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We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex
spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein
condensates with small positive quadratic Zeeman effect. The new vortex is considered the Joukowski
transform of a conventional vortex. Its oblateness grows when the Zeeman length exceeds the spin healing
length. This structure is sustained by balancing the hydrodynamic potential and the elasticity of a soliton
connecting two spin spots, which are observable by in situmagnetization imaging. The theoretical analysis
clearly defines the difference between half quantum vortices of the polar and antiferromagnetic phases in
spin-1 condensates.

DOI: 10.1103/PhysRevLett.126.195302

Topological defects (TDs) caused by spontaneous sym-
metry breaking (SSB) phase transition is ubiquitous,
existing as skyrmions in spintronic devices [1], vortices
in superconductors and superfluids [2,3], and even discli-
nations in LCD displays [4]. Thanks to the universal
concept of SSB, TDs in laboratories are useful for simu-
lating TDs in other exotic settings, the early Universe, the
dense matters in compact stars, and higher-dimensional
spacetimes in field theory [5–8]. Multicomponent super-
fluids with spin freedom, such as spin-triplet superfluid
3He and binary and spinor Bose-Einstein condensates
(BECs) [9–12], are powerful tools to develop theories of
TDs since various TDs are realized there. Such superfluids
are called the nematic-spin superfluids [13], whose order
state is partly represented by a vector d̂ that mimics the
director d̃ in nematic liquid crystals (NLCs) [4].
Nematic-spin superfluids support not only conventional

TDs in NLCs (disclination, hedgehog, domain wall, and
boojum [14–24]), but also novel TDs combined with the
superfluidity, e.g., half quantum vortex (HQV) [25]. The
term HQV is used also in exciton-polariton condensates
[26,27]. The simplest type of HQV has been realized
experimentally in different superfluids [28–30], where the
core of a vortex in a spin component is occupied by other
components. A nontrivial HQV is terminated by a domain
wall across which the order-parameter phase jumps by π.
The wall-HQV composites were first realized as the
double-core vortices in 3He-B [31] and revisited [32–34],
motivated by the early Universe scenario nucleating the
composites of the Kibble-Lazarides-Shafi (KLS) walls and
cosmic strings [35–37]. Recently, the nonequilibrium
dynamics of wall-HQV composites were observed in phase
transition from the antiferromagnetic (AF) phase to the
polar (P) phase [38] in a spin-1 23Na BEC [39,40].

However, the dynamics are poorly understood,
because of the lack knowledge about properties of wall-
HQV composites. Determining these properties is impor-
tant for understanding KLS-wall-HQV composites and
double-core vortices in 3He-B [41–45]), the Berezinskii-
Kosterlitz-Thouless transition in spinor BECs [46–48], and
even the quark-confinement problem in hadronic physics
connected with the vortex-confinement problem [49–52].
Here, it is theoretically shown that a wall-HQV

composite in spin-1 BECs [39,40] takes an exotic state
in equilibrium with a small positive quadratic Zeeman
effect. This state, called the elliptic vortex, is hydrody-
namically considered the Joukowski transform of a conven-
tional vortex and has an elliptic structure with spin spots
(Fig. 1). The spots are confined to the elliptic-vortex core
and stabilized by a balance between the hydrodynamic
effect and the tension of a domain wall or a soliton spanned
between the spots.
Formulation.—A spin-1 BEC is described by the

condensate wave function Φmðm ¼ 0;�1Þ of the jmi
Zeeman component in the Gross-Pitaevskii model [12,53].
The thermodynamic energy is represented as GðfΦmgÞ ¼R
d3xG, with G ¼ ðℏ2=2MÞPm j∇Φmj2 þ U, and

U ¼ c0
2
n2 þ c2

2
s2 − ðμ − qÞn − qjΦ0j2 − psz: ð1Þ

Here, we introduced the chemical potential μð> 0Þ and the
coefficient q (p) of the quadratic (linear) Zeeman effect.
In the Cartesian representation Φ ¼ ½Φx;Φy;Φz�T ¼
½ð−1= ffiffiffi

