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Using molecular simulations and a modified classical nucleation theory, we study the nucleation, under
flow, of a variety of liquids: different water models, Lennard-Jones, and hard sphere colloids. Our approach
enables us to analyze a wide range of shear rates inaccessible to brute-force simulations. Our results reveal
that the variation of the nucleation rate with shear is universal. A simplified version of the theory
successfully captures the nonmonotonic temperature dependence of the nucleation behavior, which is
shown to originate from the violation of the Stokes-Einstein relation.

DOI: 10.1103/PhysRevLett.126.195702

The nucleation of quiescent systems, at molecular scales,
is of major interest and has been the focus of intense
research [1]. However, in nature and in practice, static
fluids are rarely involved; realistic systems almost always
exist in a state of flux. The study of the effects of shear on
nucleation is a burgeoning field, with far-reaching impli-
cations for industry and several branches of science.
Despite investigations in this direction, the literature is
rife with controversial results. Some studies indicate that
the presence of shear inhibits the nucleation rate [2,3],
while others assert that the nucleation rate is enhanced by
shear [4–10]. A nonmonotonic dependence of the induction
times for nucleation has also been reported in experi-
ments [11,12].
The homogeneous nucleation of the sheared Ising model

[13], colloidal models [14,15], hard spheres (HS) [16–18],
glassy systems [19,20], a binary-alloy [21], and more
recently mW water under shear [22,23], has been studied
using theory and simulations. Water is a highly anomalous
liquid exhibiting several anomalies in the supercooled
regime [24], but efforts have not been made to distinguish
the nature of the shear-dependent nucleation behavior of
water, or to generalize shared traits. However, existing
literature implies that the nucleation rate for liquids,
including water, is nonmonotonic with shear [14–23].
In this Letter, we generalize the phenomenon of shear-

induced nucleation by revealing the underlying universality
of the same. Recently, we formulated a classical nucleation
theory (CNT), extended to explicitly incorporate shear [23].
Here, we show the generality of this approach (henceforth
referred to as “shear-CNT”), using it to explain the effects
of shear on various systems: the rigid water models TIP4P/
2005 [25], TIP4P/Ice [26], the coarse-grained mW water
model [27], the Lennard-Jones (LJ) fluid [28], and a HS
colloid. We examine, in detail, the dual effects of temper-
ature and shear on the nucleation rates for water and LJ
fluid, explore the provenance of anomalies, and highlight
the universality in the nucleation behavior.

The free energy of a crystal nucleus in a bulk homo-
geneous nucleating system, under the effect of a simple
volume-preserving shear _γ, is given by [17]

FðRÞ ¼ −
4

3
πR3

jΔμ0j
v0

þ 4πR2βσ0 þ
1

2
Gðτ_γÞ2 4

3
πR3; ð1Þ

where FðRÞ is the free energy of formation of a cluster of
radius R, jΔ μ0j is the chemical potential difference
between the thermodynamically stable crystal phase and
the metastable liquid phase when no shear is applied, (σ0) is
the surface tension or the interfacial free energy of the
nucleus at zero shear, (v0) is the volume of one molecule in
the crystal phase,G is the shear modulus of the nucleus, β is
a “shape factor” indicating the shear-induced deformation
of the nucleus, and τ is a characteristic time defined as
τ ¼ ðη=GÞ, where η is the fluid viscosity.
Here, the dimensionless shape factor β ¼ 1þ 7

24
ðτ_γÞ2 is

a correction term to the nucleus surface, which accounts for
the volume-preserving change in geometry of the nucleus
into an ellipsoid. For perfectly spherical nuclei, β is unity.
Homogeneous nucleation is an activated process, exhib-

iting a maximum in the free energy at a critical nucleus size
N�. The height of the free energy barrier for nucleation,
corresponding to this critical nucleus size N�, is obtained
from

FðN�Þ ¼ N�
0jΔμ0j
2

β3

½1 − v0G
2jΔμ0j ðτ_γÞ2�

2
; ð2Þ

where N�
0 ¼ ½ð32πσ30v02Þ=ð3jΔμ0j3Þ� is the critical nucleus

size at zero shear.
The steady-state nucleation rate, J, can be estimated

using the following familiar CNT-based expression [23]:

J ¼ ρlZfþe−½FðN
�Þ=kBT�; ð3Þ
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where the nucleation rate J is the current or flux across the
free energy barrier, in the cluster-size space and is in units
of the number of nucleation events per unit volume per unit
time, fþ is the rate of attachment of particles to the critical
cluster, ρl is the number density of the supercooled liquid,
and Z is the Zeldovich factor. Z captures the probability of
multiple recrossings of the energy barrier [29].
The expression for the shear rate-dependent attachment

rate fþ is given by [23]

fþ ¼ 24Dl

λ2
βðN�Þ23; ð4Þ

whereDl is the two-dimensional diffusion coefficient of the
supercooled liquid phase for a particular shear rate and
temperature T, and λ is the atomic “jump length,” estimated
to be about one molecule diameter.
It has been shown earlier that the diffusion coefficient

varies linearly with shear rates, at a constant temperature,
for the mW model [23]:

Dl ¼ D0 þ c_γ; ð5Þ
where D0 is the diffusion coefficient when the shear rate is
zero, and c is a fitting parameter with units of squared
length. We observe that Eq. (5) holds true for TIP4P/2005,
TIP4P/Ice, mW, and LJ. We have estimated c for these
systems by fitting Dl, from our nonequilibrium molecular
dynamics (NEMD) simulations, to Eq. (5). Such linear
behavior is predicted for a suspension of particles, which
also provides the following estimate for c [30,31]:

c ¼ Kca2ϕ; ð6Þ
where a is the particle diameter, ϕ is the volume fraction,
and Kc is a constant. We have used a value of Kc ¼ 0.4,
which has been successfully used for suspensions [30] and
blood [31]. In this Letter, for hard-sphere colloids, we use
Eq (6) to estimate the value of c. D0 is calculated using the
Stokes-Einstein relation, given by D0 ¼ ðρlÞ13ðkBT=6ηÞ,
modified for hard spheres [32].
We note that the shear rates considered in this study are

low enough to safely assume that the fluids exhibit
Newtonian behavior. Therefore, η has constant values at
every temperature, estimated by pinpointing the plateau
region independent of applied periodic shear flows, pre-
ceding the advent of shear thinning [33]. Further, we
assume that the shear modulus G of the nuclei is isotropic,
which may not be strictly true for ice. However, the
variations in G for both hexagonal ice and amorphous
ice are within the range of 3–4.5 GPa [34–36], which do not
significantly impact the calculated nucleation rates [23].
The calculation of J in the presence of an applied shear

rate _γ, at a chosen condition of metastability additionally
requires system-specific input quantities, identical to the
quintessential seeding method: σ0, Δμ0, v0, ρl, and λ. The
values of these shear insensitive terms are listed in

Tables S1–S3 of the Supplemental Material [37] for water,
LJ, and HS, respectively.
The shear-CNT formulation predicts that the nucleation

rate J is nonmonotonic in nature with respect to the shear
rate, owing to competing energetic and kinetic effects.
Equation (2) shows that the free energy barrier will rise
with increasing shear rates. Equation (4) indicates that fþ
will increase, due to the increase in bothDl andN�. The net
effect is that of a maximum in J [Eq. (3)] at some particular
shear rate.
To analyze the nonmonotonicity, we introduce a min-

max normalized [89] nucleation rate, ½ðJ − J0Þ=Jmax − J0�,
defined with respect to J0, the nucleation rate at zero shear,
and Jmax, the highest nucleation rate observed at a
particular temperature [23]. The optimal shear rate, _γopt,
is defined as the shear rate for which ½ðJ − J0Þ=Jmax − J0�
is maximized.
However, the transcendental nature of the nucleation rate

expression prevents us from directly solving an analytical
expression for ½ðJ − J0Þ=Jmax − J0�. In order to further
simplify the governing equations of the shear-CNT for-
malism, we examine the order of magnitudes for the various
parameters in the equations involved. For water, LJ, and
HS, the shape factor is β ≈ 1 for the highest τ_γ values
considered. For _γ < ð1=ηÞ½ð2GjΔμ0jÞ=v0�12, we can use a
binomial expansion for the denominator in Eq. (2).
Subsequently expanding the exponential in Eq. (3) yields
a simplified expression for J:

J ¼ J0

�
1þ c

D0

_γ

��
1 −

N�
0v

0G
2kBT

ðτ_γÞ2
�
; ð7Þ

where J0 is the nucleation rate when the shear rate is zero.
We note that, although Eq. (7) is cubic in _γ, there exists only
one positive root and only one positive critical point, _γopt.
This is indicative of a single maximum in J for positive _γ.
As the magnitude of the dimensionless term

