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We investigate the superfluidity of a two-component Fermi gas with spin-orbital-angular-momentum
coupling (SOAMC). Because of the intricate interplay of SOAMC, two-photon detuning and atom-atom
interaction, a family of vortex ground states emerges in a broad parameter regime of the phase diagram, in
contrast to the usual case where an external rotation or magnetic field is generally required. More strikingly,
an unprecedented vortex state, which breaks the continuous rotational symmetry to a discrete one
spontaneously, is predicted to occur. The underlying physics are elucidated and verified by numerical
simulations. The unique density distributions of the predicted vortex states enable a direct observation in
experiment.
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Introduction.—In recent years, the realization of spin-
orbit coupling (SOC) in ultracold atoms [1–6] has stimulated
intensive studies on the searching of exotic quantum phases
brought by SOC. For example, it can lead to unconventional
Fermi superfluids [7–15], a supersolid stripe phase [16–18],
and diverse magnetic phases [19–22]. Nevertheless, most of
these studies have been focused on the coupling between
spin and linear momentum [23–29]. More recently by
coupling the atomic internal “spin” state to its orbital angular
momentum, a new type of SOC, named spin-orbital-angular-
momentum coupling (SOAMC), was proposed [30–32] and
first realized in spinor BEC [33–35].
In the SOAMC scheme, a pair of copropagating high-

order Laguerre-Gauassian (LG) lasers [36–39] with different
orbital angular momenta is generally used to generate an
effective coupling between the z component of spin σ⃗ (Pauli
representation) and orbital momentum L⃗≡ r⃗ × p⃗ (r⃗, p⃗
denotes the position and momentum) in the form of

HSOAMC ∼ σz · Lz:

Compared to the SOC with linear momentum, the SOAMC
breaks the translational symmetry while it keeps a typical
rotational symmetry. This can significantly affect the many-
body behaviors of the underlying systems and give rise to
diverse topological excitations, e.g., the intriguing vortex
states in BEC [33–35,40,41], which are hardly produced by
SOC with linear momentum itself. Therefore, the SOAMC
provides new features and advantages to explore the unusual
superfluid states of a Fermi gas with rotational symmetry,
which, however, has never been addressed so far.

In this Letter, we investigate the ground state of a two-
dimensional (two-component) attractive Fermi gas with
SOAMC. By numerically solving the Bogoliubov–de
Gennes (BdG) equations self-consistently, we obtain the
ground-state phase diagram of the system, which encap-
sulates rich physics. We show that a family of single-vortex
ground states exists in a broad regime of the phase diagram
for finite two-photon detuning, in contrast to the conven-
tional case where an external rotation or magnetic field is
required. Remarkably, an unprecedented vortex state,
which spontaneously breaks the continuous rotational
symmetry to a discrete one, is predicted to appear. Such
state exhibits a periodical spatial modulation in the angular
space, and can be detected in experiment. The underlying
mechanism of these vortex states is elucidated to be the
unconventional pairing with quantized orbital angular
momentum between fermions, which originates from the
interplay of SOAMC, two-photon detuning and atom-atom
interaction. Such vortex states have no counterpart in the
literatures and offer a unique opportunity to explore the
exotic low-energy modes and macroscopic quantum phe-
nomena in this system.
The model.—We consider a two-component Fermi gas

confined in a two-dimensional geometry. As depicted in
Fig. 1, the atoms are shined by two copropagating LG laser
beams with opposite angular momenta �lℏ to induce
an effective SOAMC along the z axis via a two-photon
Raman process between the two pseudospin states (labeled
as ↑ and ↓). In the transformed basis, the single-particle
Hamiltonian of the system can be written as (by setting
ℏ ¼ M ¼ 1) [42]
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H0 ¼ −
1

2r
∂2

∂r2 rþ
L2
z þ l2

2r2
þ αðrÞLzσz þVhoðrÞ þLðrÞ;

