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A fundamental dichotomous classification for all physical systems is according to whether they are
spinless or spinful. This is especially crucial for the study of symmetry-protected topological phases, as the
two classes have distinct symmetry algebra. As a prominent example, the spacetime inversion symmetry
PT satisfies ðPTÞ2 ¼ �1 for spinless/spinful systems, and each class features unique topological phases.
Here, we reveal a possibility to switch the two fundamental classes via Z2 projective representations. For
PT symmetry, this occurs when P inverses the gauge transformation needed to recover the original Z2

gauge connections under P. As a result, we can achieve topological phases originally unique for spinful
systems in a spinless system, and vice versa. We explicitly demonstrate the claimed mechanism with
several concrete models, such as Kramers degenerate bands and Kramers Majorana boundary modes in
spinless systems, and real topological phases in spinful systems. Possible experimental realization of these
models is discussed. Our work breaks a fundamental limitation on topological phases and opens an
unprecedented possibility to realize intriguing topological phases in previously impossible systems.
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Symmetry-protected topological phases have constituted
one of the most active fields over the last decade and a half
[1–6]. Based on mathematical tools such as the K and KO
theories [7,8], rich topological phases have been proposed
and classified by considering various internal and space
group symmetries [9–16].
In this endeavor, a fundamental dichotomy is to dis-

tinguish systems based on whether they are spinful or
spinless. For electronic systems, this corresponds to
whether spin-orbit coupling (SOC) is included or not.
The two categories exhibit distinct topological classifica-
tions. The reason is that for spinful systems, due to SOC,
symmetry transformations must simultaneously act on both
the orbital and the spin degrees of freedom, leading to
symmetry algebra distinct from spinless systems.
A prominent example is the spacetime inversion sym-

metry PT. For spinful systems, ðPTÞ2 ¼ −1, which dictates
a Kramers double degeneracy at every k point in the
Brillouin zone (BZ). In contrast, for spinless systems,
ðPTÞ2 ¼ 1, which instead guarantees a real band structure,
because one can always choose a representation with
P̂ T̂ ¼ K̂, with K̂ the complex conjugation. Each class
hosts its own unique collection of topological phases [15].
For instance, PT-invariant spinful systems can realize 3D
Dirac semimetals, 1D topological insulators or super-
conductors in class DIII; whereas spinless systems harbor
real Dirac semimetals [17],Z2-charged nodal surfaces [18],
nodal-line linking structures [19–21], boundary phase

transitions [22], etc. [23–25]. A list of topological classi-
fication when including PT and sublattice symmetry S is
presented in Table I.
The spin class therefore imposes a fundamental con-

straint on the possible topological phases that a system can
realize. It is possible to break this limitation? Namely, is it
possible to realize spinful (spinless) topological phases in
spinless (spinful) systems?
In this Letter, we discover an approach to achieve this

possibility. The essence of our proposal is that in the
presence of gauge degrees of freedom, symmetries of a
system will be projectively represented, which may
completely change the fundamental algebraic structure of
the symmetry group [26]. Particularly, we show that this
can be achieved by coupling to a Z2 gauge field. Here,
Z2 ¼ f�1g is the subgroup of the electromagnetic gauge

TABLE I. Topological classification table for spacetime inver-
sion and sublattice symmetries.

ðPTÞ2 S d ¼ 1 d ¼ 2 d ¼ 3

AI þ 0 Z2 Z2 0
BDI þ ½S; PT� ¼ 0 Z2 0 2Z
CI þ fS; PTg ¼ 0 Z Z2 Z2

AII − 0 0 0 0
CII − ½S; PT� ¼ 0 0 0 Z
DIII − fS; PTg ¼ 0 2Z 0 0
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group Uð1Þ, and physically just corresponds to switching
the sign of certain hopping amplitudes. Remarkably, we
find that the projectively represented symmetry PT may
satisfy ðPTÞ2 ¼ −1 [ðPTÞ2 ¼ 1] for spinless (spinful)
systems, namely, that we can switch the fundamental
symmetry algebras between spinless and spinful systems.
In a sense, we hence effectively make a spinful system
behave as a spinless one, and vice versa. We explicitly
demonstrate our idea via several concrete models, such as
Kramers degenerate bands and Kramers Majorana boun-
dary modes in spinless systems, and real Stiefel-Whitney
topological phases in spinful systems. Experimental real-
izations of these models are discussed.
Our work opens up an unprecedented possibility to

