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We study a generic model of a Chern insulator supplemented by a Hubbard interaction in arbitrary even
dimension D and demonstrate that the model remains well defined and nontrivial in the D → ∞ limit.
Dynamical mean-field theory is applicable and predicts a phase diagram with a continuum of topologically
different phases separating a correlated Mott insulator from the trivial band insulator. We discuss various
features, such as the elusive distinction between insulating and semimetal states, which are unconventional
already in the noninteracting case. Topological phases are characterized by a nonquantized Chern density
replacing the Chern number as D → ∞.
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Introduction.—Strong electron correlations and topo-
logical classification are two major research frontiers
of condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models in
D ¼ 2 and D ¼ 3 dimensions pose highly involved prob-
lems, many studies focus on one-dimensional systems with
nontrivial topological properties [14–20].
On the other hand, the opposite limit of infinite spatial

dimensions has been recognized as extremely instructive
for the pure electron-correlation problem and constitutive
for the dynamical mean-field theory (DMFT) [21]. In the
large class of mean-field approaches, DMFT has an excep-
tional standing, since it is internally consistent and non-
perturbative, and since it becomes exact in theD → ∞ limit
[22]. While the limit comes with certain simplifications,
such as the locality of the self-energy [21,23], infinite-
dimensional lattice-fermion models are far from being
trivial. This is demonstrated by the DMFT paradigm
of the Mott metal-insulator transition as a prime example
[24]. Furthermore, the fact that exact properties of strongly
correlated systems are numerically accessible [21,25,26],
make correlated lattice-fermion models on D ¼ ∞ lattices
attractive points of orientation.
With the present study we pose the question whether the

same limit is also helpful for the understanding of topo-
logical properties of strongly interacting electron systems.
Our answer is affirmative. Assuming locality of the self-
energy, previous DMFT studies of correlated topological
insulators have addressed two-dimensional systems, such
as the Haldane model [27], Hofstadter’s butterfly [28], or
the Bernevig-Hughes-Zhang model [29,30], all supple-
mented by interaction terms, or real three-dimensional
systems, such as SmB6 [31], combining the DMFT with

ab initio band theory. A DMFT study of an interacting,
topologically nontrivial model on a D ¼ ∞ lattice is still
missing.
Here, we consider multiorbital Hubbard models on a D-

dimensional hypercubic lattice for arbitrary but even D,
whose low-energy noninteracting band structures reduce to
massive Dirac theories and belong to class A of Chern
insulators with Z topological invariants. We demonstrate
that, with the proper scaling of the hopping, the D → ∞
limit leads to a well-defined model with nontrivial interplay
between kinetic and interaction terms, hosting topologi-
cally nontrivial phases, and is accessible to a numerical
solution by DMFT for arbitrary Hubbard interaction U and
mass parameter m. The m-U phase diagram contains the
trivial band and the correlated Mott insulator, separated by
a continuum of interacting and topologically different
Chern insulators. The latter are characterized by a properly
defined Chern density, which replaces the Chern number
as a topological invariant. We argue that for D → ∞
already the U ¼ 0 model has highly unconventional
topological properties since the sign of the Chern number
as well as a band closure are concepts becoming ill defined
in the limit D → ∞.
Hamiltonian.—We study an extension of a family of

D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as
described by the Hamiltonian H ¼ H0 þH1. Here, H1 ¼
ðU=2ÞPiασ niασniα−σ is an on-site and intraorbital
Hubbard term, where i ¼ 1;…; L labels the sites of
a D-dimensional hypercubic lattice with periodic bounda-
ries, σ ¼ ↑;↓ is the spin projection, and α ¼ 1;…;M
is an orbital index. The corresponding annihilator is ciασ ,
and niασ ≡ c†iασciασ. After Fourier transformation to k
space, ciασ ¼ L−1=2 P

k e
ikRickασ, the tight-binding part

reads H0 ¼
P

kαβσ ϵαβðkÞc†kασckβσ, where k ¼ ðk1;…; kDÞ
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with −π < kr ≤ π, and where ϵαβðkÞ are the elements of the
M ×M hopping matrix in k space:

ϵðkÞ ¼
�
mþ t

XD
r¼1

cos kr

�
γð0ÞD þ t

XD
r¼1

sin krγ
ðrÞ
D ; ð1Þ

depending on the hopping parameter t and on a parameter

m controlling the mass term. Here, γð1ÞD ;…; γðDÞ
D are the

generators of the complex Clifford algebra ClD, and γ
ð0Þ
D ¼

ð−iÞD=2γð1ÞD � � � γðDÞ
D is the chiral element. They satisfy the

Clifford anticommutation relations fγðμÞD ; γðνÞD g ¼ 2δðμνÞ for
μ; ν ¼ 0; 1;…; D. Close to the critical points kc in the first
Brillouin zone (BZ), see below, the low-energy effective
theory is given by a linear Dirac model with k-independent
mass term. Such free Dirac models are extensively ana-
lyzed and topologically classified for different mass terms
and for arbitrary D, see e.g., Ref. [32]. The model (1)
belongs to symmetry class A in the Altland-Zirnbauer (AZ)
scheme [6].
We note that ClDþ2 ≅ Matð2;CÞ ⊗ ClD and that there

is, for even D, a unique irreducible M ¼ 2D=2-dimensional
matrix representation of ClD [33–35]. The according γ
matrices can be constructed recursively: Cl0 is spanned by
1 ∈ C. The first nontrivial dimension is D ¼ 2, and hence

M ¼ 2.Cl2 is generated by the Pauli matrices γð1Þ2 ¼ τx and

γð2Þ2 ¼ τy, and together with the unity 1 and the chiral

element γð0Þ2 ¼ −iτxτy ¼ τz, they span Cl2. The corre-
sponding generalized lattice Dirac model, Eq. (1),
with ϵðkÞ ¼ dðkÞ · τ and dðkÞ ¼ ðt sin kx; t sin ky; mþ
t cos kx þ t cos kyÞ is just the model proposed by Qi,
Wu, and Zhang [36,37]. For arbitrary even D the general
recursive prescription for the Hermitian and traceless
generators is [32]:

γðrÞDþ2 ¼ τx ⊗ γðrÞD for r ¼ 1;…; D;

γðDþ1Þ
Dþ2 ¼ τx ⊗ γð0ÞD ; γðDþ2Þ

Dþ2 ¼ τy ⊗ 1: ð2Þ

The chiral element is γð0ÞDþ2 ¼ τz ⊗ 1, where 1 denotes the
2D=2-dimensional unity. Explicitly, γð0Þ ¼ diagðþ1;þ1;…;
−1;−1;…Þ, such that m is the strength of a staggered
on-site potential in Eq. (1). Accordingly, the orbitals α

can be divided into two classes, A orbitals with γð0Þαα ≡ zα ¼
þ1 (α ¼ 1;…;M=2) and B orbitals γð0Þαα ≡ zα ¼ −1
[α ¼ ðM=2Þ þ 1;…;M]. We see that the number of orbi-
tals scales exponentially with D. Equations (1) and (2)
imply that along a spatial direction r, each site-orbital ði; αÞ
couples to a single orbital α0 at the two nearest-neighbor
positions i0, and thus the connectivity of ði; αÞ is 2D.
Noninteracting case.—The U ¼ 0 band structure is

easily obtained by squaring ϵðkÞ, using properties of the
γ matrices, and noting that trϵðkÞ ¼ 0. Apart from the

spin degeneracy, this yields two M=2-fold degenerate
bands: ϵ�ðkÞ ¼ �½t2Pr sin

2kr þ ðmþ t
P

r cos krÞ2�1=2.
The high-energy band edges are given by ϵmax;min ¼
�ðjmj þDtÞ and are taken for kr ¼ 0 (if m ≥ 0) and
kr ¼ π (m ≤ 0) for all r. Because of the point-group
symmetries, band closures are found at the high-symmetry
points (HSPs) kc ¼ kn0 ¼ ð0;…; 0; π;…; πÞ in the BZ,
and for ðDn0Þ inequivalent permutations of the components,
where n0 counts the number of vanishing entries kr.
For a band closure the condition m ¼ ðD − 2n0Þt must
be met. This corresponds to the vanishing of the mass term

in the Dirac Hamiltonian ϵðkÞ ¼ ½mþ ð2n0 −DÞt�γð0ÞD þ
t
P

rðkr − kn0;rÞγðrÞD , obtained by linearization of ϵðkÞ
around kn0 .
Infinite dimensions.—It is instructive to compute the

low-order moments MðnÞ
α ¼ R

dωρnαðωÞ of the local
partial density of states (DOS) of the orbital α. We have

the trivial normalization condition Mð0Þ
α ¼ 1, the bary-

center Mð1Þ
α ¼ mγð0Þαα ¼ �m, and the α-independent second

moment Mð2Þ
α ¼ t2Dþm2. The variance of the DOS is

given by the second central momentMð2Þ
α − ðMð1Þ

α Þ2 ¼ t2D.
Hence, a proper D → ∞ limit with a balance between H0

and H1 is obtained if the standard [22,38] scaling
t ¼ t�=

ffiffiffiffi
D

p
with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the
energy scale by setting t� ¼ 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
ϵmax;min ¼ �ðjmj þ ffiffiffiffi