LðrÞ ¼ δ

2
σz − χIðrÞ þΩIðrÞσx; ð1Þ

where Lz ¼ −i∂ϕ is the z component of the angular
momentum operator, which couples to the pseudospin σz
with inhomogeneous SOAMC strength αðrÞ ¼ l=r2. δ is
the two-photon detuning, the diagonal parameter χ is the ac
Stark light shift and the off-diagonal term Ω is the effective
two-photon Rabi frequency between two pseudospin states.
The spatial intensity profile of the LG laser beams is given

by IðrÞ ¼ ½ ffiffiffi
2

p ðr=wÞ�2jlj½Ljlj
k ð2r2=w2Þe−r2=w2 �2, where w

characterizes the beam width, and Ljlj
k is the generalized

Laguerre polynomials with azimuthal index l and the
radial index k describing the radial intensity distribution
of the LG beams [32]. VhoðrÞ ¼ ω2

rr2=2 is a harmonic
trapping potential with frequency ωr. Without loss of
generality, we consider the case with l ¼ 4, k ¼ 0, and
w ¼ 2aosc with aosc ¼

ffiffiffiffiffiffiffiffiffiffi
1=ωr

p
being the harmonic oscil-

lator length.
The single-particle Hamiltonian H0 possesses a rota-

tional symmetry with ½Lz;H0� ¼ 0, such that the eigen-
states can be labeled by two quantum numbers ðn;mÞ with
energies En;m, where n and m are the radial and angular
quantum number, respectively, giving rise to a discrete
single-particle spectrum [42]. For δ ¼ 0, an additional
time-reversal (TR) symmetry is held, i.e., ½T;H0� ¼ 0,
where T ¼ iσyK with K the complex-conjugation operator.
This rules out a single vortex ground state and one
generally needs a magnetic field or an external rotation
to break this symmetry to favor vortex states in a Fermi
superfluid. While for δ ≠ 0, such TR symmetry is absent
and we have En;m ≠ En;−m. As shown below, this would
significantly change the pairing between fermions, and a
family of exotic vortex states with unusual properties
emerges in the ground-state phase diagram.
Ground-state phase diagram.—To reveal the superfluid

physics of the system, we consider the s-wave contact
interaction Hint ¼ g

R
drΨ†

↑ðrÞΨ†
↓ðrÞΨ↓ðrÞΨ↑ðrÞ with a

bare interaction parameter g < 0, which is related to the
two-body binding energy Eb in two dimensions via
g ¼ −4π=½lnð1þ 2Ec=EbÞ� [44], with Ec being the energy
cutoff. Ψ†

σðrÞ [ΨσðrÞ] creates (annihilates) a Fermi atom at
position r≡ ðr;ϕÞ of spin σ ¼ ↑;↓. Introducing the super-
fluid order parameter ΔðrÞ ¼ ghΨ↓ðrÞΨ↑ðrÞi and applying
a Bogoliubov-Valation transformation, the resultant
Bogoliubov–de Gennes equation is given by [42]

�
H0 − μ ΔðrÞ
Δ�ðrÞ −σyðH�

0 − μÞσy

�
ΦηðrÞ ¼ EηΦηðrÞ; ð2Þ

with the Nambu representation ΦηðrÞ ¼ ½u↑;ηðrÞ; u↓;ηðrÞ;
v↓;ηðrÞ;−v↑;ηðrÞ�T . μ is the chemical potential and Eη is the
energy of Bogoliubov quasiparticles labeled by an index η.
In this basis, the order parameter ΔðrÞ can be written as

ΔðrÞ ¼ g
X
η

½u↑;ηðrÞv�↓;ηðrÞfð−EηÞ − u↓;ηðrÞv�↑;ηðrÞfðEηÞ�;

ð3Þ

where fðEÞ ¼ 1=½eE=kBT þ 1� is the Fermi-Dirac distribu-
tion at a temperature T, and the summation is over the
quasiparticle state with Eη ≥ 0. Self-consistently solving
Eq. (4) and the number equation Natom ¼ P