2
p ÞðΦþ1 −Φ−1Þ; ð−i=

ffiffiffi
2

p ÞðΦþ1 þΦ−1Þ;Φ0�T [54],
the condensate density is expressed by the dot product
n ¼ P

m jΦmj2 ¼ Φ� ·Φ and the spin density by the cross
product s ¼ ½sx; sy; sz�T ¼ iΦ ×Φ�.
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The ground (bulk) state is obtained by minimizing
U ¼ R

d3xU. Assuming c2 ¼ 0.016c0 > 0 with p ¼ 0

obtained experimentally [39,40], the ground state is in
the P state Φ ¼ ΦP ¼ ½0; 0; ffiffiffiffiffiffi

nP
p

eiθG �T with the bulk
density nP ¼ ðμ=c0Þ and the order-parameter phase θG.
By rescaling energy and length by μ and ξn ≡ ðℏ= ffiffiffiffiffiffiffi

Mμ
p Þ,

respectively, the P phase is parametrized by two dimen-
sionless quantities (c2=c0) and (q=μ).
Vortex core structure.—One might expect that there is

nothing strange about the occurrence of vortices in P phase,
whose order parameter (OP) is a complex scalar Φ0ð¼ ΦzÞ
withΦ�1 ¼ 0, as in conventional superfluids. However, the
core of a singly quantized vortex can be unconventional in

multicomponent superfluids, occupied by other compo-
nents so as to reduce the condensation energy, e.g., 3He-B at
high pressure [55] and segregated binary BECs [56].
Similarly, the vortex core can be occupied by the m ¼ �1
component in the P phase.
To examine the conjecture, the lowest-energy solution

was obtained by numerically minimizing G in the steepest
descent method [57]. It is found that a nonaxisymmetric
core structure is observed for small q=μ. Figure 2 shows the
typical cross-sectional profile of the vortex for ðq=μÞ ¼
2−17 in a cylindrical flat-bottom potential of sufficiently
large radius [58]. The vortex core is occupied by the
m ¼ �1 components, and the density n is mostly homo-
geneous [Fig. 1(a)]. Surprisingly, the velocity field forms
an elliptic structure, and two spin spots are observed with
opposite transverse magnetization (sy ≠ 0) at the edges
of the core [Fig. 1(b)]. Since the order-parameter phase
Θ0ð¼ argΦ0Þ jumps by π across the x ¼ 0 plane and
rotates by π around each spin spot, this structure is regarded
as a wall-HQV composite composed of a wall and two
HQVs with the same circulation.
The distance lspin between the spin spots is a decreasing

function of q [Fig. 2(a)]. Accordingly, the density ncore at
the center of the vortex core and the maximum spin density
smax⊥ decrease with q and vanish at a critical value
qC ≈ 0.25μ [Fig. 2(b)] [59,60]. This behavior is similar
to that of the AF-core soliton [61], where the soliton core is
vacant for large q but occupied by the local AF state (s ¼ 0
with Φ�1 ≠ 0 and Φ0 ≈ 0) for small q. In our case,
however, the vortex core is occupied by two different
sates, the local broken-axisymmetry (BA) state (s⊥ẑ with
Φ1Φ0Φ−1 ≠ 0) and the local AF state.
In order to explain the nematic-spin order in the vortex

core, we extend the OP space as

Φ ¼ ffiffiffi
n

p
eiθG d̂; ð2Þ

which represents the OP in the ground state with s ¼ 0 for
q ¼ 0. The real unit vector d̂ is called the pseudo-director;

