Þ

Here, Z�ðQÞ≡ 4πjE�ðQÞ − ϵQ=2j=m is the polariton
generalization of ZX. For the lower polariton (−), this is
typically well approximated by ZX, in which case Eq. (7)
exactly matches the expression obtained for two coupled
oscillators [1,2,55,58].
We now define the polariton propagator as consisting of

all interaction processes between an electron and a hole, as
illustrated in Fig. 1(b). This is a natural definition for the
purposes of calculating polariton-electron scattering, since
the pairwise interactions only involve the electronic degrees
of freedom, not the photons [59]. Therefore, the polariton
propagator is simply a dressed electron-hole T matrix

T ðQ; EÞ ¼ 1

T −1
0 ðQ; EÞ − Ω2

ZX
D0ðQ; EÞ : ð8Þ

Note the similarity to Eq. (6). The polariton exciton fraction
jX�ðQÞj2 ≡ 1 − jC�ðQÞj2 is related to the residue at the
pole E�ðQÞ, which is given by Z�ðQÞjX�ðQÞj2.
Polariton-electron interactions.—We now calculate the

interaction strength between an electron and a lower
polariton, as illustrated in Fig. 1(c). This follows the
diagrammatic approach first developed in the context of
neutron-deuteron scattering [43,44], and later applied to
cold atomic gases [45–48]. The diagrams in Fig. 1(c)
resemble those of exciton-electron scattering [55], but there

are two major, albeit hidden, differences. First, the very
nature of the polariton as a quasiparticle formed from
components of different masses means that Galilean
invariance is broken. Second, since the electron interacts
only with the excitonic part of the polariton, the scattering
of electrons and polaritons can be viewed as strongly off
shell exciton-electron interactions, where the collision
energy is shifted by the light-matter coupling [60].
These unusual characteristics lead to strong qualitative
differences from the conventional Born approximation
treatment of polariton-electron scattering [33–35], as we
shall demonstrate in the following.
The polariton-electron T matrix in Fig. 1(c) satisfies the

integral equation [55]

TePðp1;p2Þ ¼ −
jX−ðp2Þj2Z−ðp2Þ

E − ϵp1
− ϵp2

− ϵp1þp2

−
X
q

1

E − ϵp1
− ϵq − ϵp1þq

× T ðq; E − ϵqÞTePðq;p2Þ: ð9Þ

Here, the electron (polariton) is taken to have momentum pi
(−pi) and energy ϵpi

(E − ϵpi
), respectively, where i ¼ 1, 2

corresponds to incoming or outgoing particles. We consider
zero center-of-mass momentum, so that angular momentum
is a good quantum number, but our results should also
apply to finite center-of-mass momentum since they are
relatively insensitive to the electron momentum. Both
minus signs on the right-hand side of Eq. (9) originate
from the exchange of identical electrons.
In the following, we consider elastic scattering where

E ¼ E−ðp2Þ þ ϵp2
is the total energy of the electron-lower-

polariton system and jp1j ¼ jp2j≡Q, where we note that
Eq. (9) must be solved as an integral equation in terms of
the incoming momentum and thus the latter condition
should be taken at the end of the calculation [55]. Since
angular momentum is conserved, we remove all angular
dependence from the problem by projecting Eq. (9) onto
the s-wave channel [48], which is the dominant channel
when QaX ≪ 1. With these manipulations, we arrive at the
normalized s-wave polariton-electron interaction T
matrix, TePðQÞ≡ hTePðp1;p2Þiθ.
Scattering of slow particles.—As a first illustration, we

consider scattering in the limit of zero momentum. The T
matrix TePð0Þ is then precisely the polariton-electron
coupling constant geP, a parameter that serves as an input
in many-body theories of polaritons and electrons [61,62].
Our results are shown in Fig. 2 for the case of Ω=εB ¼
0.025 relevant for a MoSe2 [63], MoS2 [64], or WSe2
[65,66] monolayer (for WS2, Ω=εB ≃ 0.05 [67]). We see
that the interaction strength quickly increases with increas-
ing exciton fraction jX−ð0Þj2 from negative to zero detun-
ing, while it has a peak at small positive detuning.
By contrast, we find that the result from the Born
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approximation, gBorneP ¼ 4πεBa2XjX−ð0Þj2—obtained by
neglecting the second and the third lines in Eq. (9)—is
monotonic and greatly overestimates the interaction
strength. Indeed, one can show that the Born approximation
provides an upper bound on the interaction strength in the
absence of a trion bound state [55].
Within our exact calculation, the behavior of geP is

dominated by the strong light-matter coupling, which
determines the collision energy of the scattering processes
in the matter component. To demonstrate this idea of off-
shell exciton-electron scattering, we compare our results
with that obtained from the universal behavior of low-
energy exciton-electron scattering:

geP ≃ jX−ð0Þj2
3π=m

− ln ½− E−ð0ÞþεB
ε1

�
: ð10Þ

In the present context, low energy implies Ω; jδj ≪ εB,
which is typically a good approximation in the TMDs. In
the case of contact electron-hole interactions, the energy
scale ε1 ¼ ð3=4ma2eXÞ, with exciton-electron scattering
length aeX ≃ 1.26aX [48]. As seen in Fig. 2, this approxi-
mation works extremely well across a range of detunings
provided jδj is not too large. The energy dependence of
Eq. (10) also explains why geP eventually decreases with
increasing positive detuning in Fig. 2. Note that Eq. (10)
predicts a spurious resonance at large negative detuning,
i.e., outside its regime of validity.
We emphasize that Eq. (10) represents the universal form