D
p

t�Þ ↦ �∞. The mass parameter m
must not be scaled in the D → ∞ limit to maintain a
nontrivial model. This implies aD-independent band center
of gravity �m.
Topology for D → ∞.—We approach the D → ∞ limit

via even-D models of Chern insulators and stay in the AZ
class A. For any finite even D, upon varying m, one passes
band closures and related topological phase transitions,
located at m ¼ ffiffiffiffi

D
p ð1 − 2n0=DÞt� for n0 ¼ 0;…; D.

Figure 1 (left) gives an example forD ¼ 4. The topological
phase for an m with D − 2n0 − 2 < m

ffiffiffiffi
D

p
=t� < D − 2n0

(with n0 ¼ 0;…; D − 1) can be characterized by the (D=2)
th Chern number [32,39,40]:

CDðn0Þ ¼ ð−1Þn0þðD=2Þ
�
D − 1

n0

�
; ð3Þ

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D − 1)-dimensional surface char-
acterized by Miller indices ð100…0Þ hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc;k of the bulk HSPs kc for
given n0. The binomial factor in Eq. (3) counts the number
of equivalent nodal kc;k points in the (D − 1)-dimensional
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surface Brillouin zone. All Weyl points have the same
chirality given by the sign factor [32].
Importantly, the distance between two transitions

Δm ¼ 2t�=
ffiffiffiffi
D

p
shrinks to zero for D → ∞, i.e., the set

of critical m’s becomes dense in any finite m interval.
Hence, for high D the system is arbitrarily close to
criticality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive for
D → ∞, since ϵ�ðkÞ ¼ ϵ�ðk0Þ if kk − k0k ¼ 0, where we
have defined kkk2 ≡ limD→∞D−1PD

r¼1 k
2
r . It is easy to see

that k · k is a seminorm, i.e., kkk ¼ 0⇏ k ¼ 0, such that
the concept of a band closure at isolated points in k space
breaks down. However, we still have ϵ�ðkÞ ¼ 0 at k ¼
kcðmÞ for any m. Furthermore, the number ðDn0Þ of equiv-
alent critical HSPs at a given criticalm and the total number
2D of HSPs in the BZ diverge, but their ratio approaches a
constant when D → ∞.
A second important observation directly follows

from Eq. (3): When D → ∞, only the modulus of the
Chern number, and only after proper normalization, has
a well-defined limit. Noting that

P
D−1
n0¼0 CDðn0Þ ¼ 2D−1,

we thus introduce a Chern density as cðn0Þ ¼
limD→∞jCDðn0Þj=2D−1. Since Δm ↦ 0, we can use n0 ¼
ðD −m

ffiffiffiffi
D

p
=t�Þ=2 and dm≡ 2t�=

ffiffiffiffi
D

p
to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find

cðn0Þ ¼ lim
D→∞

ffiffiffiffiffiffiffi
2

πD

r
e−2½ðD=2Þ−n0�2=D ¼ cðmÞdm ð4Þ

with a normalized Chern density of unit variance:

cðmÞ ¼ 1

t�
ffiffiffiffiffiffi
2π

p e−m
2=2t�2 : ð5Þ

This is a central result, as it shows that not only dynamic
correlation effects but also nontrivial topological properties
survive the D → ∞ limit when using the standard scaling
of the hopping.
From the bulk-boundary correspondence [7,32,41] at

any finite D, we can infer that cðmÞdm is the ratio between
the number of topologically protected surface states and

the total number of HSPs in the BZ. Upon variation of
m ↦ mþ dm, a ratio of �2cðmÞdm bulk states (per total
number of HSPs) traverse the gap at the HSPs correspond-
ing to m. The Chern density is insensitive to the sign
though.
Density of states.—Turning to the correlation side

of the problem, the relevant quantity for the DMFT is

the U ¼ 0-DOS ραðωÞ ¼−ð1=πLÞImP
k G

ð0Þ
αα ðk;ωþ i0þÞ

of orbital α. This can be computed efficiently using the
quasi–Monte Carlo technique of Refs. [42,43] to carry out
the k summation. Thanks to the Clifford algebra, the
inversion of the M ×M hopping matrix required to get