switch the fundamental categories of topological systems
and to achieve intriguing topological phases in previously
impossible systems.
Projective PT symmetry.—Let us start with a general

discussion of the PT symmetry. Ordinarily, for a system
consisting of particles with spin s, the time-reversal
symmetry satisfies T2 ¼ ð−1Þ2s, and the space inversion
symmetry satisfies P2 ¼ 1. They commute with each other,
½P; T� ¼ 0, and, therefore,

ðPTÞ2 ¼ ð−1Þ2s: ð1Þ

For instance, in the internal space of an electron (which
is spinful), we have ðPTÞ2 ¼ −1. The common textbook
explanation is that T is represented by T̂ ¼ −iσ2K̂ with
T2 ¼ −1, while P is represented by P̂ ¼ σ0, which pre-
serves the spin. Here, σ’s are the Pauli matrices for spin. On
the other hand, for spinless particles, T̂ ¼ K̂ and P̂ ¼ 1,
and therefore ðPTÞ2 ¼ 1.
However, in the presence of certain gauge degrees of

freedom, the relation ðPTÞ2 ¼ ð−1Þ2s will be projectively
represented, because the inversion is a spatial symmetry and
may involve additional gauge transformations. Here, we
request that the gauge flux configuration is invariant underP,
i.e., P is still a symmetry of the system. Nevertheless, the
chosen gauge connections do not necessarily preserve P.
Then, to recover the gauge configuration, a gauge trans-
formation G must be incorporated into the inversion. Thus,
the proper inversion actually becomes a combined operation,

P ¼ GP: ð2Þ

Specifically, for a Z2 gauge theory, G preserves T and
G2 ¼ 1. In addition, if P reverses the gauge transforma-
tions, i.e., G anticommutes with P, then we have the
following relations:

½G; T� ¼ 0; fG; Pg ¼ 0; G2 ¼ 1: ð3Þ

It follows that P2 ¼ ðGPÞ2 ¼ −1. Thus, the proper space-
time inversion symmetry PT will satisfy a distinct algebra:

ðPTÞ2 ¼ P2T2 ¼ ð−1Þ2sþ1: ð4Þ
This is remarkable, because it shows that, with the help of

Z2 gauge fields, the fundamental symmetry algebra can be
exchanged for spinless and spinful systems. Consequently,
their topological classifications are also exchanged. For
instance, in the tenfold classification of Hamiltonian spaces,
the topological phases of classes AI, BDI, and CI (AII, CII,
and DIII) as shown in Table I can now be realized also by
spinful (spinless) systems. Here, the tenfold classification
involves the sublattice symmetry, but clearly, the discussion
can be extended to other symmetries such as various
crystalline symmetries as well.
Below, we present three concrete models to demonstrate

our idea. More examples can be found in the Supplemental
Material [27].
Kramers Majorana modes in a 1D spinless chain.—Our

first example is a 1D spinless model which realizes a class
DIII topological gapped phase originally unique for spinful
systems (see Table I).
The model is illustrated in Fig. 1(a). The unit cell

(indicated by the shaded cube) contains eight sites, indexed
by three qubits, ρ, τ, and σ. The inversion operator flips all
three qubits, therefore in momentum space is given by

P̂ ¼ Γ111Î; ð5Þ

where we define

Γμνλ ¼ ρμ ⊗ τν ⊗ σλ; ð6Þ

with μ, ν, λ ¼ 0, 1, 2, 3, and Î is the momentum inversion
operator.