½ð6c2GkBTÞ=N�
0v

0ðD0ηÞ2� is 1 and 2 orders of magnitude
lower than unity for the water models and LJ, respectively,
we obtain a simplified relation for _γopt from Eq. (7)
given by

_γopt ¼
kBTGc

N�
0D0η

2v0
: ð8Þ

The following analytical expression for ½ðJ − J0Þ=Jmax −
J0� can be derived using Eq. (7) and Eq. (8):

J − J0
Jmax − J0

¼
�

1

1 − c
D0

_γopt

�
×

�
_γ

_γopt

�

×

�
2 −

�
_γ

_γopt

�
−

c
D0

_γopt

�
_γ

_γopt

�
2
�
: ð9Þ

This is a cubic polynomial in _γ=_γopt of the form
fðxÞ ¼ axð2 − x − bx2Þ, where a and b contain the term
ðc=D0Þ_γopt, and are thus system-dependent constants at a
particular condition of metastability. Since the values of b
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are in the range of 10−4–10−3 for the water models and LJ
fluid at various supercoolings, the value of a ¼ 1=ð1 − bÞ
can be assumed to be unity (Table S9 [37]). For values of
x ≤ 2, corresponding to _γ ≤ 2_γopt, fðxÞ ¼ axð2 − x − bx2Þ
can be approximated by a parabola of the form xð2 − xÞ.
Hence we observe that, for all the systems studied in this
work, parabolic fits approximate the nucleation rate behav-
ior with excellent agreement. A parabolic law, with respect
to the dimensionless shear _γ=_γopt, of the following form can
describe the nucleation behavior at a particular temperature
(T) and supercooling ΔT:

J − J0
Jmax − J0

¼ 1 −
�

_γ

_γopt
− 1

�
2

: ð10Þ

The vertex of this parabola is at unity. We recover a
family of parabolas with vertices at _γopt, at every temper-
ature, if ½ðJ − J0Þ=Jmax − J0� is plotted against _γ.
Figure 1 depicts the universal nature of the nonmono-

tonicity of the normalized nucleation rate, generated by the
superposition of available data for the water models, LJ
fluid, and hard spheres. These include our results (see
Secs. 3 and 4 of the Supplemental Material [37] for details
of input parameters), as well as those of earlier studies by
other groups [13,22]. We infer the existence of a single
maximum nucleation rate, at any given metastability, for
every system. For shear rates higher than _γopt), the

nucleation rate decreases. Despite the complex interactions
of shear-dependent terms in Eq. (3), the simple functional
form of Eq. (10) works well for the systems considered.
These results indicate that this behavior is fundamental to
Newtonian fluids obeying CNT.
A previous study on the mW model suggests that the

shear-dependent nucleation rates have a nonlinear depend-
ence on the temperature [23]. This could arise from the
inclusion of several temperature-dependent parameters in
the expression for the nucleation rate [Eq. (3)]. Scrutiny of
Eq. (1), Eq. (2), and Eq. (4) reveals the recurring dimen-
sionless group τ_γ. The temperature dependence of the
nucleation behavior under shear is embodied by the
dimensionless product, τ_γopt, where _γopt [Eq. (8)] depends
on the temperature as well as the nature of the system.
Rearranging the terms in the simplified relation for _γ in

Eq. (8), we obtain the following expression for the
dimensionless τ_γ:

τ_γopt ¼
�
kBT
D0η

c
v0

�
×

1

N�
0

; ð11Þ

where we define B ¼ ðkBT=D0ηÞðc=v0Þ, which is a dimen-
sionless group related to the transport properties. N�

0 is
dependent on the thermodynamic properties.
To compare the behavior of the water models and LJ

fluid, we define the percent supercooling with respect to the
melting point, Tm, for each model. The percent super-
cooling can be considered to be a driving force for
nucleation [92]. Temperature relations are obtained for η
and D0 using power law fits. Second-order polynomials
suffice to approximate the densities [93]. Linear fits to σ0
[93], jΔμ0j, c, are used to obtain the predicted values of
each variable as a function of temperature.
Figure 2(a) shows the variation in τ_γopt with percent

supercooling for the water models and LJ. The simplified
Eq. (11) performs well for the models considered [denoted
by solid lines in Fig. 2(a)]. τ_γopt exhibits a single maximum
for every water model. In particular, the rigid water models
show nearly identical behavior. We also note that every
system shows monotonic increase in the limit of 10%
supercooling. However, the τ_γopt curve for LJ shows a
qualitatively different trend compared to the water models
at higher supercoolings.
Figure 2(b) depicts the dependence of the dimensionless

group B on the percent supercooling. The nonmonotonic
behavior of B for the water models closely mirrors that of
τ_γopt in Fig. 2(a). Concomitantly, we attribute the trend in
τ_γopt for LJ to the monotonic behavior of B. The inset of
Fig 2(b) shows a nearly universal trend of N�

0 with percent
supercooling.
Furthermore, our analysis shows that the origin of the

divergent trends in B [Fig. 2(b)] lies in the Stokes-Einstein
(SE) relation. Anomalous transport properties of super-
cooled liquids are often characterized by SE violation

FIG. 1. Variation of the normalized nucleation rate with the
normalized shear rate, _γ=_γopt at selected metastabilities, plotted
alongside the corresponding parabolic fit. Equation (10) has been
denoted by a solid black line, and filled markers symbolize the
nucleation rates calculated using shear-CNT for various systems
and metastabilities. Black open squares show the data for the mW
model estimated by Luo et al. [22], for a supercooling of 67.6 K,
using brute-force approaches to calculate and fit to the induction
times [90]. Errors associated with J were within 10% [22]. Open
turquoise circles depict the data for a sheared two-dimensional
Ising model, obtained using forward-flux sampling [91], by Allen
et al. [13]. Error bars for J were of the range of 7%–10% [13].
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[94–102]. According to the SE relation, the following
expression holds true at all temperatures [103,104]:

D0 ∝
kBT
η

; ð12Þ

which implies that, if the SE relation is valid, the term
ðkBT=D0ηÞ is constant.
Figure 2(c) depicts the variation of ðkBT=D0ηÞ with

percent supercooling. The SE relation breaks down spec-
tacularly for supercooled water [102,105–107], as shown
by maxima in the ðkBT=D0ηÞ curves for TIP4P/2005,
TIP4P/Ice and mW. These are directly reflected by the
maxima of B and τ_γopt for the water models. In contrast,
ðkBT=D0ηÞ is relatively constant for LJ [Fig. 2(c)], which
suggests that the SE relation is preserved, in the case of the
LJ fluid, for the supercoolings considered in this work. We
surmise that the temperature dependence of the nucleation
behavior is strongly linked to the violation or preservation
of the SE relation, and thus depends significantly on the
behavior of flow properties. The decoupling of D0 and η,
typified by the SE violation, is thought to originate from
spatial heterogeneities in the dynamics of strongly super-
cooled glass-forming liquids [94,98,100,102,107–109].
In conclusion, we have reported the effects of shear on

the nucleation rates at different temperatures, for the TIP4P/
2005, TIP4P/Ice, mW water models, LJ fluid, and HS
colloids. Nucleation events at low and moderate super-
coolings are notoriously difficult to simulate, and such
extensive calculations are virtually intractable using brute-
force molecular dynamics. By employing the shear-CNT
formalism, based on modified CNT equations, we were
able to obtain nucleation rate curves for several metastable
conditions.

In accordance with previous simulation results for
colloids, glassy systems, the Ising model, and mW water
[13,16,17,22,23], we confirmed that the nucleation rate
curves exhibit nonmonotonic behavior with shear, at a
particular supercooling. To rationalize this nonmonotonic-
ity with shear, we derived a simplified theory describing the
governing equations of shear CNT. We generated a
“universal” curve for the normalized nucleation rate
½ðJ − J0Þ=Jmax − J0� with _γ=_γopt. We infer that the exist-
ence of a maximum in the nucleation rate with shear is a
universal property of systems that follow CNT.
We systematically investigated the temperature depend-

ence of the nucleation rate curves for TIP4P/2005, TIP4P/
Ice, mW, and LJ by examining the behavior of the
dimensionless group τ_γopt. An approximate relation for
τ_γopt was obtained, expressed as a product of two dimen-
sionless groups: B, which is related to transport properties,
and the thermodynamic quantity 1=N�

0. The analysis reveals
that the behavior of τ_γopt is solely determined by the nature
of B. The anomalous temperature dependence of the
nucleation behavior of water originates from the SE
violation. We discovered that universal behavior is recov-
ered for N�

0, for every system.
Thus, we have uncovered underlying commonalities and

determined the origin of anomalies in the nucleation
behavior for several supercooled molecular systems under
shear. Our results provide insight into the previously
unexplored, intriguingly complex interplay of temperature
and shear, affecting the nucleation rate.