σ

R
drnσðrÞ

with atomic density nσðrÞ ¼
P

η½juσ;ηðrÞj2fðEηÞ þ
jvσ;ηðrÞj2fð−EηÞ�, we can obtain the ground state of the
system.
In Fig. 2(a), we present the ground-state phase diagram

in the δ-Eb plane for fixed two-photon Rabi frequency
Ω=EF ¼ 0.2 and χ=EF ¼ 0.7. There are three classes of
phases: a normal superfluid (NS) with a real Δ ≠ 0 (up to a
global phase), a normal gas (NG) with Δ ¼ 0 and single
vortex states. Such a vortex is characterized by a complex
Δ ≠ 0 with a nontrivial phase configuration, i.e., a 2πQ
phase gradient with integer vorticity (winding number)
Q ≠ 0 along a closed path around the vortex [middle
column in Fig. 2(b)]. For small δ, the NS is dominant.
While for sufficiently large δ, the large energy mismatch
between two spin states strongly suppresses the pairing
and destroys the superfluid, resulting in a NG phase. In
between, a family of vortex states with different vorticityQ
exist. In Fig. 2(a), we find the regimes for vortex with
Q ¼ 1 and Q ¼ 2 (labeled as vortex-1 and vortex-2), and
vortex states with higher Q can be obtained for a larger δ
and Eb (not shown). As Q is quantized, the transition
between these phases are of first order.
Considering that an external rotation or magnetic field

is generally desired to produce a vortex in a Fermi super-
fluid without SOAMC, it is quite interesting to see here that
the quantum vortex may emerge as a ground state in
the presence of SOAMC, suggesting a new mechanism
responsible for the forming of vortex in this system.
To gain insight, we can write the order parameter as

(a) (b)

FIG. 1. Schematic of the setup (a) and energy levels (b). A pair
of LG Raman laser beams with opposite orbital angular momenta
�lℏ copropagates and generates SOAMC along the z axis in the
two-dimensional Fermi gas. δ is the two-photon detuning.
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Δ ¼ jΔðrÞjeiQϕ for a single vortex with vorticity Q. This
implies that pairing with finite orbital angular momentum,
if possible, may play a key role in this system. As we will
see, such exotic pairing state appears naturally from the
interplay between SOAMC, two-photon detuning, and
atom-atom interaction.
To grasp the main physics, we notice that the real space

density distribution of the superfluid states has a sharp peak
around R ¼ ffiffiffiffiffiffiffiffi

l=2
p

w along the radical direction [right
column of Fig. 2(b)] due to the confinement of the red-
detuned ac stark potential, it is reasonable to ignore the
radial dependence by approximating r ≃ R, which leaves
an effective one-dimensional model on a ring with the
single-particle part Hring

0 ¼−∂2
ϕ=2R

2− iα̃∂ϕσzþðδ=2Þσzþ
Ω̃σx, where α̃¼l=R2, Ω̃ ¼ ΩIðRÞ are the effective
SOAMC and Raman coupling, respectively. This
Hamiltonian can be diagonalized straightforwardly in the

basis feimϕg with m the quantum number of orbital
angular momentum. The resultant single-particle energy
spectrum has two branches E�ðmÞ ¼ m2=2R2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̃2 þ ðα̃mþ δ=2Þ2

q
. The above results bear some sim-

ilarity with the case of the one-dimensional SOC of linear
momentum. However unlike the momentum, here the
orbital angular momentum m is quantized, which essen-
tially alters the many-body ground state when the atom-
atom interaction is included.
In angular momentum space, the interaction Hamiltonian

takes the form of Hring
int ¼ g

P
mm0k Ψ

†
mþk↑Ψ

†
m0−k↓Ψm0↓Ψm↑,

which conserves the total angular momentum. It is
natural to introduce a general pairing field ΔQ ¼
g
P

m hΨQ−m↓Ψm↑i describing the pairing between atoms
with angular momenta m and Q −m, and write the mean-
field Hamiltonian as