(a)

(b) (c)

FIG. 1. (a) Schematic figure of the 1D spinless chain. Each unit
cell (indicated by the green cubes) contain eight sites. The
hopping amplitudes along x are marked in the figure. The red
bonds have a negative hopping amplitude −tz. (b) Calculated
bulk band structure. Each band is twofold degenerate. (c) Spec-
trum of a finite chain with a length of 30 unit cells. The four zero
modes form two Majorana Kramers pairs. Each pair is localized
at one end of the chain.
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The Z2 gauge field is specified that each plaquette
normal to the x direction has a π flux, and all others have
a zero flux. One gauge-connection configuration is shown
in Fig. 1(a), where only each red-colored bond has negative
sign in the hopping amplitude.
Clearly, the flux configuration respects the P symmetry,

however, the gauge-connection configuration in Fig. 1(a)
does not. To restore the original gauge configuration, the
proper inversion P should include the following gauge
transformation:

Ĝ ¼ Γ003; ð7Þ
which imposes a minus sign for sites on the bottom
layer, and therefore, flips the sign for hopping ampli-
tudes along z. Hence, the proper inversion operator is
P̂ ¼ Ĝ P̂ ¼ iΓ112Î, and the spacetime inversion is repre-
sented by

P̂ T̂ ¼ iΓ112K̂: ð8Þ

Importantly, note that P inverses the gauge transformation
G, such that fĜ; P̂g ¼ 0. Therefore, according to our
analysis above [see Eqs. (3) and (4)], the projective
PT symmetry of this spinless chain follows a modified
algebra ðPTÞ2 ¼ −1, a character intrinsic to spinful
systems.
With the hopping amplitudes shown in Fig. 1(a), the

tight-binding model can be written as

HðkÞ ¼ tyΓ010 þ tzΓ301 þ
X

s¼d;o

�
0 usðkÞ

u�sðkÞ 0

�
⊗ Ms:

ð9Þ

Here, k is the momentum along x, Md ¼ diagð1; 0; 0; 1Þ,
Mo ¼ diagð0; 1; 1; 0Þ, and usðkÞ ¼ ts;1 þ ts;2e−ik.
The sublattice symmetry is represented as Ŝ ¼ Γ333. It can

be transformed into the standard form Γ300 by the unitary
transformation U ¼ exp½ðiπ=4ÞΓ100� exp½−ðiπ=4ÞΓ133�.
Accordingly, the Hamiltonian can be converted into
the standard block off-diagonal form as for class DIII
systems

UHU† ¼
�

0 QðkÞ
Q†ðkÞ 0

�
: ð10Þ

For gapped phases in class DIII, the 1D topological invariant
is given by the winding number

ν ¼ 1

2πi

I
dk trQ−1ðkÞ∂kQðkÞ: ð11Þ

This winding number is valued in even integers 2Z due to
the algebraic relations ðP̂ T̂Þ2 ¼ −1 and fP̂ T̂; Ŝg ¼ 0, as
proved in the Supplemental Material [27].

For instance, the system is nontrivial with ν ¼ 2, when
we set ty ¼ tz ¼ 0.5, td;1 ¼ to;2 ¼ 2, and td;2 ¼ to;1 ¼ 1.
The corresponding band bulk structure is shown in
Fig. 1(b), showing a gapped spectrum. Note that although
the system is spinless, each band here has a Kramers double
degeneracy due to ðPTÞ2 ¼ −1. The invariant ν ¼ 2
dictates that for a PT-symmetric chain with an open
boundary condition, there must exist a Kramers pair of
Majorana modes at each boundary, which is confirmed by
our result in Fig. 1(c). Previously, such Kramers Majorana
pair is only possible for spinful systems, such as the 1D
T-invariant p-wave topological superconductor. Here, we
demonstrate that it can be successfully extended to spinless
systems via our proposed mechanism. Since only the
nearest neighbor hopping is needed here, the topological
phase could be easily realized by various artificial systems.
2D real Dirac semimetal in a spinful lattice.—In the