FIG. 1. The cross-sectional profile of an elliptic vortex for
q=μ ¼ 2−17 ≈ 7.6 × 10−6. (a) The left and right sides show the
profiles of jΦ0j2=nP and jΦ1j2=ð2nPÞ, respectively. The density
jΦ−1j2 (not shown) is the same as jΦ1j2. (b) The vector field on
the left shows v0 ¼ ðℏ=MÞ∇Θ0, with the background plot of
Θ0 ¼ argΦ0. The phase argΦ�1 is homogeneous inside the core
(not shown). The spin density sy is plotted on the right, while
sx ¼ sz ¼ 0. (c) Left: the texture of the unit vector g=jgj (arrow)
in Eq. (3). The color of the arrows and the surface correspond to
Θ0 and sy in (b), respectively. Right: schematic of the three-
dimensional structure of the vortex core. The distance lspin
between the two spin spots with opposite transverse magnetiza-
tion (blue and red) is determined by the balance between the
hydrodynamic potential and the elastic potential by the AF
soliton (green). The width (∼lspin) and thickness of the core
are represented by black and white arrows, respectively.

FIG. 2. (a) The q dependence of lspin. The solid curve represents
the evaluation by Eq. (12). All lengths are rescaled by ξn. (b) The
q dependence of the spin interaction Espin, the maximum spin
density smax⊥ ¼ maxðsyÞ, and the core density n�1ð0Þ. The solid
curve tracing the data corresponds to an analytic formula
(see text).
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the state of ðd̂; θGÞ is identical to ð−d̂; θG þ πÞ. In terms of
the extended OP, the ground state in the P (AF) phase
with q > 0 (q < 0) is represented as n ¼ nP and d̂ ¼ �ẑ
(n ¼ nAF and d̂ ¼ r̂⊥) within the unit vector ẑ (r̂⊥) parallel
(normal) to the quantization axis and the density nAF ¼
½ðμ − qÞ=c0� of the AF state. To describe the magnetization
together with the nematic-spin order, it is useful to
introduce a representation

Φ ¼ eiΘ0ðgþ ihÞ; ð3Þ

with g ¼ ½gx; gy; gz�T with gz ≥ 0 and h⊥ẑ. Equation (3)

reduces Eq. (2) for s ¼ 2g × h ¼ 0 with g ¼ ffiffiffi
n

p
d̂. The left

panel in Fig. 1(c) shows a cross-sectional plot of g=jgj and
sy. In the region between the spin spots, g lies on the xy

plane forming the local AF state, where the state ðd̂;Θ0Þ ¼
ð−x̂;�πÞ for x > 0 is identical to ðx̂; 0Þ for x < 0 along the
yz plane. The nematic-spin order is destroyed when d̂ is ill-
defined in the spin spots occupied by the local BA state [see
the right panel in Fig. 1(c)].
To clarify our problem, the main goal is to answer the

following two questions: What causes the axisymmetry
breaking? What is the physical mechanism to stabilize the
elliptic structure?
Vortex winding rule.—As the answer for the first

question, it is claimed that the spin interaction breaks
the axisymmetry. To justify the claim logically, we intro-
duce a winding rule of an axisymmetric vortex in spin-1
BECs. We consider a straight vortex along the z axis, the
cross section of which is axisymmetric as the ansatz
Φm ¼ fmðrÞeiLmφ, with radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and azimu-

thal angle φ in cylindrical coordinates. The rule states that
Lm is parametrized by the winding numbers L and N,
associated with the mass and spin current, respectively, and
given by

Lm ¼ LþmN ðL;N ¼ 0;�1;�2;…Þ: ð4Þ

The rule is related to the phase factor
δΘ ¼ ðLþ1 þ L−1 − 2L0Þφ. By substituting the ansatz into
the equation of motion, we have, for the equation of Φ0,
0 ¼ ðh0 − μþ c0nþ c2f2þ1 þ c2f2−1 þ 2c2fþ1f−1eiδΘÞf0.
The last term comes from the transverse spin density, and
the equation of real function fm is solved when eiδΘ ¼ �1,
resulting in Eq. (4). Therefore, this rule is applicable for
sx ≠ 0 or sy ≠ 0 with fþ1f−1f0 ≠ 0 [62].
By contraposition of the above argument, the vortex