HMF ¼
1

2

X
m

Φ†
m;Q

�HringðmÞ ΔQ

ΔQ −σyH�
ringðQ−mÞσy

�
Φm;Q

þ
X
m

ξQ−m −
jΔQj2
g

; ð4Þ

where Φm;Q ¼ ½Ψm↑;Ψm↓;Ψ†
Q−m↓;−Ψ

†
Q−m↑�T and ξm ¼

m2=2R2 − μ. Noticing that in the angular space, the above
introduced finite orbital angular momentum pairing exactly
gives the phase configuration of a vortex state with vorticity
Q, i.e., Δ ¼ ΔQeiQϕ.
In general, the ground state can be obtained by first

minimizing the energy EMF
Q ≡ hHMFi ¼

P
m ξjQ−mj þP

m;νΘð−Em;νÞEm;ν − jΔQj2=g for eachQ, and then further
minimizing on Q. Here for illustration, we plot the phase
boundaries [see the dashed lines in Fig. 2(a)] by comparing
the free energies of different phases with the parameters
used in the numerics. The agreement between the numeri-
cal simulations and the mean-field results validates the
approximation adopted above, and suggests that the single
vortex states originating from the finite orbital angular
momentum pairing.
Physically, as the Raman coupling and two-photon

detuning serve as effective transverse and longitudinal
Zeeman fields, the interplay with the SOAMC leads to
the asymmetric dressed Fermi surface in the angular
momentum space. The pairing with opposite angular
momentum is no longer energetically favorable; instead
the pairing happens between fermions with angular
momentum l1 and −l2 (l1 ≠ l2). As a result, the total
angular momentum carried by the pairing order parameter
is Q ¼ l1 þ ð−l2Þ ≠ 0, yielding the vortex-Q states in the
ground-state phase diagram, where Q is quantized and
increases discontinuously with the two-photon detuning.
Furthermore, when the Fermi surface (or the chemical
potential) is on the upper branches, pairing may take place

FIG. 2. (a) The ground-state phase diagram of the BdG
simulations (solid lines) and the effective model (dash-dotted
lines) in the Eb-δ plane for a superfluid Fermi gas with SOAMC.
Vortex-Q (Q ¼ 1, 2) denotes a single-vortex state with velocity
Q. (b) The spatial amplitude jΔðx; yÞj (left column) and phase
ϕðx; yÞ (middle column) of the order parameter for the vortex
phases in (a), and the right column gives the corresponding
atomic radial density nσðrÞ for each vortex. Here we have taken
Natom ¼ 50, χ=EF ¼ 0.7 and Ω=EF ¼ 0.21.
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in multichannels with different angular momenta, which
may give rise to exotic vortex states with peculiar features.
Exotic vortex with discrete rotational symmetry.—In

Fig. 3, we show the evolution of the ground state as a
function of two-photon detuning δ for a relatively weak
two-photon Rabi frequency Ω=EF ¼ 0.14. One can see
that with the increasing of δ, the NS state with Q ¼ 0
[Figs. 3(a1),3(b1),3(c1)] first transits into a single vortex
state with Q ¼ 1 [Figs. 3(a2)–3(c2)], both preserving the
continuous rotational symmetry. The momentum distribu-
tion of a NS state is always peaked at zero momentum
[Fig. 3(c1)], in sharp contrast to the vortex states with a
nearly vanishing contribution from zero momentum but
peaks at finite kr [Figs. 3(c2)–3(c4)]. When further increas-
ing δ, two exotic vortex states become the ground state
sequentially [Figs. 3(a3),3(a4)]. Different from the vortex
state governed by a single orbital-angular-momentum
pairing, we find the exotic vortex state has two different
pairing components with angular momentum Q1 and Q2

[referred to as Fig. 3(d)], by which we can write Δðr;ϕÞ ∼P
m¼Q1;Q2

CmðrÞeimϕ with CmðrÞ the amplitude of m
component. Consequently, a spontaneous periodical

modulation on the spatial profile of the order parameter
jΔj2 ∼ C2

Q1
þ C2

Q2
þ 2CQ1

CQ2
cosðQ1 −Q2Þϕ is devel-

oped along the azimuthal direction, which breaks the
continuous rotational symmetry into a discrete M-fold
rotational symmetry with M ¼ jQ1 −Q2j in both real
and momentum spaces. Note that the two components
are, in general, unequally weighted, and the winding
number of the exotic vortex is determined by the stronger
one. To our knowledge, the emergence of this type
of spontaneous-symmetry-breaking vortex states, as a
consequence of an intricate interplay between atom-atom
interaction, two-photon detuning, and SOAMC in a never-
theless experimentally accessible setup, bears no precedent
examples in the literature.
Now we address the effect of quantum fluctuation, which