second example, we achieve a 2D phase with real twofold
Dirac points. The real Dirac point is previously unique for
spinless systems. A famous example is graphene. It is
protected by the first Stiefel-Whitney number ν1D, which
just corresponds to the quantized Berry phase along a
circle. Here, we will realize it in a spinful system.
As illustrated in Fig. 2(a), the 2D model consists of two

layers of square lattices. Each square plaquette normal to
the y direction has a π flux. A possible gauge configuration
is shown in Fig. 2(a), where the red-color bonds have a
negative hopping amplitude. A unit cell contains four cites,
which are labeled by two qubits ρ and τ [Fig. 2(a)], and the
spin basis on each site is denoted by σ.
Clearly, the inversion P̂ ¼ Γ110Î reverses the vertical

hopping amplitudes, therefore the proper inversion must
include a gauge transformation Ĝ ¼ Γ300, which anti-
commutes with P̂. Hence, P̂ ¼ iΓ210Î. With the standard
T̂ ¼ −iΓ002Î K̂ for a spinful system, we obtain

P̂ T̂ ¼ Γ212K̂; ð12Þ

(a) (b)

FIG. 2. (a) Schematic figure for the 2D model, consisting of
two layers of square lattices. The unit cell consists of four sites as
marked by the green square. The red colored bonds have a
negative hopping amplitude −tz. (b) Bulk band structure of the
model (13). There are eight twofold real Dirac points at zero
energy, protected by ν1D ¼ 1. Here, we take parameters tx ¼
ty ¼ tz ¼ 1 and λ ¼ 0.5.
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which satisfies the identity ðP̂ T̂Þ2 ¼ 1, so we have made
the spinful system behave effectively as a spinless one.
With the hopping amplitudes specified in Fig. 2(a), our

spinful lattice model is given by

HðkÞ ¼ ðtx þ tx cos kxÞΓ010 þ tx sin kxΓ020

þ 2ty cos kyΓ031 þ tzΓ130 þ λΓ303: ð13Þ

Here, the third term is an explicit SOC term. Figure 2(b)
shows a typical band structure for this model. The spectrum
contains eight twofold Dirac points at zero energy. It is easy
to verify that these are real Dirac points, each protected by a
π Berry phase quantized by the projective PT symmetry.
This 2D real Dirac semimetal can be readily extended

into a 3D real nodal-line semimetal by stacking its copies
along the z direction, e.g., by adding the following vertical
hopping terms to Eq. (13):

HzðkzÞ ¼ ðtz þ tz cos kzÞΓ130 þ tz sin kzΓ230: ð14Þ
They will generate four real nodal loops in the 3D BZ [27],
and each loop is protected by a quantized π Berry phase.
Real Dirac point and doubly charged loop in general-

ized 3D Kane-Mele model.—The third example is a real
topological phase characterized by the second Stiefel-
Whitney number ν2D, corresponding to class AI in
Table I but realized in a spinful system.
Our model is constructed by stacking the renowned 2D

Kane-Mele model with interlayer π fluxes. As shown in
Fig. 3(a), the stacking forms a 3D graphite lattice, and the π
flux only exists for each vertical rectangular plaquette.
Figure 3(a) shows a possible gauge connection configura-
tion, where again we use the red color to indicate the bonds
with a negative hopping amplitude. We define a unit cell
with four sites, as marked by the shaded region. These
four sites are indexed by the quibits ρ and τ, and again the
real spin is denoted by σ. Following similar analysis
above, we find that the proper inversion operator P̂ must
include P̂ ¼ Γ110Î and the gauge transformation Ĝ ¼ Γ300.
Combined with T̂ ¼ −iΓ002Î K̂ for spinful systems, we find
P̂ T̂ ¼ Γ212K̂, same as Eq. (12). Clearly, ðP̂ T̂Þ2 ¼ 1, hence
a spinful system is effectively turned into a spinless one.
The lattice model is given by