the noninteracting Green’s function matrix Gð0Þ
k ðωÞ ¼

1=½ω − ϵðkÞ� can be done analytically, see Sec. A of the
Supplemental Material (SM) [44]. We also derive an
analytical expression for the DOS in the D → ∞ limit
(SM, Sec. B [44]). For any D, we have ρAð−ωÞ ¼ ρBðωÞ,
and for m ↦ −m, the DOS transforms as ραðωÞ ↦
ραð−ωÞ. The D ¼ ∞ DOS is shown in Fig. 1 (right).
Another important point is that the D ¼ ∞ DOS is fully

gapped for all m. Furthermore, the gap Δ ¼ ffiffiffi
2

p
t� is m

independent. This should be contrasted with the DOS at
any finite D, which behaves at low frequencies and at a
critical m as ραðωÞ ∝ jωjD−1, as it is characteristic for a
Dirac-cone structure (SM, Sec. C [44]). The band states
near a band closure in k space at a critical kc and all
equivalent points (including k points with kk − kck ¼ 0) do
no longer contribute a finite DOS near ω ¼ 0. Hence,
there is no meaningful distinction between insulator and
semimetal states in the D → ∞ limit.
The relevant range of the mass parameter to get nontrivial

correlation effects in highD is of orderm ¼ �Oðt�Þ. This is
demonstrated with the inset of Fig. 1 (right) showing the
orbital polarization p ¼ ðnA − nBÞ=2 of the half-filled non-
interacting system, ðnA þ nBÞ=2 ¼ 1, as a function of m
(where nα≡L−1P

kσhc†kασckασi). On the scalem¼�Oðt�Þ,
p quickly approaches almost full saturation with empty or
doubly occupied A (or B) orbitals, i.e., a state where the
Hubbard interaction is static and correlation effects are
absent.
DMFT.—The exact solution of the interacting model in

theD → ∞ limit is provided by the DMFT. Particularly, the

FIG. 1. Left: band structure ϵðkÞ ¼ ϵ�ðkÞ of theD ¼ 4model along straight shortest lines in the BZ connecting HSPs characterized by
n0. Results for different m, see color code. Middle: different topological phases with Chern numbers CDðn0Þ (green), separated by
critical m values (red dots) for different D. Right: U ¼ 0 DOS on the A orbitals at m ¼ −1.5 for D ¼ ∞. Inset: orbital polarization as
function of m for D ¼ ∞. Nearest-neighbor hopping: t ¼ t�=

ffiffiffiffi
D

p
, t� ¼ 1 sets the energy scale.
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m-U phase diagram of the model is interesting as it
expresses the generic interplay of topological properties
and correlations in an exactly solvable and nonperturbative
case. To cover the entire relevant parameter space, we
employ a simplified DMFT scheme, where the interacting
lattice model is self-consistently mapped onto a two-site
single-impurity Anderson model [45]. A slight generaliza-
tion is necessary to account for the A-B orbital structure.
This generalized two-site DMFT (see SM, Secs. D and E
for details [44]) simultaneously focuses on the low- and on
the high-frequency limit of the DMFT self-consistency
condition and qualitatively captures the Mott-transition
physics [45–47].
At finite U the ðD=2Þth Chern number can be expressed

in terms of the interacting single-particle Green’s function
[48–50]. Here, for D → ∞, the locality of the self-energy
allows us to apply the concept of the topological
Hamiltonian [50] (see also Ref. [51]) and to compute
cðmÞ from the noninteracting part but with ϵðkÞ ↦ ϵðkÞ −
μ1þ Σðω ¼ 0Þ and where the chemical potential μ ¼ U=2.
Since ΣðωÞ is diagonal in orbital space (see SM, Sec.
D [44]), this merely amounts to a renormalization of the
chemical potential, μ ↦ μþ Σþðω ¼ 0Þ, and the mass
parameter,m↦mþΣ−ðω¼ 0Þ, where Σ�ðωÞ ¼ ðΣAðωÞ�
ΣBðωÞÞ=2. For finite D we have successfully tested our
results case by case against the predictions of the pole-
expansion technique [29,31,52], which applies if the self-
energy is given in its discrete Lehmann representation [53].
Phase diagram.—We have performed DMFT calcula-

tions, restricted to spin-symmetric states in a large range of
parameters m and U. The resulting Chern density cðm;UÞ
is shown in Fig. 2. As the phase diagram is invariant under a
sign change m ↦ −m, only negative m values are dis-
played. At U ¼ 0 and as a function ofm, the Chern density
is a Gaussian, see Eq. (5), and the system smoothly evolves
from a conventional band insulator, with cðm; 0Þ → 0 in the
limit m → −∞, to a Chern insulator-semimetal with a
maximum cðm; 0Þ ¼ 1=

ffiffiffiffiffiffi
2π

p
at the symmetric pointm ¼ 0.