must be nonaxisymmetric, when the winding rule is not
satisfied. As seen in Fig. 1, only the m ¼ 0 component has
a nonzero winding number, corresponding to L0 ¼ 1 and
L�1 ¼ 0. Such a set of winding numbers cannot satisfy the
winding rule. The axisymmetry is exactly recovered only
for Φ�1 ¼ 0 (q ≥ qC). Since the winding rule works for
sx ≠ 0 or sy ≠ 0, the transverse magnetization appear as a

manifestation of the axisymmetry breaking. The orienta-
tions of the transverse spin and the axes of the elliptic
structure depend on the phases argΦm.
Joukowski mapping.—To answer the second question,

the potential flow theory in two-dimensional flow is
extended to our problem. The elliptic core structure hints
at the Joukowski transformation [63], since the velocity
field on the cross section is considered a two-dimensional
potential flow. This perception is the motivation for
investigating the problem, and the following analysis leads
to a quantitative evaluation of the core structure.
The velocity field v0 ¼ ðℏ=MÞ∇Θ0 ¼ ðu; vÞ in the xy

plane is generated by a conformal mapping called the
Joukowski transformation from a vortex within a
cylinder of radius a in the ζ complex plane to the
xy plane, xþ iy ¼ ζ þ ða2=ζÞ [63]. By using the
parametrization ζ ¼ iaeϕþiψðϕ ≥ 0Þ, one obtains
ðx; yÞ ¼ 2aðcoshϕ cosðψ þ πÞ; sinhϕ sinðψ þ πÞÞ, repre-
senting an ellipse of width 4a coshϕ and thick-
ness 4a sinhϕ.
The velocity field is computed by applying the con-

formal mapping to the complex velocity potential W of the
vortex in the ζ plane,

W ¼ −i
κ

2π
log ζ: ð5Þ

The circulation κ ¼ ð2πℏÞ=M around a quantized vortex is
conserved in the transformation as follows. By applying
the transformation to Eq. (5) and using the formula
v → �ðκ=2πÞð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − y2

p
Þ for jyj < 2a in the limit

x → �0, the vorticity ωzðx; yÞ ¼ ð∇ × v0Þz forms a seg-
ment singularity of width 4a,

ωzðrÞ ¼
κ

π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − y2

p δðxÞΘð2a − jyjÞ; ð6Þ

with the step function Θ (Θ ¼ 1 for 2a ≥ jyj and Θ ¼ 0 for
2a < jyj). By integrating Eq. (6), it is confirmed that the
circulation is conserved as

R
dxdyωz ¼ κ.

Hydrodynamic potential.—To reveal the physical
mechanism that stabilizes the elliptic vortex, the energy
Evortex of a vortex of unit length is evaluated. The vortex
energy in the ζ plane is computed conventionally
by considering the contribution from the core region
(jζj < ρcore ≡ aeϕcore ) and the outer region (jζj > ρcore)
separately [3]. Similarly, we consider the Joukowski map-
ping of the former and the latter, corresponding to an ellipse
of area Score and outer area Sout in the xy plane, respectively.
The core region is characterized by two parameters a and

rcore ≡ ρcore − a as

Score ¼ πRþR− ¼ π
ðaþ rcoreÞ4 − a4

ðaþ rcoreÞ2
; ð7Þ
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with R� ¼ f½ðaþ rcoreÞ2 � a2�=ðaþ rcoreÞg. Here, 2Rþð−Þ
is the width (thickness) of the ellipse. For high oblateness
with ða=rcoreÞ ≫ 1, we have Rþ ≈ 2a and R− ≈ 2rcore. The
axisymmetric limit ða=rcoreÞ→0 results in Rþ¼R−→ rcore.
The vortex energy is defined as the excess energy in the

presence of the vortex, with respect to the bulk energy
Ebulk ¼ UPðSin þ SoutÞ with energy density UP ¼ − 1

