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We observe signatures of radial and angular roton excitations around a droplet crystallization transition
in dipolar Bose-Einstein condensates. In situmeasurements are used to characterize the density fluctuations
near this transition. The static structure factor is extracted and used to identify the radial and angular roton
excitations by their characteristic symmetries. These fluctuations peak as a function of the interaction
strength indicating the crystallization transition of the system. We compare our observations to a
theoretically calculated excitation spectrum allowing us to connect the crystallization mechanism with the
softening of the angular roton modes.
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The roton dispersion relation is essential to understand
the thermodynamics and density fluctuations in superfluid
helium [1–4]. Initially interpreted by Feynman as the
“ghost of a vanishing vortex ring” [5], nowadays the roton
is seen as a precursor to the crystallization of a system [6].
Quantum gases with dipolar interactions feature a similar
dispersion relation due to the anisotropic and long-range
nature of their interaction [7,8]. In contrast to helium, the
high tunability of atomic quantum gases allows for sys-
tematic studies of roton excitations. Tuning interatomic
interactions can soften the rotons, which trigger an insta-
bility and the formation of a crystal of quantum droplets
[9–11]. For elongated systems confined in cigar-shaped
traps, this softening leads to the emergence of one-dimen-
sional (1D) supersolid states that simultaneously exhibit
superfluid flow and crystalline order [12–17].
In cylindrically symmetric oblate traps, two types of

roton excitations have been predicted to play a crucial role
in the instability [18–20]. These two modes are the radial
and angular roton modes corresponding to the two spatial
degrees of freedom in the system. The spectrum of these
two-dimensional (2D) modes is more complex than the
spectrum of a previously studied elongated 1D supersolid
[21], making it a challenge to distinguish their individual
contributions to the crystallization. While the roton modes
were directly observed in 1D dipolar systems [22–24], the
various angular roton modes in 2D and their connection to
the crystallization have remained elusive.
In this Letter, we observe signatures of radial and angular

roton excitations of an oblate dipolar Bose-Einstein con-
densate (BEC) around the phase transition to a 2D droplet
crystal. These excitations leave their imprint in the density
fluctuations of the gas, which we measure in situ, giving us

direct access to the static structure factor SðkÞ [21,25]. The
quantity SðkÞ features a peak at finite momentum and a
distinct sixfold angular symmetry upon approaching the
crystallization transition. We use mean-field simulations of
the excitation spectrum to interpret the experimental
results. The observed emergence of angular structure is
thereby directly linked to the softening of angular
roton modes.
The excitation spectrum of dipolar BECs in cylindrically

symmetric traps can be theoretically studied in the
Bogoliubov–de Gennes (BdG) framework. We solve the
BdG equations including the first beyond mean-field
correction [21,26] term known as the Lee-Huang-Yang
(LHY) correction using our experimental parameters [27].
We calculate the excitation spectrum of the low-lying
modes in the BEC up to the point of the instability of
15 × 103 162Dy atoms in a trap as a function of the
scattering length. The trapping frequencies are ω=2π ¼
½35; 35.1; 110� Hz and the magnetic field points along ẑ.
The trap geometry is deliberately made asymmetric to
numerically lift the degeneracy in the x − y direction [44].
The radial and angular roton modes found in these spectra
can soften by varying the scattering length to energies
much smaller than the trap frequencies [18–20,26].
The mode patterns of the density fluctuation δnðrÞ

corresponding to the radial and angular roton modes are
shown in Fig. 1(a). We additionally present the spatial
power spectra of the mode patterns given by the squared
modulus of the Fourier transform jF ½δn�j2ðkÞ illustrating
the individual contributions to the static structure factor
[24,45–49]. Radial roton modes are circularly symmetric
and represent ringlike density modulations at nonzero
radial wave vector. Angular rotons have an angular
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oscillatory structure in addition to the ringlike radial
density modulation. We describe the angular oscillation
with sinðmϕÞ, where ϕ is the azimuthal angle, and the
integerm > 0 counts the number of nodal lines in the mode
pattern. The spatial power spectrum of a mode with m
nodal lines has a 2m-fold symmetry resulting in a four-
and sixfold symmetric power spectrum for the m ¼ 2 and
m ¼ 3 angular roton modes, respectively. In contrast, the
quadrupole mode and higher-lying phonon modes might
feature similar azimuthal symmetries but at smaller radial
wave vector.
In Fig. 1(b), we show the low-lying excitation energies

and ground-state shapes from the BEC side as a function of
the scattering length toward the phase transition point [51].
In the BEC regime at high scattering lengths as ≃ 81a0,
farthest away from the transition point, the dipole mode has
the lowest excitation energy and lies at exactly the trap
frequency [52]. For decreasing scattering lengths, several
higher-lying modes rapidly decrease in energy. These
are the radial and twice degenerate angular roton modes.