HðkÞ ¼ χ1ðkÞΓ010 þ χ2ðkÞΓ020 þ ηðkÞΓ033

þ λ1ðkzÞΓ130 þ λ2ðkzÞΓ230: ð15Þ

Here, χ1 þ iχ2 ¼ t1
P

3
i¼1 e

ik·ai , η ¼ −t2
P

3
i¼1 sin k · bi,

where ai’s are the three bond vectors for the honeycomb
lattice, and ϵijkbk ¼ ai − aj are the in-plane vectors
between second neighbors. The first line is just the
Kane-Mele model, and the η term is known as the intrinsic
SOC term. The second line is the interlayer hopping,
with λ1 þ iλ2 ¼ J1 þ J2eikz .

Let us treat t2 and δJ ¼ J2 − J1 as perturbations com-
pared to t1 and J ¼ ðJ1 þ J2Þ=2. When t2 ¼ δJ ¼ 0, there
are two independent eightfold Fermi points at the corners of
the BZ. Turning on t2 and δJ, each Fermi point will split
into two fourfold real Dirac points, each having a nontrivial
second Stiefel-Whitney number ν2D ¼ 1.
This Dirac semimetal actually represents a critical

state, in the sense that it is unstable in the presence of
other PT-invariant perturbations. However, due to the
nontrivial ν2D, the spectrum cannot be fully gapped.
Instead, each Dirac point will evolve into a real nodal
loop, protected by a twofold topological charge ðν1D; ν2DÞ
(see Ref. [27] for more details, here, ν1D is defined on a
circle surrounding the loop). For example, consider
adding to model (15) the following PT-invariant pertur-
bations ΔH ¼ m1Γ301 þm2Γ302. The resulting doubly
charged real loops are illustrated in Fig. 3(b).
Distinct from the usual nodal-loop semimetal in spinful

systems, a hallmark of such a PT-invariant real nodal-loop
semimetal is that it actually possesses a second-order
topology; namely, it hosts protected hinge Fermi arcs.

(a)

(b) (c)

FIG. 3. (a) Schematic figure for the 3D generalized Kane-Mele
model. Each 2D honeycomb layer is a 2D Kane-Mele model. The
red colored bonds have negative hopping amplitudes −J1 or −J2.
The unit cell contains four sites, as indicated by the shaded square
in the right panel. (b) The bulk band structure contains four real
nodal loops. Each loop is characterized by a twofold topological
charge ðν1D; ν2DÞ ¼ ð1; 1Þ, as indicated by the inset. (c) Calcu-
lated spectrum of the system with a tubelike geometry extended
along z and with a diamond-shaped cross section (see inset). The
hinge Fermi arc states can be clearly visualized. Here, we take
parameters t1 ¼ 1, t2 ¼ 0.08, J1 ¼ 0.3, J2 ¼ 0.48, m1 ¼ 0.4,
and m2 ¼ 0.3.
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This is explicitly confirmed by our numerical calculations,
as shown in Fig. 3(c).
Discussion.—This work reveals an unprecedented pos-

sibility to break the fundamental limitation on topological
phases by spin classes. We effectively switch the spin
character of a system in terms of the symmetry algebra.
Here, we focused on the PT symmetry. Clearly, the study
can be extended to other symmetries and symmetry-
protected topologies, which will open a new research field.
The case of CP symmetry is briefly discussed in the
Supplemental Material [27].
For interacting systems, the required Z2 gauge field can

appear as remaining discrete gauge symmetry after sym-
metry breaking [33–35], or as emergent field in strongly
correlated systems like spin liquids [36–41]. More impor-
tantly, it can be precisely engineered in artificial systems,
such as photonic or phononic crystals, circuit networks, and
mechanical periodic systems [28–32,42–50], which is
briefly reviewed in the Supplemental Material [27].
Particularly, we suggest that the bright-dark mechanism,
i.e., the effective hopping amplitude of two sites through an
intermediate high-energy site is negative, could be a
universal method to engineer Z2 gauge configurations
for artificial systems [27].
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