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The lightest charmed scalar meson is known as the D�
0ð2300Þ, which is one of the earliest new hadron

resonances observed at modern B factories. We show here that the parameters assigned to the lightest scalarD
meson are in conflict with the precise LHCb data of the decay B− → Dþπ−π−. On the contrary, these data can
be well described by an unitarized chiral amplitude containing a much lighter charmed scalar meson, the
D�

0ð2100Þ. We also extract the low-energy S-wave Dπ phase of the decay B− → Dþπ−π− from the data in a
model-independent way, and show that its difference from theDπ scattering phase shift can be traced back to
an intermediate ρ− exchange. Our work highlights that an analysis of data consistent with chiral symmetry,
unitarity, and analyticity is mandatory in order to extract the properties of the ground-state scalar mesons in
the singly heavy sector correctly, in analogy to the light scalar mesons f0ð500Þ and K�

0ð700Þ.
DOI: 10.1103/PhysRevLett.126.192001

Introduction.—Since the discovery of theD�
s0ð2317Þ [1],

many hadrons were observed beyond the quark model
expectations, which have seriously challenged the under-
standing of the hadron spectrum in terms of the conven-
tional quark model that identifies mesons as q̄q states. The
observation that the D�

s0ð2317Þ [1] and Ds1ð2460Þ [2] are
significantly lighter than expected by the quark model,
around 2.48 and 2.55 GeV [3–5], has driven the develop-
ment of various models, including Dð�ÞK hadronic mole-
cules [6–13], tetraquark states [14,15], and mixtures of cq̄
with tetraquarks [16]. In 2004, two new charm-nonstrange
structures, the D�

0ð2300Þ [17,18], called D�
0ð2400Þ previ-

ously, and D1ð2430Þ [17], were reported as the SU(3)
partners of the D�

s0ð2317Þ and Ds1ð2460Þ, respectively.
The observations posed a puzzle: why are the masses of the
two nonstrange mesons, D�

0ð2300Þ and D1ð2430Þ, almost
equal to their strange siblings, i.e., the D�

s0ð2317Þ and
Ds1ð2460Þ? Thanks to new data from both lattice quantum
chromodynamics (QCD) [19–24] and the LHCb experi-
ment [25], it was recently demonstrated that the various
puzzles in the charm meson spectrum can be solved

naturally in the framework of unitarized chiral perturbation
theory (UChPT) [26–28] that allows one to calculate the
nonperturbative dynamics of Goldstone bosons scattering

off the Dð�Þ
ðsÞ mesons in a controlled way. The combination

of UChPT and lattice QCD not only reproduced the correct
D�

s0ð2317Þ mass [19], but also predicted its pion mass
dependence [23,29]. The solution provided for the SU(3)
mass hierarchy puzzle mentioned above is that instead
of only one heavy state, D�

0ð2300Þ in the channel
ðS; IÞ≡ ðstrangeness; isospinÞ ¼ ð0; 1=2Þ, there are two
states, one lighter and one heavier [9,11,13,19,26,30–
34]. The most recent studies revealed their pole locations
to be at ð2105þ6

−8 − i102þ10
−11Þ and ð2451þ35

−26 − i134þ7
−8Þ MeV

[26,27], respectively. The SU(3) partner of theD�
s0ð2317Þ is

the lighter one, denoted as D�
0ð2100Þ in the following,

which restores the expected mass hierarchy. The heavier
pole on the other hand is a member of a different multiplet.
Support for the presence of two poles comes from an
analysis of the high-quality LHCb data on the decays B− →
Dþπ−π− [25], B0

s → D̄0K−πþ [35], B0 → D̄0π−πþ [36],
B− → Dþπ−K− [37], and B0 → D̄0π−Kþ [38] performed
in Refs. [27,39], as well as from the fact that their existence
is consistent with the lattice energy levels [19–23] for the
relevant two-body scattering [26,32,40]. This two-pole
structure indeed emerges as a more general pattern in
the hadron spectrum, see, e.g., Ref. [41].
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Despite the phenomenological success of this picture in
describing the available lattice and LHCb data, the obser-
vation that the lightest D�

0 has a mass around 2.1 GeV has
not entered the Review of Particle Physics (RPP) [42] yet,
which still lists the D�

0ð2300Þ as the lightest charmed scalar
meson and the D1ð2430Þ as the corresponding axial-vector
meson. In this Letter, we demonstrate that the D�

0ð2300Þ as
in the RPP is not consistent with the most precise data for
B− → Dþπ−π−, contrary to the D�

0ð2100Þ predicted in
UChPT, and conclude that the positive-parity charm-
nonstrange meson spectrum in the RPP needs to be
revised.
Dπ S-wave phase of B− → Dþπ−π−.—The decay ampli-

tude in the low-energy region of the Dπ system can be
decomposed into S, P, and D waves,

AB−→Dþπ−π−ðs; zÞ ¼
X2
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
AlðsÞPlðzsÞ; ð1Þ

whereAlðsÞwith l ¼ 0, 1, 2 correspond to the amplitudes
with Dþπ− in the S, P, and D waves, respectively, s is the
c.m. energy squared of the Dþπ− system, and PlðzsÞ are
the Legendre polynomials with zs the cosine of the helicity
angle of the Dþπ− system, i.e., the angle between the
moving directions of the two pions in theDþπ− c.m. frame.
The angular moments are determined by weighting the data
with the Legendre polynomials PlðzÞ [25]. They contain
contributions from certain partial waves and their interfer-
ence terms, and thus the corresponding phase variations.
The first few moments are given by [25,27,39]

hP0i ∝ jA0j2 þ jA1j2 þ jA2j2;

hP2i ∝
2

5
jA1j2 þ

2

7
jA2j2 þ

2ffiffiffi
5

p jA0jjA2j cosðδ2 − δ0Þ;

hP13i≡ hP1i −
14

9
hP3i ∝

2ffiffiffi
3

p jA0jjA1j cosðδ1 − δ0Þ; ð2Þ

with δi the phase of Ai, i.e., Ai ¼ jAijeiδi . As first
proposed in Ref. [27], we use the linear combination
hP13i instead of hP1i and hP3i individually, since it only
depends on the S − P-wave interference up to l ¼ 2 and is
particularly sensitive to the S-wave phase motion.
For MDþπ− < 2.2 GeV, even the D wave can be

neglected, since the narrow tensor resonance Ds2ð2460Þ
is sufficiently far away. This can be verified from the data of
the angular moments, i.e., Fig. 3 in Ref. [25]. Therefore, in
this kinematic regime one obtains

cosðδ0 − δ1Þ ¼
ffiffiffiffiffi
3

10

r
hP13iffiffiffiffiffiffiffiffiffihP2i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP0i − 5

2
hP2i

q ð3Þ

for the S-P phase difference. The P wave is dominated by
the vector resonance D�ð2007Þ0 below the Dþπ− threshold

with a width of less than 60 keV [43,44]. The next vector
D� resonance is far above this energy region. Thus, the
phase of the P wave δ1 can be safely fixed to 180° for the
region we are interested in. The S-wave Dπ phase motion
below 2.2 GeV can then be extracted, see Fig. 1. For
comparison, the phase motion of the Dþπ− S wave up to
2.4 GeVobtained in the LHCb analysis [25] (with the phase
at 2.4 GeV fixed to 180°) is also shown, which is fully in
line with the phase we extracted from Eq. (3) below
2.2 GeV.
For MDþπ− < 2.4 GeV, the effect of the ρ meson could

be significant via the coupled channel B− → D0π0π−; see
Fig. 2. This follows directly from the large branching ratio
BðB− → D0ρ−Þ ¼ 1.34%, which is an order larger than
BðB− → Dþπ−π−Þ ¼ 0.107% [42]. It is therefore reason-
able to assume that the decay B− → Dþπ−π− is dominated
by the process B− → D0ρ− → D0π0π− → Dþπ−π−. By
virtue of soft-pion theorems, one has [45]