With increasing U at m ¼ 0, the Chern density cð0; UÞ
stays at its maximum until at U ¼ Uc ¼ 6t�, the system
undergoes a correlation-driven transition to a topolo-
gically trivial Mott phase with c ¼ 0. With a refined
DMFT scheme only a slightly lower Uc is expected
[45]. Approaching Uc either from above or from below,
the transition is characterized by a continuously vanishing
renormalization factor z ↦ 0, where z≡ 1=½1 − ∂Σαðω ¼
0Þ=∂ω� is independent of the orbital type α. z plays the role
of a band-gap renormalization [54].
The Mott phase extends to m < 0 and is bounded

for all m by a line of critical interactions UcðmÞ. For
m → −∞ we observe that UcðmÞ linearly increases
with jmj. This is explained by the fact that the system
becomes fully orbital polarized. Hence, the self-
energy becomes static and approaches constants ΣA → U,
ΣB → 0, such that the renormalization of m is trivial:

m → mþ Σ−ðω ¼ 0Þ → mþ U=2. As a consequence,
the band insulator with c ¼ 0 cannot be smoothly con-
nected to the Mott insulator with c ¼ 0 without passing
topologically nontrivial states with c > 0.
The whole phase diagram can be understood as the

D → ∞ limit of m-U phase diagrams at finite D, see SM,
Sec. F [44]. With increasingD, the number of topologically
nontrivial phases CDðmÞ ≠ 0 increases and become ever
narrower regions in them-U plane, until they shrink to one-
dimensional lines (of constant color in Fig. 2) given by
cðm;UÞ ¼ const. This implies that, in the limit D → ∞,
systems on these iso-Chern curves are topologically equiv-
alent, while on paths crossing iso-Cherns one passes
through a continuum of topologically different phases.
Conclusions and outlook.—DMFT is nowadays mostly

employed as an approximate approach to strongly corre-
lated lattice-fermion models in low dimensions. The fact
that DMFT becomes exact in the D → ∞, however, is a
central aspect of the approach, as it ensures its internal
consistency in the entire parameter space spanned by
hopping, interaction, filling, orbital hybridization, and
more. It is thus important to demonstrate the very existence
of an infinite-dimensional interacting lattice model with
nontrivial topological properties that is in fact exactly
solved by the DMFT. The generic model of an interacting
Chern insulator studied here is the first example of this
kind.
Our approach has shown that with the conventional

scaling of the hopping parameter, a nontrivial interplay
between strong local correlations and topological proper-
ties is retained in the D → ∞ limit and thus paves the way
for further generic studies of this and of other models,
including models in different AZ classes. Such studies offer
the unique possibility to exactly access intertwined corre-
lation and topological effects in a nonperturbative regime
and support approximate DMFT studies of low-D cases.
They furthermore disentangle the pure and generic
(dynamical) mean-field content of the theory from the
additional realistic features of the DMFT when applied to
low-D models with specific lattice and orbital structure.
Clearly, also controlled “expansions” around the D → ∞
limit, using cluster or diagrammatic schemes, profit from a

FIG. 2. m-U phase diagram of the D → ∞ model. The color
codes the Chern density.
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well-defined and nontrivial starting point, e.g., for
benchmarking.
The question of what is generic and what is specific in

the context of interacting mean-field theory can also be
posed with respect to the topological invariant itself. For the
model studied here, there is a continuum of topologically
different phases, characterized by a Chern density, which is
a smooth, nonquantized function of m and U, except at the
Mott transition. Importantly, one can further elaborate on
these ideas already in U ¼ 0 limit. While this provokes the
question of whether analogs can be found in finite-D
models, these features are interesting in themselves and
one may even speculate about a possibly different topo-
logical classification in the D → ∞ limit.
At the fundamental level of topological classification,

there is obviously a plethora of open questions, including
the robustness against including interactions [55], relevance
of periodicity in the spatial dimension for interacting
systems [56], etc. Furthermore, we note that there are
other routes to topological phases as well: Nontrivial
topological states could be generated by starting from a
topologically trivial model in the D → ∞ limit, either
at some finite D or via extensions of DMFT. Exact
statements or even the exact construction of entire phase
diagrams and of excitations spectra, however, are probably
difficult to achieve beyond the dynamical mean-field
concept but highly desirable.
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