2
μnP

in the bulk P phase. The vortex energy is then represented
formally by

Evortex ¼ Eout þ Ecore − Ebulk ¼ Ucore þUout; ð8Þ
with EcoreðoutÞ ¼

R
ScoreðoutÞ

dxdyG and UcoreðoutÞ ¼ EcoreðoutÞ−
UPScoreðoutÞ. The potentialUout of the outer region is evaluated
by computing the integral in Eout analytically with an
approximation n ≈ nP½1 − ðM=2μÞv20�, where the quantum
pressure is neglected. In the approximation up to the order of
O½ðM=2μÞv20�, a straightforward computation yields

Uout ≈Uhyd ¼
MnPκ2

4π
ln

R
aþ rcore

: ð9Þ

Here, we used the radius R ¼ aeϕout of the system boundary
by assuming R ≫ a [58].
Elastic core potential.—The core potential Ucore is

determined by introducing a phenomenological model,
where a soliton is spanned between the spin spots. This
model is justified by the fact that the phase gradient is
mainly concentrated around the spin spots, consistent with
the vorticity distribution (6) [see also Fig. 1(b)]; thus, the
core structure between the spots is similar to that of the AF-
core soliton [61]. Accordingly, we write

Ucore ¼ Esoliton þ Espin; ð10Þ
where the soliton energy Esoliton is a function of the soliton
length lsoliton ∼ lspot and the spin interaction Espin comes
from the second term of Eq. (1).
The spin interaction is determined independently from

the hydrodynamic argument, and thus Ucore depends
explicitly on lspot through Esoliton. The size rspin and the
magnitude smax⊥ ¼ maxðsyÞ of the spin spot are asymptotic
to ξs ¼ ðℏ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mc2nP
p Þ and nP, respectively, for

ξq ≫ ξs ≫ ξn. For ξs ≫ ξq ≳ ξn, the core density grows
as n�1ð0Þ ∝ 1 − ðq=qCÞ in the continuous phase transition
[64], and the size rspin must be bounded below the vortex
core size ≲ξq. Therefore, the size of a spin spot is simply
parametrized as

r−1spin ¼ ξ−1s þ Cspinξ
−1
q ; ð11Þ

withCspin ∼Oð1Þ. In fact, the spin interaction, estimated by
Espin ¼ 1

2
c2ðsmax

y Þ2πr2spin, agrees well with the numerical
result with Cspin ¼ 0.8 [Fig. 2(b)] [58].

To simplify the analysis, we write as lsoliton≡
4aþ 4rcore. The equilibrium length is then determined
by ð∂=∂lsolitonÞEvortex ¼ ð∂=∂lsolitonÞðUhyd þ EsolitonÞ ¼ 0.
In the first approximation, the soliton energy Esoliton is
expressed as Efirst

soliton ¼ αAFlsoliton with the tension coeffi-
cient αAF ∼

ffiffiffiffiffiffi
qμ

p
nPξn of the AF-core soliton [61]. This

approximation fails for ξq ≫ ξs. Actually, the thickness of
the elliptic core is much smaller than the thickness ∼ξq of
the AF-core soliton forming a halo structure [Fig. 1(a)],
which increases the tension effectively. To take this effect
into account, we introduce a phenomenological formula

Esoliton

μnPξ2n
¼

ffiffiffi
q
μ

r
lsoliton
ξn

�
1þ lsoliton

rspin

�
: ð12Þ

This formula yields ðlsoliton=ξnÞ ¼ ðrspin=4ξnÞ
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8πðξq=rspinÞ
p

− 1� and explains the scaling behavior
lsoliton ∼ lspin ∝ q−0.25 for ξq ≫ ξs in Fig. 2(a). This means
that the soliton is effectively elastic with Esoliton ∝ l2soliton
for lspin ≫ rspin.
Rotating solutions.—Finally, the response to an external

rotation is investigated as a dynamical property. The
external rotation of angular frequency Ω is described by
the energy in the rotating frame G0 ¼ G −ΩLz, with the
angular momentum Lz along the z axis [65]. The width lΩspin
of an elliptic vortex decreases with Ω [Fig. 3(a)], since the
angular momentum increases more as the vorticity is
localized more toward the center. Owing to the boundary
effect [66], the single-vortex states are unstable for large
jΩj or small q=μ, leading to a lattice of elliptic vortices
[inset of Fig. 3(a)].