AðB− → Dþπ−π−Þjpπ−→0 ¼
1

Fπ
AðB0 → D̄0π0Þ;

AðB− → D0π0π−Þjpπ0→0 ¼ −
1

Fπ
AðB− → D0π−Þ; ð4Þ

where pπ−ðπ0Þ is the momentum of the π−ðπ0Þ, and Fπ is the
pion decay constant (in the chiral limit). From BðB0 →
D̄0π0Þ ¼ 2.63 × 10−4 and BðB− → D0π−Þ ¼ 4.68 × 10−3,
one concludes that at low energies for the Dþπ−ðD0π0Þ
system, the amplitude of B− → D0π0π− is much larger than
that of B− → Dþπ−π−. Furthermore, isospin symmetry
shows that for the decays B → Dππ with even relative
angular momenta between the pions, the amplitude for
B− → Dþπ−π− is larger than that of B− → D0π0π− by a
factor of 2

ffiffiffi
2

p
[27,39,46,47]. As in addition even angular

2100 2200 2300 2400
0
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FIG. 1. Comparison of the predictions of Eq. (5) from UChPT
(blue) and a Breit-Wigner parametrization (green) for δ0 with the
phase extracted in Ref. [25] (red) and that using Eq. (3) (black). The
bands correspond to errors propagated from the input UChPT
scattering amplitudes and from the Breit-Wigner resonance param-
eters.
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momenta here imply isospin I ¼ 2 and therefore nonreso-
nant partial waves, the relative angular momentum of π0π−

in the decay B− → D0π0π− is by far dominantly odd in the
low-energy regime forD0π0, and the ρ− plays a crucial role.
If we assume that the decay B− → Dþπ−π− is dominated

by the process in Fig. 2, the Dπ S-wave part of the triangle
diagram can be estimated by the integral

Atrig
0 ðsÞ ¼ 1

π

Z
∞

sth

ds0
P̂ðs0Þρðs0ÞTD0π0→Dþπ−ðs0Þ

s0 − s
; ð5Þ

where P̂ðsÞ is the production amplitude for B− → D0ρ− →
D0π0π− projected to the D0π0 s channel, ρðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2

D;M
2
πÞ

p
=ð16πsÞ is the Dπ phase space with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc the Källén
function, TD0π0→Dþπ−ðsÞ the S-wave scattering amplitude
for D0π0 → Dþπ−, and sth ¼ ðMD þMπÞ2. The expres-
sion for P̂ðsÞ is the same as F̂ 1=2

0 ðsÞ in Eq. (12) below.
The evaluation of Eq. (5) depends on the asymptotic

behavior of the integrand, which is divergent in
general. We may estimate Eq. (5) using a cutoff atffiffiffiffiffiffiffiffiffi
smax

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

D

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

π

p
, where qmax ≈

1 GeV (another way is to introduce a form factor, e.g.,
e−ðs−sthÞ=s0 with s0 ¼ Oð1 GeVÞ [48]). We evaluate Eq. (5)
by employing both the Dπ scattering amplitude from
UChPT [19] and that of a Breit-Wigner (BW) parametri-
zation of the D�

0ð2300Þ for comparison, despite the defi-
ciencies of the latter discussed in Ref. [39]; see also
Ref. [49].
The results with qmax ¼ 1 GeV are shown in Fig. 1,

where the solid blue band and the green dashed band
correspond to the Dπ scattering amplitudes from UChPT
and BW, respectively. The obtained phase describes the
data perfectly for the UChPT amplitude, while the BWone
fails. We have checked that the obtained phases are
insensitive to a variation of the cutoff in a reasonable
region, qmax ∈ ½0.8; 1.2� GeV.
Khuri-Treiman formalism.—While Eq. (5) provides

a reasonable estimation of the S-wave decay amplitude
with a clear underlying physical picture, it does not respect

three-body unitarity. In order to check if the conclusion
formulated above is robust, we cure this deficiency by
employing the Khuri-Treiman equations [50], which are
based on two-body elastic phase shifts and explicitly
generate the crossed-channel rescattering between final-state
particles. The formulas are constructed from dispersion
relations for the related crossed scattering processes and
then analytically continued to the decay region, referring to
the continuation of the triangle graph [51].
We can write amplitudes for Aþ−−ðB− → Dþπ−π−Þ and