This work was supported by the Science and Engineering
Research Board (sanction number STR/2019/000090 and

FIG. 2. (a) Dependence of τ_γopt on the percent supercooling, ½ðTm − TÞ=TmÞ� × 100%, for TIP4P/2005, TIP4P/Ice, mW, and LJ. Filled
and open markers represent values calculated using shear-CNT, with input data calculated from simulations and with approximated
inputs, respectively. The solid lines denote τ_γopt estimated using the simplified theory, Eq. (11). (b) Variation of B ¼ ½ðkBT=D0ηÞðc=v0Þ�
with the percent supercooling. The inset shows N�

0 plotted against the percent supercooling. (c) Test of the Stokes-Einstein (SE) relation,
according to which ðkBT=D0ηÞ should be constant. SE relation is clearly violated for the water models for the supercoolings considered.
Data for which the values of η, D0, c and v0 were calculated using simulation data are denoted by filled markers, and dashed lines show
values calculated using approximations.

PHYSICAL REVIEW LETTERS 126, 195702 (2021)

195702-4



CRG/2019/001325). Computational resources were pro-
vided by the HPC cluster of the Computer Center (CC),
Indian Institute of Technology Kanpur.

*indrasd@iitk.ac.in
†jayantks@iitk.ac.in

[1] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A.
Zen, and A. Michaelides, Crystal nucleation in liquids:
Open questions and future challenges in molecular
dynamics simulations, Chem. Rev. 116, 7078 (2016).

[2] R. Blaak, S. Auer, D. Frenkel, and H. Löwen, Crystal
Nucleation of Colloidal Suspensions under sshear, Phys.
Rev. Lett. 93, 068303 (2004).

[3] R. Blaak, S. Auer, D. Frenkel, and H. Löwen, Homo-
geneous nucleation of colloidal melts under the influence
of shearing fields, J. Phys. Condens. Matter 16, S3873
(2004).

[4] A. V. Mokshin and J.-L. Barrat, Shear induced structural
ordering of a model metallic glass, J. Chem. Phys. 130,
034502 (2009).

[5] R. S. Graham and P. D. Olmsted, Coarse-Grained Simu-
lations of Flow-Induced Nucleation in Semicrystalline
Polymers, Phys. Rev. Lett. 103, 115702 (2009).

[6] M. Radu and T. Schilling, Solvent hydrodynamics speed
up crystal nucleation in suspensions of hard spheres,
Europhys. Lett. 105, 26001 (2014).

[7] C. Forsyth, P. A. Mulheran, C. Forsyth, M. D. Haw, I. S.
Burns, and J. Sefcik, Influence of controlled fluid shear on
nucleation rates in glycine aqueous solutions, Cryst.
Growth Des. 15, 94 (2015).

[8] Z. Shao, J. P. Singer, Y. Liu, Z. Liu, H. Li, M. Gopinadhan,
and C. S. O’Hern, J. Schroers, and C. O. Osuji, Shear-
accelerated crystallization in a supercooled atomic liquid,
Phys. Rev. E 91, 020301 (2015).

[9] J. Ruiz-Franco, J. Marakis, N. Gnan, J. Kohlbrecher, M.
Gauthier, M. Lettinga, D. Vlassopoulos, and E. Zaccarelli,
Crystal-to-Crystal Transition of Ultrasoft Colloids under
Shear, Phys. Rev. Lett. 120, 078003 (2018).

[10] S. Stroobants, M. Callewaert, M. Krzek, S. Chinnu, P.
Gelin, I. Ziemecka, J. F. Lutsko, W. D. Malsche, and D.
Maes, Influence of shear on protein crystallization under
constant shear conditions, Cryst. Growth Des. 20, 1876
(2020).

[11] P. Holmqvist, M. P. Lettinga, J. Buitenhuis, and J. K. G.
Dhont, Crystallization kinetics of colloidal spheres under
stationary shear flow, Langmuir 21, 10976 (2005).

[12] J. Liu and Å. C. Rasmuson, Influence of agitation and fluid
shear on primary nucleation in solution, Cryst. Growth
Des. 13, 4385 (2013).

[13] R. J. Allen, C. Valeriani, S. Tănase-Nicola, P. R. ten Wolde,
and D. Frenkel, Homogeneous nucleation under shear in a
two-dimensional ising model: Cluster growth, coale-
scence, and breakup, J. Chem. Phys. 129, 134704 (2008).
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