At around as ≃ 79.1a0, the m ¼ 2 mode drops below the
trap frequency followed by the m ¼ 1 and m ¼ 3 modes.
Near the phase transition point at as ≃ 77.1a0, the m ¼ 2
mode is only separated by a few Hz from the m ¼ 3 mode.
The ordering of the angular roton modes close to the phase
transition point depends on a nontrivial interplay between
the trap aspect ratio and the interaction strength [53].
Near as ≃ 80.5a0, the parabola-shaped BEC ground state

transforms into a biconcave blood-cell-like shape, which
forms as it is energetically favorable in cylindrical geom-
etries to push part of the density to the outer rim. This
further enhances the softening of angular rotons as they
become excitations of the ring-shaped region of maximal
density [18]. Previous studies of blood-cell-shaped ground
states [18–20,26,47,53–57] did not include the LHY
correction that has since been shown to stabilize the system
against collapse [58]. We also find it to enlarge the
parameter regime for blood-cell-shaped ground states by
a range in scattering length of approximately 1a0.
We experimentally study the emergence of the angular

rotons with a dipolar BEC with typically 15 × 103 162Dy
atoms at a temperature T ≃ 20 nK. We adjust the
crossed optical dipole trap after evaporation to an
almost cylindrical trap with trapping frequencies ω=2π ¼
½35ð1Þ; 37ð1Þ; 110ð1Þ� Hz and the magnetic field along ẑ
[27]. In the magnetic field range around 30 G that we
employ, lower three-body losses lead to droplet crystal
lifetimes on the order of 200 ms after crossing the phase
transition, which is an increase by a factor of 10 compared
to previous experiments at similar densities [13,27]. We
image the cloud in situ with a resolution of 1 μm and repeat
the experiment around 200 times for a statistical analysis of
the atomic densities. We further quote all scattering lengths
relative to a reference scattering length aref ¼ 91ð10Þa0
corresponding to the transition point because of an overall
systematic shift in our scattering length calibration [27].
We then extract the static structure factor, which con-

nects the spectrum of elementary excitations to the major
contributing modes in the density fluctuations [24,45–49].
The intermediate steps of this analysis are shown in Fig. 2
for four distinct scattering lengths: in the BEC regime,
closer to the transition, in the transition region, and for a
droplet crystal.
First, we investigate the in situ densities njðrÞ [Fig. 2(a)].

To remove residual contributions of the dipole mode, the
center of mass of the atomic density distribution is taken as
the origin. In addition, we postselect in an interval of�15%
with respect to the mean atom number at each scattering
length [27]. We observe that the crystal structure is
randomly oriented in individual images and consequently
gets washed out when averaging over many images
[Fig. 2(b)]. This highlights the continuous rotational
symmetry breaking upon crossing the crystalline phase.
In order to account for the randomly oriented crystal in the
further analysis, we determine the individual rotation

(a)

(b)

FIG. 1. (a) Normalized mode patterns of the density fluctua-
tions close to the transition at as ≃ 77.5a0 and their spatial power
spectra in the x-y plane. Shown are the lowest radial (m ¼ 0) and
angular rotons (m ¼ 1, 2, 3) having m angular nodal lines.
(b) Corresponding Bogoliubov excitation energies as a function
of the scattering length as, with the insets indicating the
emergence of a blood cell shape in the ground-state density
close to the instability at as ≃ 77.1a0. For decreasing scattering
lengths, first the m ¼ 2 followed by the m ¼ 1 and m ¼ 3
angular roton modes drops below the radial dipole modes at the
trap frequency and softens further toward the instability. For
information on higher modes (e.g., cyan line) and details, see
Refs. [27,50].
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angles θ in Fourier space and align the single-shot images
[27]. The rotated images nθjðrÞ are used to create new mean
images hnθðrÞi, which reveal the emergence of the crystal
structure [Fig. 2(c)]. As expected, the rotation does not
affect the mean image in the BEC regime.
Second, we calculate the individual fluctuation patterns

around this mean image δnθjðrÞ ¼ nθjðrÞ − hnθðrÞi given by
the deviations of the individual postselected and rotated
images from the mean hnθðrÞi. We determine the mean
power spectrum hjδnθðkÞj2i from a Fourier transform
δnθjðkÞ ¼

R
d2rδnθjðrÞeik·r of these fluctuation patterns.