of low-energy polariton-electron scattering, and it therefore
also applies to exciton-polaritons in GaAs quantum wells
when Ω ≪ εB, or for more realistic electronic interactions
in the TMDs [68]. In each case, the low-energy behavior is

guaranteed by the long-range −1=r4 form of the interaction
between a charge (electron) and an induced dipole (exciton)
at separation r [69], while ε1 ∼ εB should be obtained from
first-principles calculations such as those recently carried
out in Ref. [32] for the TMDs. However, we emphasize that
since ε1 appears under a logarithm, we may expect Eq. (10)
to be rather insensitive to the precise value of ε1=εB, and
consequently that it remains quantitatively accurate beyond
the strongly screened approximation used here.
The fact that the polariton-electron interactions are

nonvanishing is a dramatic consequence of broken
Galilean invariance in the polariton system. According
to two-dimensional scattering theory [69,70], the
polariton-electron interaction should in fact approach
zero as ∼1=ðmC ln½−1=QaX�Þ when Q → 0 [55].
However, this logarithmic term only becomes relevant
when it is comparable to ∼1=m, which translates into
Q ∼ expð−104Þ=aX. This momentum scale is never rel-
evant in any experiment since it requires a system that is
much larger than the size of the known Universe. By
contrast, the relevant momentum scale below which
exciton-electron interactions vanish logarithmically is
only 1=aX. Thus, our results demonstrate that polariton-
electron interactions are typically enhanced compared to
the exciton-electron case, even though the polariton
contains a noninteracting photonic component.
Resonantlike scattering at finite momentum.—The

enhancement of polariton-electron scattering is even more
pronounced at finite momentum. Figure 3 clearly shows
how the strength of polariton-electron scattering, jTePðQÞj,
can be significantly larger than that of exciton-electron
scattering in the momentum range relevant to the polariton
system. Most notably, we find a strong resonancelike
feature at momenta comparable to the inflection point,
where the character of the polariton quickly changes from
being photon to exciton dominated. The height of the peak
is determined by the size of the light-matter coupling Ω,
with the sharpest peaks occurring at negative detunings.
This resonance feature arises from the competition between
the increasing exciton Hopfield coefficient jX−ðQÞj2 and
the energy dependence of the underlying off-shell exciton-
electron interactions [55]. This is qualitatively different
from the commonly applied Born approximation which, for
momenta Q ≪ a−1X , is well described by the monotonic
function ð4π=mÞjX−ðQÞj2 [55]. Furthermore, the Born
approximation predicts that our solid (dashed) lines in
Fig. 3 would lie on top of each other, in contrast to the
results of our fully microscopic calculation that clearly
depend on the light-matter interaction strength. We stress
that the enhanced polariton-electron interaction at finite
momentum is also distinct from the so-called optical
parametric oscillation condition (see, e.g., Ref. [71]), since
the present resonance-like feature occurs in scattering
where the total momentum is zero and the magnitude of
the relative momentum is unchanged.

FIG. 2. Polariton-electron interaction strength as a function of
photon-exciton detuning, taking Ω=εB ¼ 0.025 as in a MoSe2,
MoS2, or WSe2 monolayer. The exact diagrammatic calculation
(blue solid line) compares well with the off-shell exciton-electron
scattering approximation in Eq. (10) (gray dash-dotted line).
Inset: the Born approximation (gray dashed line) deviates from
the exact calculation in a large parameter region.
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Conclusions and outlook.—We have presented an exact
microscopic description of polariton-electron interactions
for the simplified case of strongly screened interactions
between electrons and holes. In particular, our analytic
expression for the exciton-polariton propagator provides a
basis for future few- and many-body calculations within
this model. Our key finding is that strong light-matter
coupling generically enhances polariton-electron inter-
actions compared with the exciton-electron case, thus
leading to a resonancelike peak in the polariton-electron
scattering at finite momentum (Fig. 3).
Our results also apply to more realistic charge inter-

actions and can be directly tested in doped semiconductor
microcavities, such as the scenario of Fermi polaron
polaritons [22]. Here, the resonancelike feature should
be observable in the transmission spectrum of a doped
planar microcavity, where the in-plane momentum of the
polariton can be varied (in contrast to the case in Ref. [22]).
Moreover, unlike previous work, this interaction enhance-
ment occurs in a spin-polarized system and does not rely on
the presence of a trion bound state, thus allowing polaronic
physics to be clearly separated from few-body bound states.
This impacts the ongoing debate on whether one forms
trions or polarons in a doped semiconductor [72–74].
Finally, there is the prospect of using the sharp resonance-
like peak to control quantum correlations between polar-
itons [26,62], since it can be used to enhance the effective
polariton-polariton interactions induced by an electron
medium. Alternatively, it could help achieve strong polar-
iton-mediated interactions between electrons, ultimately
leading to electron pairing and superconductivity [28–30].
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