A00−ðB− → D0π0π−Þ in terms of single-variable functions
according to a reconstruction theorem [47,52],

Aþ−−ðs; t; uÞ ¼ F 1=2
0 ðsÞ þ κðsÞ

4
zsF

1=2
1 ðsÞ

þ κðsÞ2
16

ð3z2s − 1ÞF 1=2
2 ðsÞ þ ðt↔ sÞ;

A00−ðs; t; uÞ ¼ −
1ffiffiffi
2

p F 1=2
0 ðsÞ− κðsÞ

4
ffiffiffi
2

p zsF
1=2
1 ðsÞ

−
κðsÞ2
16

ffiffiffi
2

p ð3z2s − 1ÞF 1=2
2 ðsÞ þ κuðuÞ

4
zuF 1

1ðuÞ;

ð6Þ
where the subindex l and superindex I of the single-
variable amplitudes F I

l represent the angular momentum
and isospin, respectively, and only the I < 3=2 and l ≤ 2
terms are taken into account. The Mandelstam variables of
the B-meson decay B−ðpBÞ → DðpDÞπðp1Þπ−ðp2Þ are
s ¼ ðpB − p2Þ2, t ¼ ðpB − p1Þ2, and u ¼ ðpB − pDÞ2.
The corresponding angles are given by

zs ≡ cos θs ¼
sðt − uÞ − Δ

κðsÞ ; zu ≡ cos θu ¼
t − s
κuðuÞ

; ð7Þ

where κðsÞ¼λ1=2ðs;M2
D;M

2
πÞλ1=2ðs;M2

B;M
2
πÞ, κuðuÞ ¼

λ1=2ðu;M2
B;M

2
DÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=u
p

, and Δ ¼ ðM2
B −M2

πÞ×
ðM2

D −M2
πÞ.

Since we are interested in the s-channel process, we use
the index A (B) to label the two-body channels correspond-
ing toDþπ− andD0π0. The partial-wave decomposition for
the decay amplitudes AA reads

AAðs; zsÞ ¼
X
I;l

bAI;lPlðzsÞfIlðsÞ; ð8Þ

with bAI;l denoting Clebsch-Gordan coefficients. By
comparing with Eq. (1), it is easy to obtain AlðsÞ ¼
ð2lþ 1Þ−1=2PI b

1
I;lf

I
lðsÞ. We have the following partial-

wave unitarity relation for elastic rescattering:

disc fIlðsÞ ¼ 2ifIlðsÞ sin δIlðsÞe−iδ
I
lðsÞθðs − sthÞ; ð9Þ

where δIlðsÞ is the elastic final-state scattering phase shift.
The discontinuities of fIl and those of the single-variable

FIG. 2. The decay B− → Dþπ−π− via the coupled channel
B− → D0π0π−. The filled square denotes the D0π0 → Dþπ− T-
matrix element.
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functions κlF I
l coincide on the right-hand cut by con-

struction. Thus, one has

discF I
lðsÞ ¼ 2i½F I

lðsÞ þ F̂ I
lðsÞ� sin δIlðsÞe−iδ

I
lðsÞθðs − sthÞ;

ð10Þ

where the inhomogeneities F̂ I
lðsÞ encode the left-hand cut

contributions and are free of discontinuities on the right-
hand cut. This discontinuity relation is solved by

F I
lðsÞ ¼ ΩI

lðsÞ
�
QI

lðsÞ þ
sn

π

Z
∞

sth

ds0

s0n
sin δIlðs0ÞF̂ I

lðs0Þ
jΩI

lðs0Þjðs0 − sÞ
�
;