This mean power spectrum is closely connected to the
static structure factor SðkÞ ¼ hjδnθðkÞj2i=N for homo-
geneous systems [25,49,59] and also provides valuable
insights into the nature of the excitations in nonhomo-
geneous systems [60–64].
The resulting 2D static structure factor SðkÞ is shown in

Fig. 2(d). We restrict the further analysis to momenta
between kmin=2π ≃ 0.11 μm−1 and kmax=2π ≃ 1 μm−1 to
account for the finite size of the cloud and the finite
imaging resolution in the experiment [27]. The quantity
SðkÞ features several peaks that lie approximately on a ring
with radius jkj around the origin. When approaching the
transition point, the height of the individual peaks
increases, and simultaneously the angular spreading of
these peaks across the ring changes. In contrast, the angular
distribution of SðkÞ for unrotated images remains

featureless, reflecting the symmetric trap. The enhancement
of the peaks along the alignment axis (ŷ axis) is a result of
the rotation algorithm, which always aligns the images
according to their individual most dominant peak in Fourier
space. Exploiting the cylindrical symmetry of the trap, we
transform SðkÞ to polar coordinates Sðkx; kyÞ → Sðk;ϕÞ
and analyze its radial and angular behavior separately.
The radial behavior SðkÞ is analyzed by integrating over

the angular direction to identify modes at finite momentum
jkj independent of their angular symmetry. The result is
shown in Fig. 3(a) for scattering lengths around the
transition. Starting in the BEC regime, we find SðkÞ to
be relatively flat with only a small peak at around
k=2π ≃ 0.22 μm−1. Closer to the transition, this peak rises
and shifts toward larger momenta. We determine the center
momentum krot and amplitude Smax of the peak using a
Gaussian fit and show it in Figs. 3(b) and 3(c).
The peak of the structure factor Smax first increases with

decreasing scattering lengths and then features a maximum
before it decreases again. This is consistent with the

(a)

(b)

(c)

(d)

FIG. 2. (a) Single-shot images for four different relative
scattering lengths, in the BEC regime (þ5.2a0), closer to the
transition point (þ2.0a0), in the transition region (þ0.0a0), and
for a droplet crystal (−4.2a0). (b) Mean images of the unrotated
images showing no clear crystalline structure. (c) Aligned images
(see text) indicate the presence of droplets in the mean image.
(d) 2D structure factor showing an increasing height of the peaks
at finite momentum jkj indicating the approaching transition
point. The central area below kmin=2π ≃ 0.11 μm−1 (see text) was
masked out.

(a)

(b)

(c)

FIG. 3. (a) Radial distribution SðkÞ of the two-dimensional
structure factor after integration over the angular coordinate for
different relative scattering lengths. A clear peak at finite wave
vector rises toward the phase transition. For clarity, the lines for
smaller scattering lengths were shifted vertically. (b) The ampli-
tude of this peak is obtained from a Gaussian fit reaching its
maximum at the phase transition. (c) Roton momentum shifts
toward larger values in the droplet regime where it stays constant.
The dash-dotted line on the left indicates the smallest momentum
kmin=2π ≃ 0.11 μm−1. The green diamond indicates the maxi-
mum SðkÞ and the dashed line the roton momentum at that
maximum. The gray area in (b) and (c) indicates the transition
region.
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expectation of enhanced fluctuations at the phase transition
due to the softening and thermal population of several roton
modes close to the phase transition in a finite-sized system
experiencing broadening due to hysteresis [13,24].
Compared to 1D, the increased number of low-lying
excitations with different symmetries results in higher
shot-to-shot fluctuations in 2D. From individual images,
it is therefore more challenging to distinguish between an
angular roton mode and a formed droplet crystal featuring
the same symmetry. The formation of a droplet crystal is a
direct consequence of the excitation of an angular roton
mode with the same symmetry assuming a dynamical
preparation scheme. We account for these uncertainties
by marking a transition region ðþ0.0� 1.5Þa0 rather than a
single point [27]. In the droplet regime, the peak amplitude
decreases and its position stays approximately constant at
krot=2π ≃ 0.33 μm−1, which roughly indicates the inverse
droplet distance. The peak also broadens further, indicating
a competition between different droplet numbers and
spacings.
The angular behavior SðϕÞ is obtained by integrating

Sðk;ϕÞ over the annulus with k ∈ ½0.2; 0.45� μm−1 [27].
SðϕÞ is shown in Fig. 4(a) and allows us to attribute the
enhancement of the fluctuations to individual modes.