has been neglected so far but is inevitable in experiments. In
general, the pairing fluctuation may deplete the mean-field
ground states and lead to the “Lee-Huang-Yang” corrections
on the ground-state energy [45,46]. Such corrections can be
taken into account by writing the pairing field as
Ξ ¼ Δþ φ, with φ the pair fluctuation around the mean-
field Δ, and then evaluating the noncondensed pair density
nb ¼ hφ†φi in the modified total atom number Natom ¼R
dr½Pσ nσðrÞ þ 2nbðrÞ� (see the Supplemental Material

[42] for details). By self-consistently solving the BdG
equations with the modified number equation, we find that
in all cases under our consideration the quantum depletion
due to the pairing fluctuation is insignificant (≲8% of the
total atoms) [42]. The resultant corrections on the order
parameter, which can be characterized by the deviation ratio

DðΔ; Δ̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jΔ̃ðrÞ − ΔðrÞj2dr

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jΔðrÞj2dr
q

between

the corrected pairing order parameter Δ̃ and the mean field
Δ, are also weak with DðΔ; Δ̃Þ ≲ 6% and the weights
contributed by different angular momentum components
nearly unchanged (see the Supplemental Material for details
[42]). Thus we conclude that the ground state configurations
originally obtained from mean field calculations are gen-
erally robust against the corrections due to quantum
fluctuation.
Experimental detection.—We first discuss the possible

energy scales in experiment. For example, one can choose
EF ∼ 2π × 3.1 kHz of a 2D Fermi gas [47], the Raman
coupling strength Ω ∼ 2π × ð0.5–1Þ kHz, the two-photon
detuning δ ∼ 2π × ð0–2Þ [33–35] and χ ∼ 2π × 2.2 kHz
[48], and tune EB via Feshbach resonance [49] to address
the whole regime of the phase diagram in this work. In
experiment, the vortex states can be characterized by the
total angular momentum Q by measuring the collective
shift of the radial quadrupole modes [50–52]. Further, to
reveal the exotic vortex phases with discrete rotational
symmetry, we turn to their atomic density distributions
nðrÞ, which can be directly measured by in situ absorption
imaging [53,54]. In Fig. 4, we plot nðrÞ ¼ P

σ nσðrÞ for the
typical vortex phases discussed above. The reduction from

FIG. 3. The amplitude (a1)–(a4) and phase (b1)–(b4) distri-
butions of the order parameter ΔðrÞ in the x-y plane for different
two-photon detuning δ=EF ¼ 0, 0.1, 0.3, and 0.4. (c1)–(c4)
The corresponding momentum distributions jΔðkx; kyÞj. (d) The
radial distributions jCmðrÞj of the m component for order
parameters in (a1)–(a4), respectively. Other parameters are
χ=EF ¼ 0.7, Eb=EF ¼ 0.3, Ω=EF ¼ 0.14, and the unit of
momentum kosc ¼

ffiffiffiffiffiffiffiffi
2ωr

p
.
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a continuous rotational symmetry to a discrete one can be
clearly identified in the density profile, for example, a C3
(C5) symmetry in Figs. 4(b),4(c). This distinguishes the
exotic vortex states from the single vortex with rotational
symmetry.
Conclusion.—In summary, we have studied the super-

fluid ground state of a two-dimensional Fermi gas with
SOAMC. Because of the finite orbital angular momentum
pairing induced by the SOAMC and two-photon detuning,
a family of vortex states with unique features are predicted
to be the ground state in a broad regime of the phase
diagram. Specifically, an exotic vortex which breaks the
rotational symmetry spontaneously may appear. These
results reveal the nontrivial physics brought by SOAMC,
and open an avenue to search unusual quantum vortex and
superfluid phases.
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