(a) (b)

FIG. 3. (a) The q dependence of the width lΩspin of a rotating
elliptic vortex with angular velocity Ω. The single vortex is
unstable for larger jΩj and smaller q due the boundary effect.
Inset: an elliptic-vortex lattice obtained after the instability due to
the boundary effect for Ωℏ=μ ¼ 0.001 and q=μ ¼ 2−11. (b) The
three-dimensional solution of an elliptic vortex in a harmonic trap
for Ωℏ=μ ¼ 0.0005. The isovolume plot shows the region
jΨ0j2c0=μ ≤ 0.3 for x > 0 with its x ¼ 0 cross-sectional profile.
A translucent surface along the z axis represents the isosurface of
jΨ�1j2c0=μ ¼ 0.15, to which the two poles of the isosurfaces
syc0=μ ¼ �0.7 are attached (red for positive and blue for
negative).
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The three-dimensional structure of an elliptic vortex is
demonstrated numerically for a feasible setup in Fig. 3(b).
A 23Na BEC of 5.6 × 105 atoms is in a harmonic
trap V trap ¼ ðM=2Þðω2⊥r2 þ ω2

zz2Þ with ðℏ=μÞðω⊥;ωzÞ≈
ð0.019; 0.024Þ. The spin spots appear as two poles (red
and blue) along the m ¼ �1 component (translucent pole)
in the vortex core.
Discussion.—Although the wall-HQV composites were

thought to be finally unstable, decaying into conventional
axisymmetric vortices due to the snake instability of the
wall [39,40], the result suggests that they survive as elliptic
vortices after the phase transition. The vortices including
their dynamics will be observed through the transverse-spin
spots by in situ magnetization imaging [29]. The theory
here can be applied in a similar manner to the double-core
vortex or the KLS-wall-HQV composite in 3He-B, while
different forms of the hydrodynamic potential and soliton
tension were introduced [67].
It is important to make a clear distinction between the

types of HQVs in the AF phase (type I) and the P phase
(type II). Properties of type-I HQVs are understood by the
following correspondence between binary BECs and the
AF phase. Since the equation of motion of spin-1 BECs
with Φ0 ¼ 0 reduces to that of binary BECs, HQVs in
miscible binary BECs are physically identical to type-I
HQVs in the absence of the m ¼ 0 component [29];
type-I HQVs with the same circulation are repulsive
according to Ref. [68], where the intra- and intercomponent
coupling constants correspond to g1 ¼ g2 ¼ c0 þ c2 and
g12 ¼ c0 − c2, respectively. Therefore, a pair of type-I
HQVs are unstable without external rotation [69], which
differs from type-II HQVs in that they form a bound pair by
the wall tension [70–72].
It should be mentioned that similar composite objects

are investigated experimentally as the spin-mass vortex
attached by a planar soliton in 3He-B [73,74] and
theoretically as the vortex molecules in Rabi-coupled
binary BECs [49–52,75–79]. Interestingly, the confine-
ment of vortices by domain walls is considered a toy
model of the quark-confinement problem [49].
Accordingly, “HQV-wall plasma” an analog of quark-
gluon plasma (QGP), occurs at a finite temperature T at
least for T > ðq=kBÞ in nematic-spin BECs, where thermal
fluctuations free the spin spots from the confinement by
the AF-core soliton. In this sense, the observed phase-
transition dynamics [39,40] are regarded as simulations of
the transition dynamics from QGP to hadrons like the big
bang simulation in “little bang” [80]. Further investiga-
tions on the dynamics and interactions of elliptic vortices
will shed light on unexplored phase-transition dynamics
in different physical systems.
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