ð11Þ

where ΩI
lðsÞ ¼ expfs=π R∞

sth
ds0δIlðs0Þ=½s0ðs0 − sÞ�g is the

Omnès function [53], QI
lðsÞ is a polynomial at least of

degree (n − 1) (see discussion below), and the number of
subtractions n is chosen to guarantee the convergence of the
dispersion integral.
The inhomogeneity F̂ I

l is determined by the partial-
wave decomposition of Eq. (6) as the projection of the
crossed-channel amplitudes onto the considered channel.
Around the Dπ threshold in the s channel,

ffiffi
t

p
∼ 5 GeV,

there is no resonance in the t channel, and thus the
interaction is supposed to be very weak. The only possible
significant crossed-channel effect is from the ρ meson
through B− → D0π0π−. The resulting inhomogeneity for
the S-wave s-channel amplitude is [47]

F̂ 1=2
0 ðsÞ ¼ −

1

4
ffiffiffi
2

p
Z

1

−1
dzsðt − sÞF 1

1ðuÞ: ð12Þ

For technical details regarding this integral, see Ref. [54]
and the Supplemental Material [55].
The full solution for the decay amplitudes can be obtained

by solving a set of coupled integral equations in terms of a
few linearly independent complex subtraction constants
contained in QI

lðsÞ, which cannot be determined a priori
in the framework of dispersion theory. Since we are only
interested in the Dπ low-energy regime and especially in its
S wave, based on the large branching ratio of B− → D0ρ−, it
is reasonable to approximate F 1

1ðuÞ in Eq. (6) by a BW
function for the ρ meson. In this case, F 1

1ðuÞ behaves as u−1
for u → ∞, thus F̂ I

lðsÞ in Eq. (12) approaches a constant as
s → ∞. The number of the subtractions n in Eq. (11) is then
determined by the asymptotic behavior of the scattering
phase δIlðsÞ. For the BW phase and that of UChPT taken
from Ref. [19], one single subtraction is sufficient.
Moreover, the phase of UChPT, as well as that of the
BW, is unreliable at high energies. Thus, the dispersion
integral will be evaluated up to a cutoff Λ, and the effect of
cutting off the integral may be absorbed into the polynomial
QI

lðsÞ. Explicitly, for an integral

gðsÞ ¼
Z

∞

sth

ds0
fðs0Þ
s0 − s

¼
Z

Λ

sth

ds0
fðs0Þ
s0 − s

þ
Z

∞

Λ
ds0

fðs0Þ
s0 − s

≈ g0 þ g1sþ
Z

Λ

sth

ds0
fðs0Þ
s0 − s

: ð13Þ

For simplicity, we neglect the I ¼ 3=2 contribution since it
contains no resonances. Therefore, for the S-wave amplitude
at low energies, Eq. (11) can be written as

F 1=2
0 ðsÞ ¼ Ω1=2

0 ðsÞ
�
g0 þ g1

s −M2
D

M2
D

þ s
π

Z
Λ

sth

ds0

s0
sin δ1=20 ðs0ÞF̂ 1=2

0 ðs0Þ
jΩ1=2

0 ðs0Þjðs0 − sÞ

�
: ð14Þ

The constants g0 and g1 have to be fixed by data.
We fit hP0i, hP13i, and hP2i of the decay B− →

Dþπ−π− up to 2.4 GeV, which is below the Dη and
DsK̄ thresholds. To describe the angular moments, one
needs the explicit amplitudes for the Dπ P and D waves.
The P wave can be safely parametrized as δ1=21 ðsÞ ¼
πθðs −M2

D�0Þ as discussed below Eq. (3). Consequently,
the dispersion integral (11) for the P wave can be
neglected since sin π ¼ 0. The D wave is dominated by
the resonance D0

2ð2460Þ with a width of 47.5 MeV [42],
which is above the region we are interested in. Thus, the
D-wave phase is close to 0 below 2.4 GeV, and the
corresponding dispersion integral can be neglected as
well. Therefore, for the P-(D-)wave amplitudes F 1=2