Starting in the BEC regime, only two peaks at ϕ ¼ 0 and
ϕ ¼ π are visible which increase for lower scattering
lengths. While they are still small compared to lower
scattering lengths, these peaks can mainly be attributed
to our rotation algorithm [27]. Closer to the transition, four
additional peaks at ϕ ¼ �π=3 and ϕ ¼ �2π=3 emerge to
produce a rising sixfold symmetry indicative of the m ¼ 3
angular roton mode. In the droplet regime, these inter-
mediate peaks start to wash out, presumably due to the
competition of the three- and four-droplet configurations.
We further quantify the changing mode population with

lowest coefficients of a Fourier expansion of the normal-
ized periodic function SðϕÞ=maxϕ ½SðϕÞ�. After normali-
zation, the Fourier components shown in Fig. 4(b) describe
the relative strength of the lowest two angular roton
modes [27]. On the BEC side, the Fourier coefficients
αn give an indication of the underlying symmetry that then
can be connected to the modes from the simulation of
Fig. 1. We focus on the coefficients α2 and α3 which both
have a low contribution in the BEC regime.
The increasing weights indicate a softening of several

angular roton modes. The α2 and α3 modes increase toward
the transition, in agreement with the simulation shown in
Fig. 1(b). The α2 weight saturates near the transition and
stays constant in the droplet regime. However, the α3
weight reaches a maximum after the transition and becomes
smaller in the droplet regime. A stronger α3 weight than α2
is not supported by the presented theory if one assumes the
population of those modes is in thermal equilibrium, as the
m ¼ 2 mode has a slightly lower energy than the m ¼ 3
mode. This effect either hints toward nonequilibrium
dynamics or toward the limits of the LHY approximation
in the theoretical description [66–68].
In the crystalline domain, the two weights approach each

other again, indicating that neither of the two angular roton
modes are dominant. In this regime, SðkÞ cannot be viewed
as a measurement of excitations on top of the crystalline
ground state because we find states with competing droplet
numbers broadening the peak in the radial distribution of
the 2D structure factor [see Fig. 3(a) and Ref. [27] ].
Density patterns at single scattering lengths could have two
to five droplets present in each shot (see Ref. [27]),
indicating that the mean atomic density does not have
the same symmetry as the ground state. Then, the weights
αi reflect the symmetry of the observed droplet crystal
rather than an excitation on top of this crystalline ground
state. The similarity of the α2 and α3 weights therefore
indicates similar probabilities to find a droplet crystal with
fourfold or sixfold symmetry.
In conclusion, we have reported on signatures of radial

and angular roton modes by investigating the 2D static
structure factor SðkÞ of a dipolar BEC. The characteristic
sixfold symmetry of SðkÞ in the BEC regime can be
identified with the population of the angular roton mode.
These observations are supported by simulations of the

(a)

(b)

FIG. 4. (a) Angular distribution SðϕÞ of the two-dimensional
static structure factor integrated over the interval k=2π ∈
½0.2; 0.45� μm−1 around the roton momentum krot for different
relative scattering lengths. (b) Decomposition of SðϕÞ into
Fourier components matching the symmetry of the lowest two
angular roton modes m ¼ 2 and m ¼ 3 in the BEC. For clarity,
the lines in (a) were shifted vertically for smaller scattering
lengths. The gray area in (b) indicates the transition region. Error
bars are obtained by bootstrapping [65].
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excitation spectrum. Our study has laid the foundation for a
better understanding of the dominant excitations of dipolar
BEC in oblate traps close to the transition to a droplet
crystal. It connects the low-lying angular roton modes
to the crystallization mechanism and the formation of
droplets.

This work is supported by the German Research
Foundation under Grants No. Bu2247/1, No. Pf381/20-1,
No. FUGG INST41/1056-1, within the research group
FOR2247 under Project No. Pf381/16-1, as well as by
the Federal Ministry of Education and Research within the
QUANT:ERA collaborative project MAQS under Grant
No. 13N15231. M. G and M. Z acknowledge funding from
the Alexander von Humboldt Foundation.

J.-N .S and J. H. contributed equally to this work.

*t.pfau@physik.uni-stuttgart.de
[1] L. Landau, Phys. Rev. 60, 356 (1941).
[2] R. P. Feynman, Phys. Rev. 94, 262 (1954).
[3] R. P. Feynman, Phys. Rev. 91, 1291 (1953).
[4] R. P. Feynman and M. Cohen, Prog. Theor. Phys. 14, 261

(1955).
[5] R. P. Feynman, Application of Quantum Mechanics to

Liquid Helium, edited by C. Gorter (Elsevier, New York,
1955), Vol. 1, Chap. II, pp. 17–53.

[6] P. Nozières, J. Low Temp. Phys. 137, 45 (2004).
[7] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Phys.

Rev. Lett. 90, 250403 (2003).
[8] M. Wenzel, F. Böttcher, J.-N. Schmidt, M. Eisenmann, T.

Langen, T. Pfau, and I. Ferrier-Barbut, Phys. Rev. Lett. 121,
030401 (2018).

[9] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I.
Ferrier-Barbut, and T. Pfau, Nature (London) 530, 194
(2016).

[10] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Phys. Rev. Lett. 116, 215301 (2016).

[11] F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D.
Graham, M. Guo, T. Langen, and T. Pfau, Rep. Prog. Phys.
84, 012403 (2021).

[12] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
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