1;2 , we
can use the same BW forms as those in the LHCb analysis
[25], which is equivalent to the corresponding Omnès
function multiplied by a polynomial. In the isobar model
used in Ref. [25], complex factors are introduced for each
resonance BW function. Without crossed-channel effects,
these factors become real according to Watson’s theorem
[56]. For the P and D waves, as discussed above, the
Omnès representation should be a good approximation in
the energy region we are interested in, and the normali-
zation factor is real. We also consider a complex nor-
malization and find the results unchanged.
For the Dπ S wave, we employ both the scattering phase

shifts from UChPT [19], which contains theD�
0ð2100Þ, and

the BW for the D�
0ð2300Þ. The fit results are shown in

Fig. 3, where the blue and green bands correspond to the
best fits from UChPT and the BW, respectively. While
UChPT describes the data very well with χ2=d:o:f: ¼ 1.2,
the BW fails to reproduce the data with χ2=d:o:f: ¼ 2.0.
The difference of these two values is significant from the
statistical point of view: the corresponding p values are 0.1
for the UChPT fit and 3 × 10−5 for the BW fit, respectively.
Thus, the former can be accepted as a good description of
the data, while the latter is highly disfavored [57]. The error
bands correspond to the 1σ uncertainties propagated from
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the input phases. The borders of the band of hP13i for the
BW are plotted in dotted and dashed curves to make it
evident that the data for hP0i and hP13i cannot be described
by the BW phase. With the fitted parameters g0 and g1, we
obtain the S-wave phase of the decay amplitude for B− →
Dþπ−π− shown in Fig. 4, where the results corresponding
to UChPT and the BWare plotted as blue and green bands,
respectively. As expected, UChPT describes the S-wave
phase extracted using Eq. (3) and that obtained in Ref. [25]
well up to 2.4 GeV. For the BW one, although the error
band is broad, either the low-energy or the high-energy
region cannot be described.
Conclusion.—The existence of the D�

0ð2300Þ as given in
the RPP is the starting point of many theoretical analyses
(see, e.g., Refs. [58–61]). The results obtained in this Letter
show that the D�

0ð2300Þ, whose resonance parameters were
obtained using the BW parametrization from the Belle [17]
and BABAR [62] analyses, is in conflict with the much more
precise LHCb data for B− → Dþπ−π−, which, however,
can be well reproduced by the UChPTamplitude containing
the D�

0ð2100Þ.
We expect that the D1ð2430Þ as given in the RPP [42]

will also be in conflict with future high-quality data of
B− → D�þπ−π− from LHCb [63] and Belle-II, and that the

lightest D1 meson is the D1ð2250Þ predicted by UChPT
[26,27].
The D�

0 is analogous to the more famous f0ð500Þ and
K�

0ð700Þ, whose masses have been significantly shifted
from earlier versions of the RPP due to improved data and
improved theoretical analyses—for recent discussions see
Refs. [64–68] and the review on scalar mesons in the RPP
[42]. We expect a similar change in all systems emerging
from the scattering of a pion off an isospin-nonsinglet
hadron. The lightest resonance in that case should not be
extracted from data using the usual BW form—a para-
metrization accounting for chiral symmetry and coupled
channels is mandatory. The Dπ S wave phase extracted
model independently here provides valuable information
for further understanding matter-field–Goldstone-boson
scattering and the structure of positive-parity heavy
hadrons.
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Note added.—Recently, a lattice calculation also concluded
that the D�

0 mass should be lower than the RPP value [69].
The authors found a mass of ð2196� 64Þ MeV with a pion
mass of 239 MeV, only ð77� 64Þ MeV above the Dπ
threshold. Thus, our conclusion receives a strong support
from lattice QCD calculations.
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FIG. 4. Phases obtained from Eq. (14) with scattering phase
shifts from UChPT (blue) and BW (green).

FIG. 3. Results of UChPT (blue) and the BW description (green), with the best fits χ2=d:o:f: ¼ 1.2 and 2.0, respectively.
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